
-
Previous Article
Optimal Placement of wireless charging lanes in road networks
- JIMO Home
- This Issue
-
Next Article
A goethite process modeling method by Asynchronous Fuzzy Cognitive Network based on an improved constrained chicken swarm optimization algorithm
A two-stage solution approach for plastic injection machines scheduling problem
1. | Eskisehir Osmangazi University, Department of Industrial Engineering, Meselik Campus, 26040, Eskisehir, Turkey |
2. | Eskisehir Technical University, Department of Industrial Engineering, Iki Eylul Campus, 26555, Eskisehir, Turkey |
One of the most common plastic manufacturing methods is injection molding. In injection molding process, scheduling of plastic injection machines is very difficult because of the complex nature of the problem. For example, similar plastic parts should be produced sequentially to prevent long setup times. On the other hand, to produce a plastic part, its mold should be fixed on an injection machine. Machine eligibility restrictions should be considered because a mold can be usually fixed on a subset of the injection machines. Some plastic parts which have same shapes but different colors are used same mold so these parts can only be scheduled simultaneously if their mold has copies, otherwise resource constraints should be considered. In this study, a multi-objective mathematical model is proposed for parallel machine scheduling problem to minimize makespan, total tardiness, and total waiting time. Since NP-hard nature of problem, this paper presents a two-stage mathematical model and a two-stage solution approach. In the first stage of mathematical model, jobs are assigned to the machines and each machine is scheduled separately in the second stage. The integrated model and two-stage mathematical model are scalarized by using goal programming, compromise programming and Lexicographic Weighted Tchebycheff programming methods. To solve large-scale problems in a short time, a two-stage solution approach is also proposed. In the first stage of this approach, jobs are assigned to machines and scheduled by using proposed simulated annealing algorithm. In the second stage of the approach, starting time, completion time and waiting time of the jobs are calculated by using a mathematical model. The performance of the methods is demonstrated on randomly generated test problems.
References:
[1] |
M. Afzalirad and M. Shafipour,
Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions, Journal Of Intelligent Manufacturing, 29 (2018), 423-437.
doi: 10.1007/s10845-015-1117-6. |
[2] |
E. Akyol Ozer and T. Sarac,
MIP models and a matheuristic algorithm for an identical parallel machine scheduling problem under multiple copies of shared resources constraints, TOP, 27 (2019), 94-124.
doi: 10.1007/s11750-018-00494-x. |
[3] |
O. Alagoz and M. Azizoglu,
Rescheduling of identical parallel machines under machine eligibility constraints, European Journal of Operational Research, 149 (2003), 523-532.
doi: 10.1016/S0377-2217(02)00499-X. |
[4] |
A. Baykasoglu and F. Ozsoydan,
Dynamic scheduling of parallel heat treatment furnaces: A case study at a manufacturing system, Journal of Manufacturing Systems, 46 (2018), 152-162.
doi: 10.1016/j.jmsy.2017.12.005. |
[5] |
G. Bektur and T. Sarac,
A Mathematical Model and Heuristic Algorithms for an Unrelated Parallel Machine Scheduling Problem with Sequence-Dependent Setup Times, Machine Eligibility Restrictions and a Common Server, Computers & Operations Research, 103 (2019), 46-63.
doi: 10.1016/j.cor.2018.10.010. |
[6] |
I. A. Chaudhry and P. R. Drake,
Minimizing total tardiness for the machine scheduling and worker assignment problems in identical parallel machines using genetic algorithms, International Journal of Advanced Manufacturing Technology, 42 (2009), 581-594.
doi: 10.1007/s00170-008-1617-z. |
[7] |
S. G. Dastidar and R. Nagi,
Scheduling injection molding operations with multiple resource constraints and sequence dependent setup times and costs, Computers & Operations Research, 32 (2005), 2987-3005.
doi: 10.1016/j.cor.2004.04.012. |
[8] |
R. Driessel and L. Moench, Scheduling jobs on parallel machines with sequence dependent setup times precedence constraints and ready times using variable neighborhood search, International Conference on Computers and Industrial Engineering, (2009), 273–278.
doi: 10.1109/ICCIE.2009.5223515. |
[9] |
E. B. Edis and C. Oguz,
Parallel machine scheduling with flexible resources, Computers & Industrial Engineering, 63 (2012), 433-447.
doi: 10.1016/j.cie.2012.03.018. |
[10] |
E.B. Edis and I. Ozkarahan,
A combined integer/constraint programming approach to a resource constrained parallel machine scheduling problem with machine eligibility restrictions, Engineering Optimization, 43 (2011), 135-157.
doi: 10.1080/03052151003759117. |
[11] |
E. B. Edis and I. Ozkarahan,
Solution approaches for a real-life resource-constrained parallel machine scheduling problem, International Journal of Advanced Manufacturing Technology, 58 (2012), 1141-1153.
doi: 10.1007/s00170-011-3454-8. |
[12] |
A. Ezugwu and F. Akutsah,
An Improved Firefly Algorithm for the Unrelated Parallel Machines Scheduling Problem With Sequence-Dependent Setup Times, IEEE ACCESS, 6 (2018), 54459-54478.
doi: 10.1109/ACCESS.2018.2872110. |
[13] |
B. Gacias, C. Artigues and P. Lopez,
Parallel machine scheduling with precedence constraints and setup times, Computers & Operations Research, 37 (2010), 2141-2151.
doi: 10.1016/j.cor.2010.03.003. |
[14] |
R. Gokhale and M. Mathirajan, Scheduling identical parallel machines with machine eligibility restrictions to minimize total weighted flow time in automobile gear manufacturing, International Journal of Advanced Manufacturing Technology, 60 (2012), 1099-1110. Google Scholar |
[15] |
T. Keskinturk, M. B. Yildirim and M. Barut,
An ant colony optimization algorithm for load balancing in parallel machines with sequence-dependent setup times, Computers & Operations Research, 39 (2012), 1225-1235.
doi: 10.1016/j.cor.2010.12.003. |
[16] |
K. Li, Y. Shia, S. Yanga and B. Cheng,
Parallel machine scheduling problem to minimize the makespan with resource dependent processing times, Applied Soft Computing, 11 (2011), 5551-5557.
doi: 10.1016/j.asoc.2011.05.005. |
[17] |
X. Li, H. Chehade, F. Yalaoui and L. Amodeo, Fuzzy logic controller based multi-objective meta-heuristics to solve parallel machines scheduling problem, Journal of Multiple-Valued Logic and Soft Computing, 18 (2012), 617-636. Google Scholar |
[18] |
S. W. Lin, Z. J. Lee, K. C. Ying and C. C. Lu,
Minimization of maximum lateness on parallel machines with sequence-dependent setup times and job release dates, Computers & Operations Research, 38 (2011), 809-815.
doi: 10.1016/j.cor.2010.09.020. |
[19] |
M. Liu and C. Wu,
Scheduling algorithm based on evolutionary computing in identical parallel machine production line, Robotics and Computer Integrated Manufacturing, 19 (2003), 401-407.
doi: 10.1016/S0736-5845(03)00041-3. |
[20] |
T. Park, T. Lee and C. O. Kim,
Due-date scheduling on parallel machines with job splitting and sequence-dependent major/minor setup times, International Journal of Advanced Manufacturing Technology, 59 (2012), 325-333.
doi: 10.1007/s00170-011-3489-x. |
[21] |
R. Ruiz and C. A. Romano,
Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times, International Journal of Advanced Manufacturing Technology, 57 (2011), 777-794.
doi: 10.1007/s00170-011-3318-2. |
[22] |
T. Sarac and A. Sipahioglu, Plastik enjeksiyon makinalarinin Çizelgelenmesi problemi, Journal of Industrial Engineering, 20 (2009), 2-14. Google Scholar |
[23] |
L. Su, W. Y. Chang and F. D. Chou, Minimizing maximum lateness on identical parallel machines with flexible resources and machine eligibility constraints, International Journal of Advanced Manufacturing Technology, 56 (2011), 1195.
doi: 10.1007/s00170-011-3236-3. |
[24] |
I. T. Tanev, T. Uozumi and Y. Morotome,
Hybrid evolutionary algorithm-based real-world flexible job shop scheduling problem: Application service provider approach, Applied Soft Computing, 5 (2004), 87-100.
doi: 10.1016/j.asoc.2004.03.013. |
[25] |
A. K. Turker and C. Sel, A Hybrid approach on single server parallel machines scheduling problem with sequence dependent setup times, Journal of the Faculty of Engineering and Architecture of Gazi University, 26 (2011), 731-740. Google Scholar |
[26] |
Y. Unlu and S. J. Mason,
Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems, Computers & Industrial Engineering, 58 (2010), 785-800.
doi: 10.1016/j.cie.2010.02.012. |
show all references
References:
[1] |
M. Afzalirad and M. Shafipour,
Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions, Journal Of Intelligent Manufacturing, 29 (2018), 423-437.
doi: 10.1007/s10845-015-1117-6. |
[2] |
E. Akyol Ozer and T. Sarac,
MIP models and a matheuristic algorithm for an identical parallel machine scheduling problem under multiple copies of shared resources constraints, TOP, 27 (2019), 94-124.
doi: 10.1007/s11750-018-00494-x. |
[3] |
O. Alagoz and M. Azizoglu,
Rescheduling of identical parallel machines under machine eligibility constraints, European Journal of Operational Research, 149 (2003), 523-532.
doi: 10.1016/S0377-2217(02)00499-X. |
[4] |
A. Baykasoglu and F. Ozsoydan,
Dynamic scheduling of parallel heat treatment furnaces: A case study at a manufacturing system, Journal of Manufacturing Systems, 46 (2018), 152-162.
doi: 10.1016/j.jmsy.2017.12.005. |
[5] |
G. Bektur and T. Sarac,
A Mathematical Model and Heuristic Algorithms for an Unrelated Parallel Machine Scheduling Problem with Sequence-Dependent Setup Times, Machine Eligibility Restrictions and a Common Server, Computers & Operations Research, 103 (2019), 46-63.
doi: 10.1016/j.cor.2018.10.010. |
[6] |
I. A. Chaudhry and P. R. Drake,
Minimizing total tardiness for the machine scheduling and worker assignment problems in identical parallel machines using genetic algorithms, International Journal of Advanced Manufacturing Technology, 42 (2009), 581-594.
doi: 10.1007/s00170-008-1617-z. |
[7] |
S. G. Dastidar and R. Nagi,
Scheduling injection molding operations with multiple resource constraints and sequence dependent setup times and costs, Computers & Operations Research, 32 (2005), 2987-3005.
doi: 10.1016/j.cor.2004.04.012. |
[8] |
R. Driessel and L. Moench, Scheduling jobs on parallel machines with sequence dependent setup times precedence constraints and ready times using variable neighborhood search, International Conference on Computers and Industrial Engineering, (2009), 273–278.
doi: 10.1109/ICCIE.2009.5223515. |
[9] |
E. B. Edis and C. Oguz,
Parallel machine scheduling with flexible resources, Computers & Industrial Engineering, 63 (2012), 433-447.
doi: 10.1016/j.cie.2012.03.018. |
[10] |
E.B. Edis and I. Ozkarahan,
A combined integer/constraint programming approach to a resource constrained parallel machine scheduling problem with machine eligibility restrictions, Engineering Optimization, 43 (2011), 135-157.
doi: 10.1080/03052151003759117. |
[11] |
E. B. Edis and I. Ozkarahan,
Solution approaches for a real-life resource-constrained parallel machine scheduling problem, International Journal of Advanced Manufacturing Technology, 58 (2012), 1141-1153.
doi: 10.1007/s00170-011-3454-8. |
[12] |
A. Ezugwu and F. Akutsah,
An Improved Firefly Algorithm for the Unrelated Parallel Machines Scheduling Problem With Sequence-Dependent Setup Times, IEEE ACCESS, 6 (2018), 54459-54478.
doi: 10.1109/ACCESS.2018.2872110. |
[13] |
B. Gacias, C. Artigues and P. Lopez,
Parallel machine scheduling with precedence constraints and setup times, Computers & Operations Research, 37 (2010), 2141-2151.
doi: 10.1016/j.cor.2010.03.003. |
[14] |
R. Gokhale and M. Mathirajan, Scheduling identical parallel machines with machine eligibility restrictions to minimize total weighted flow time in automobile gear manufacturing, International Journal of Advanced Manufacturing Technology, 60 (2012), 1099-1110. Google Scholar |
[15] |
T. Keskinturk, M. B. Yildirim and M. Barut,
An ant colony optimization algorithm for load balancing in parallel machines with sequence-dependent setup times, Computers & Operations Research, 39 (2012), 1225-1235.
doi: 10.1016/j.cor.2010.12.003. |
[16] |
K. Li, Y. Shia, S. Yanga and B. Cheng,
Parallel machine scheduling problem to minimize the makespan with resource dependent processing times, Applied Soft Computing, 11 (2011), 5551-5557.
doi: 10.1016/j.asoc.2011.05.005. |
[17] |
X. Li, H. Chehade, F. Yalaoui and L. Amodeo, Fuzzy logic controller based multi-objective meta-heuristics to solve parallel machines scheduling problem, Journal of Multiple-Valued Logic and Soft Computing, 18 (2012), 617-636. Google Scholar |
[18] |
S. W. Lin, Z. J. Lee, K. C. Ying and C. C. Lu,
Minimization of maximum lateness on parallel machines with sequence-dependent setup times and job release dates, Computers & Operations Research, 38 (2011), 809-815.
doi: 10.1016/j.cor.2010.09.020. |
[19] |
M. Liu and C. Wu,
Scheduling algorithm based on evolutionary computing in identical parallel machine production line, Robotics and Computer Integrated Manufacturing, 19 (2003), 401-407.
doi: 10.1016/S0736-5845(03)00041-3. |
[20] |
T. Park, T. Lee and C. O. Kim,
Due-date scheduling on parallel machines with job splitting and sequence-dependent major/minor setup times, International Journal of Advanced Manufacturing Technology, 59 (2012), 325-333.
doi: 10.1007/s00170-011-3489-x. |
[21] |
R. Ruiz and C. A. Romano,
Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times, International Journal of Advanced Manufacturing Technology, 57 (2011), 777-794.
doi: 10.1007/s00170-011-3318-2. |
[22] |
T. Sarac and A. Sipahioglu, Plastik enjeksiyon makinalarinin Çizelgelenmesi problemi, Journal of Industrial Engineering, 20 (2009), 2-14. Google Scholar |
[23] |
L. Su, W. Y. Chang and F. D. Chou, Minimizing maximum lateness on identical parallel machines with flexible resources and machine eligibility constraints, International Journal of Advanced Manufacturing Technology, 56 (2011), 1195.
doi: 10.1007/s00170-011-3236-3. |
[24] |
I. T. Tanev, T. Uozumi and Y. Morotome,
Hybrid evolutionary algorithm-based real-world flexible job shop scheduling problem: Application service provider approach, Applied Soft Computing, 5 (2004), 87-100.
doi: 10.1016/j.asoc.2004.03.013. |
[25] |
A. K. Turker and C. Sel, A Hybrid approach on single server parallel machines scheduling problem with sequence dependent setup times, Journal of the Faculty of Engineering and Architecture of Gazi University, 26 (2011), 731-740. Google Scholar |
[26] |
Y. Unlu and S. J. Mason,
Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems, Computers & Industrial Engineering, 58 (2010), 785-800.
doi: 10.1016/j.cie.2010.02.012. |


Ref. | Solution Methods | |||
[24] | Resource | Number of Tardy Jobs | Hybrid evolutionary algorithm | |
[8] | Variable neighborhood search | |||
[7] | Resource, |
Inventory holding, backlogging and setup time | Work center based decomposition approach | |
[15] | Average relative percentage of imbalance | GA and ant colony optimization | ||
[16] | 0-1 MIP model and GA with a fuzzy logic controller | |||
[18] | Maximum tardiness( |
Greedy Algorithm | ||
[25] | A hybrid GA and tabu search approach | |||
[3] | Optimizing Algorithm | |||
[23] | A network flow mathematical programming model and a heuristic approach | |||
[17] | Simulated annealing algorithm | |||
[11] | Resource, |
Integer programming and constraint programming model | ||
[21] | Resource |
Mixed integer programming model | ||
[11] | Resource, |
Integer programming, constraint programming model | ||
[10] | Resource, |
A Combined Integer/Constraint Programming Approach | ||
[9] | Resource | Integer programming, constraint programming model | ||
[1] | An integer programming model, GA | |||
[12] | Firefly algorithm | |||
[4] | Energy consumption and annual income | A multi-start and constructive search algorithm | ||
[2] | Resource, |
MIP models and a matheuristic algorithm |
Ref. | Solution Methods | |||
[24] | Resource | Number of Tardy Jobs | Hybrid evolutionary algorithm | |
[8] | Variable neighborhood search | |||
[7] | Resource, |
Inventory holding, backlogging and setup time | Work center based decomposition approach | |
[15] | Average relative percentage of imbalance | GA and ant colony optimization | ||
[16] | 0-1 MIP model and GA with a fuzzy logic controller | |||
[18] | Maximum tardiness( |
Greedy Algorithm | ||
[25] | A hybrid GA and tabu search approach | |||
[3] | Optimizing Algorithm | |||
[23] | A network flow mathematical programming model and a heuristic approach | |||
[17] | Simulated annealing algorithm | |||
[11] | Resource, |
Integer programming and constraint programming model | ||
[21] | Resource |
Mixed integer programming model | ||
[11] | Resource, |
Integer programming, constraint programming model | ||
[10] | Resource, |
A Combined Integer/Constraint Programming Approach | ||
[9] | Resource | Integer programming, constraint programming model | ||
[1] | An integer programming model, GA | |||
[12] | Firefly algorithm | |||
[4] | Energy consumption and annual income | A multi-start and constructive search algorithm | ||
[2] | Resource, |
MIP models and a matheuristic algorithm |
Test No | 1-1 | 2-1 | 3-1 | 4-1 | 5-1 | 6-1 | 7-1 | 8-1 | |
M0-WGP | 384 | 273 | 326 | 394 | 346 | 335 | 318 | 280 | |
299 | 99 | 296 | 564 | 116 | 295 | 232 | 102 | ||
4 | 7 | 3 | 0 | 0 | 0 | 0 | 0 | ||
0.1 | 0.07 | 0.09 | 0.24 | 0.07 | 0.08 | 0.11 | 0.05 | ||
196 | 181 | 299 | 880 | 153 | 175 | 82 | 95 | ||
M0-CP | 384 | 273 | 343 | 388 | 326 | 383 | 328 | 280 | |
299 | 99 | 281 | 506 | 157 | 258 | 222 | 102 | ||
4 | 7 | 3 | 87 | 14 | 0 | 16 | 0 | ||
0.1 | 0.07 | 0.09 | 0.29 | 0.09 | 0.08 | 0.15 | 0.05 | ||
322 | 73 | 212 | 522 | 111 | 183 | 85 | 74 | ||
M0-LWT | 384 | 273 | 343 | 388 | 326 | 383 | 328 | 280 | |
299 | 99 | 281 | 506 | 157 | 258 | 222 | 102 | ||
4 | 7 | 3 | 87 | 14 | 0 | 16 | 0 | ||
0.1 | 0.07 | 0.09 | 0.29 | 0.09 | 0.08 | 0.15 | 0.05 | ||
343 | 97 | 323 | 996 | 186 | 194 | 284 | 119 | ||
M1-M2-WGP | 423 | 313 | 345 | 433 | 331 | 335 | 310 | 266 | |
465 | 130 | 333 | 796 | 291 | 295 | 485 | 141 | ||
0 | 0 | 0 | 114 | 0 | 0 | 0 | 0 | ||
0.14 | 0.09 | 0.10 | 0.42 | 0.11 | 0.08 | 0.19 | 0.05 | ||
1 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | ||
M1-M2-CP | 450 | 320 | 345 | 393 | 380 | 335 | 350 | 351 | |
636 | 144 | 333 | 701 | 237 | 295 | 479 | 208 | ||
0 | 7 | 0 | 167 | 0 | 0 | 0 | 13 | ||
0.19 | 0.1 | 0.1 | 0.42 | 0.11 | 0.08 | 0.19 | 0.1 | ||
2 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | ||
M1-M2-LWT | 450 | 320 | 345 | 393 | 390 | 335 | 350 | 351 | |
636 | 144 | 333 | 701 | 237 | 295 | 479 | 208 | ||
0 | 7 | 0 | 167 | 10 | 0 | 0 | 13 | ||
0.19 | 0.1 | 0.1 | 0.42 | 0.12 | 0.08 | 0.19 | 0.1 | ||
8 | 3 | 6 | 14 | 4 | 3 | 5 | 3 | ||
SA-M3 | 473 | 320 | 411 | 366 | 402 | 383 | 328 | 295 | |
456 | 82 | 349 | 717 | 335 | 258 | 222 | 99 | ||
90 | 16 | 37 | 112 | 127 | 0 | 16 | 0 | ||
0.19 | 0.08 | 0.13 | 0.37 | 0.25 | 0.08 | 0.15 | 0.05 | ||
13 | 12 | 13 | 13 | 12 | 12 | 12 | 13 |
Test No | 1-1 | 2-1 | 3-1 | 4-1 | 5-1 | 6-1 | 7-1 | 8-1 | |
M0-WGP | 384 | 273 | 326 | 394 | 346 | 335 | 318 | 280 | |
299 | 99 | 296 | 564 | 116 | 295 | 232 | 102 | ||
4 | 7 | 3 | 0 | 0 | 0 | 0 | 0 | ||
0.1 | 0.07 | 0.09 | 0.24 | 0.07 | 0.08 | 0.11 | 0.05 | ||
196 | 181 | 299 | 880 | 153 | 175 | 82 | 95 | ||
M0-CP | 384 | 273 | 343 | 388 | 326 | 383 | 328 | 280 | |
299 | 99 | 281 | 506 | 157 | 258 | 222 | 102 | ||
4 | 7 | 3 | 87 | 14 | 0 | 16 | 0 | ||
0.1 | 0.07 | 0.09 | 0.29 | 0.09 | 0.08 | 0.15 | 0.05 | ||
322 | 73 | 212 | 522 | 111 | 183 | 85 | 74 | ||
M0-LWT | 384 | 273 | 343 | 388 | 326 | 383 | 328 | 280 | |
299 | 99 | 281 | 506 | 157 | 258 | 222 | 102 | ||
4 | 7 | 3 | 87 | 14 | 0 | 16 | 0 | ||
0.1 | 0.07 | 0.09 | 0.29 | 0.09 | 0.08 | 0.15 | 0.05 | ||
343 | 97 | 323 | 996 | 186 | 194 | 284 | 119 | ||
M1-M2-WGP | 423 | 313 | 345 | 433 | 331 | 335 | 310 | 266 | |
465 | 130 | 333 | 796 | 291 | 295 | 485 | 141 | ||
0 | 0 | 0 | 114 | 0 | 0 | 0 | 0 | ||
0.14 | 0.09 | 0.10 | 0.42 | 0.11 | 0.08 | 0.19 | 0.05 | ||
1 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | ||
M1-M2-CP | 450 | 320 | 345 | 393 | 380 | 335 | 350 | 351 | |
636 | 144 | 333 | 701 | 237 | 295 | 479 | 208 | ||
0 | 7 | 0 | 167 | 0 | 0 | 0 | 13 | ||
0.19 | 0.1 | 0.1 | 0.42 | 0.11 | 0.08 | 0.19 | 0.1 | ||
2 | 1 | 0 | 2 | 1 | 1 | 1 | 1 | ||
M1-M2-LWT | 450 | 320 | 345 | 393 | 390 | 335 | 350 | 351 | |
636 | 144 | 333 | 701 | 237 | 295 | 479 | 208 | ||
0 | 7 | 0 | 167 | 10 | 0 | 0 | 13 | ||
0.19 | 0.1 | 0.1 | 0.42 | 0.12 | 0.08 | 0.19 | 0.1 | ||
8 | 3 | 6 | 14 | 4 | 3 | 5 | 3 | ||
SA-M3 | 473 | 320 | 411 | 366 | 402 | 383 | 328 | 295 | |
456 | 82 | 349 | 717 | 335 | 258 | 222 | 99 | ||
90 | 16 | 37 | 112 | 127 | 0 | 16 | 0 | ||
0.19 | 0.08 | 0.13 | 0.37 | 0.25 | 0.08 | 0.15 | 0.05 | ||
13 | 12 | 13 | 13 | 12 | 12 | 12 | 13 |
Test No | 9-1 | 10-1 | 11-1 | 12-1 | 13-1 | 14-1 | 15-1 | 16-1 | |
M0-WGP | 296 | 331 | 391 | 239 | 154 | 283 | 183 | 262 | |
311 | 325 | 393 | 135 | 191 | 331 | 124 | 117 | ||
2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | ||
0.08 | 0.13 | 0.14 | 0.06 | 0.06 | 0.08 | 0.07 | 0.04 | ||
618 | 2211 | 1774 | 337 | 415 | 497 | 439 | 246 | ||
M0-CP | 296 | 331 | 370 | 198 | 154 | 283 | 143 | 262 | |
311 | 325 | 326 | 122 | 191 | 331 | 94 | 117 | ||
2 | 0 | 70 | 24 | 0 | 0 | 17 | 0 | ||
0.08 | 0.13 | 0.15 | 0.06 | 0.06 | 0.08 | 0.08 | 0.04 | ||
691 | 1227 | 1414 | 401 | 403 | 539 | 252 | 169 | ||
M0-LWT | 296 | 331 | 370 | 198 | 154 | 283 | 143 | 262 | |
311 | 325 | 326 | 122 | 191 | 331 | 94 | 117 | ||
2 | 0 | 70 | 24 | 0 | 0 | 17 | 0 | ||
0.08 | 0.13 | 0.15 | 0.06 | 0.06 | 0.08 | 0.08 | 0.04 | ||
1045 | 1231 | 1980 | 354 | 402 | 876 | 298 | 108 | ||
M1-M2-WGP | 341 | 492 | 409 | 286 | 223 | 282 | 243 | 295 | |
495 | 870 | 428 | 344 | 431 | 500 | 295 | 342 | ||
14 | 327 | 155 | 8 | 0 | 0 | 0 | 0 | ||
0.12 | 0.58 | 0.23 | 0.13 | 0.14 | 0.12 | 0.15 | 0.09 | ||
1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | ||
M1-M2-CP | 334 | 411 | 470 | 297 | 230 | 345 | 189 | 530 | |
488 | 791 | 567 | 263 | 430 | 600 | 273 | 1073 | ||
7 | 274 | 305 | 89 | 0 | 7 | 21 | 0 | ||
0.11 | 0.5 | 0.34 | 0.16 | 0.14 | 0.15 | 0.16 | 0.26 | ||
1 | 1 | 1 | 1 | 0 | 0 | 0 | 24 | ||
M1-M2-LWT | 341 | 411 | 470 | 297 | 230 | 338 | 189 | 295 | |
495 | 791 | 567 | 263 | 430 | 600 | 273 | 344 | ||
14 | 274 | 305 | 89 | 0 | 0 | 21 | 0 | ||
0.12 | 0.5 | 0.34 | 0.16 | 0.14 | 0.15 | 0.16 | 0.09 | ||
2 | 6 | 3 | 3 | 2 | 2 | 2 | 1 | ||
SA-M3 | 369 | 416 | 469 | 253 | 185 | 336 | 143 | 309 | |
317 | 571 | 639 | 128 | 186 | 407 | 94 | 116 | ||
50 | 282 | 304 | 80 | 44 | 85 | 17 | 0 | ||
0.11 | 0.46 | 0.36 | 0.11 | 0.16 | 0.18 | 0.08 | 0.05 | ||
12 | 14 | 12 | 13 | 12 | 14 | 14 | 13 |
Test No | 9-1 | 10-1 | 11-1 | 12-1 | 13-1 | 14-1 | 15-1 | 16-1 | |
M0-WGP | 296 | 331 | 391 | 239 | 154 | 283 | 183 | 262 | |
311 | 325 | 393 | 135 | 191 | 331 | 124 | 117 | ||
2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | ||
0.08 | 0.13 | 0.14 | 0.06 | 0.06 | 0.08 | 0.07 | 0.04 | ||
618 | 2211 | 1774 | 337 | 415 | 497 | 439 | 246 | ||
M0-CP | 296 | 331 | 370 | 198 | 154 | 283 | 143 | 262 | |
311 | 325 | 326 | 122 | 191 | 331 | 94 | 117 | ||
2 | 0 | 70 | 24 | 0 | 0 | 17 | 0 | ||
0.08 | 0.13 | 0.15 | 0.06 | 0.06 | 0.08 | 0.08 | 0.04 | ||
691 | 1227 | 1414 | 401 | 403 | 539 | 252 | 169 | ||
M0-LWT | 296 | 331 | 370 | 198 | 154 | 283 | 143 | 262 | |
311 | 325 | 326 | 122 | 191 | 331 | 94 | 117 | ||
2 | 0 | 70 | 24 | 0 | 0 | 17 | 0 | ||
0.08 | 0.13 | 0.15 | 0.06 | 0.06 | 0.08 | 0.08 | 0.04 | ||
1045 | 1231 | 1980 | 354 | 402 | 876 | 298 | 108 | ||
M1-M2-WGP | 341 | 492 | 409 | 286 | 223 | 282 | 243 | 295 | |
495 | 870 | 428 | 344 | 431 | 500 | 295 | 342 | ||
14 | 327 | 155 | 8 | 0 | 0 | 0 | 0 | ||
0.12 | 0.58 | 0.23 | 0.13 | 0.14 | 0.12 | 0.15 | 0.09 | ||
1 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | ||
M1-M2-CP | 334 | 411 | 470 | 297 | 230 | 345 | 189 | 530 | |
488 | 791 | 567 | 263 | 430 | 600 | 273 | 1073 | ||
7 | 274 | 305 | 89 | 0 | 7 | 21 | 0 | ||
0.11 | 0.5 | 0.34 | 0.16 | 0.14 | 0.15 | 0.16 | 0.26 | ||
1 | 1 | 1 | 1 | 0 | 0 | 0 | 24 | ||
M1-M2-LWT | 341 | 411 | 470 | 297 | 230 | 338 | 189 | 295 | |
495 | 791 | 567 | 263 | 430 | 600 | 273 | 344 | ||
14 | 274 | 305 | 89 | 0 | 0 | 21 | 0 | ||
0.12 | 0.5 | 0.34 | 0.16 | 0.14 | 0.15 | 0.16 | 0.09 | ||
2 | 6 | 3 | 3 | 2 | 2 | 2 | 1 | ||
SA-M3 | 369 | 416 | 469 | 253 | 185 | 336 | 143 | 309 | |
317 | 571 | 639 | 128 | 186 | 407 | 94 | 116 | ||
50 | 282 | 304 | 80 | 44 | 85 | 17 | 0 | ||
0.11 | 0.46 | 0.36 | 0.11 | 0.16 | 0.18 | 0.08 | 0.05 | ||
12 | 14 | 12 | 13 | 12 | 14 | 14 | 13 |
Test No | 1-1 | 2-1 | 3-1 | 4-1 | 5-1 | 6-1 | 7-1 | 8-1 | |
M0-GP | 2365 | 2135 | 1928 | 2115 | 1574 | 1805 | - | 1817 | |
22190 | 20719 | 15318 | 19944 | 4590 | 8989 | - | 10340 | ||
396 | 94 | 130 | 124 | 0 | 0 | - | 0 | ||
0.27 | 0.23 | 0.19 | 0.28 | 0.07 | 0.11 | - | 0.12 | ||
M0-CP | 2358 | 2274 | 1965 | 1625 | 1491 | 1772 | 1656 | 1821 | |
18290 | 17933 | 15682 | 14654 | 4761 | 5670 | 8345 | 9159 | ||
280 | 416 | 364 | 301 | 18 | 56 | 0 | 78 | ||
0.23 | 0.25 | 0.22 | 0.22 | 0.07 | 0.08 | 0.10 | 0.12 | ||
M0-LWT | 5776 | 8558 | 7284 | 2547 | 2764 | 5648 | 2013 | 4304 | |
21808 | 33944 | 26740 | 56966 | 7363 | 16720 | 19845 | 14963 | ||
577 | 1458 | 657 | 1070 | 91 | 240 | 0 | 420 | ||
0.43 | 0.74 | 0.56 | 0.80 | 0.16 | 0.37 | 0.22 | 0.33 | ||
M1-M2-WGP | 2077 | 2022 | 1779 | 1771 | 1447 | 1789 | 1474 | 1463 | |
21191 | 19565 | 17681 | 16175 | 4779 | 15204 | 5719 | 13613 | ||
76 | 178 | 4 | 198 | 0 | 0 | 0 | 12 | ||
0.22 | 0.23 | 0.19 | 0.23 | 0.06 | 0.16 | 0.07 | 0.14 | ||
M1-M2-CP | 1979 | 1992 | 1865 | 1546 | 1467 | 1635 | 1440 | 1663 | |
15322 | 20602 | 14408 | 13934 | 3348 | 6396 | 4255 | 7751 | ||
467 | 128 | 185 | 306 | 0 | 2 | 0 | 186 | ||
0.21 | 0.23 | 0.18 | 0.21 | 0.05 | 0.08 | 0.05 | 0.12 | ||
M1-M2-LWT | 5232 | 5076 | 6301 | 5395 | 2624 | 3838 | 3360 | 2862 | |
19227 | 18025 | 22470 | 18168 | 6768 | 11926 | 10643 | 8291 | ||
593 | 489 | 349 | 382 | 83 | 13 | 0 | 41 | ||
0.38 | 0.37 | 0.45 | 0.43 | 0.14 | 0.22 | 0.19 | 0.15 | ||
SA-M3 | 1819 | 1561 | 1623 | 1346 | 1473 | 1621 | 1399 | 1776 | |
8153 | 5314 | 3941 | 4380 | 2609 | 1347 | 2687 | 3086 | ||
479 | 82 | 137 | 290 | 0 | 0 | 0 | 357 | ||
0.14 | 0.07 | 0.07 | 0.1 | 0.04 | 0.03 | 0.04 | 0.08 | ||
36 | 32 | 38 | 40 | 30 | 31 | 36 | 36 |
Test No | 1-1 | 2-1 | 3-1 | 4-1 | 5-1 | 6-1 | 7-1 | 8-1 | |
M0-GP | 2365 | 2135 | 1928 | 2115 | 1574 | 1805 | - | 1817 | |
22190 | 20719 | 15318 | 19944 | 4590 | 8989 | - | 10340 | ||
396 | 94 | 130 | 124 | 0 | 0 | - | 0 | ||
0.27 | 0.23 | 0.19 | 0.28 | 0.07 | 0.11 | - | 0.12 | ||
M0-CP | 2358 | 2274 | 1965 | 1625 | 1491 | 1772 | 1656 | 1821 | |
18290 | 17933 | 15682 | 14654 | 4761 | 5670 | 8345 | 9159 | ||
280 | 416 | 364 | 301 | 18 | 56 | 0 | 78 | ||
0.23 | 0.25 | 0.22 | 0.22 | 0.07 | 0.08 | 0.10 | 0.12 | ||
M0-LWT | 5776 | 8558 | 7284 | 2547 | 2764 | 5648 | 2013 | 4304 | |
21808 | 33944 | 26740 | 56966 | 7363 | 16720 | 19845 | 14963 | ||
577 | 1458 | 657 | 1070 | 91 | 240 | 0 | 420 | ||
0.43 | 0.74 | 0.56 | 0.80 | 0.16 | 0.37 | 0.22 | 0.33 | ||
M1-M2-WGP | 2077 | 2022 | 1779 | 1771 | 1447 | 1789 | 1474 | 1463 | |
21191 | 19565 | 17681 | 16175 | 4779 | 15204 | 5719 | 13613 | ||
76 | 178 | 4 | 198 | 0 | 0 | 0 | 12 | ||
0.22 | 0.23 | 0.19 | 0.23 | 0.06 | 0.16 | 0.07 | 0.14 | ||
M1-M2-CP | 1979 | 1992 | 1865 | 1546 | 1467 | 1635 | 1440 | 1663 | |
15322 | 20602 | 14408 | 13934 | 3348 | 6396 | 4255 | 7751 | ||
467 | 128 | 185 | 306 | 0 | 2 | 0 | 186 | ||
0.21 | 0.23 | 0.18 | 0.21 | 0.05 | 0.08 | 0.05 | 0.12 | ||
M1-M2-LWT | 5232 | 5076 | 6301 | 5395 | 2624 | 3838 | 3360 | 2862 | |
19227 | 18025 | 22470 | 18168 | 6768 | 11926 | 10643 | 8291 | ||
593 | 489 | 349 | 382 | 83 | 13 | 0 | 41 | ||
0.38 | 0.37 | 0.45 | 0.43 | 0.14 | 0.22 | 0.19 | 0.15 | ||
SA-M3 | 1819 | 1561 | 1623 | 1346 | 1473 | 1621 | 1399 | 1776 | |
8153 | 5314 | 3941 | 4380 | 2609 | 1347 | 2687 | 3086 | ||
479 | 82 | 137 | 290 | 0 | 0 | 0 | 357 | ||
0.14 | 0.07 | 0.07 | 0.1 | 0.04 | 0.03 | 0.04 | 0.08 | ||
36 | 32 | 38 | 40 | 30 | 31 | 36 | 36 |
Test No | 9-1 | 10-1 | 11-1 | 12-1 | 13-1 | 14-1 | 15-1 | 16-1 | |
M0-WGP | 1539 | 1896 | 1515 | - | 645 | 709 | - | 1336 | |
17499 | 25024 | 19640 | - | 3198 | 4627 | - | 14430 | ||
1092 | 1396 | 3426 | - | 0 | 3 | - | 1094 | ||
0.27 | 0.43 | 0.51 | - | 0.03 | 0.05 | - | 0.29 | ||
M0-CP | 1487 | 2179 | 1515 | 1798 | 756 | 784 | 815 | 1219 | |
18635 | 24170 | 19422 | 20895 | 3262 | 3674 | 6330 | 10974 | ||
1530 | 2531 | 3777 | 1862 | 66 | 7 | 94 | 869 | ||
0.31 | 0.55 | 0.54 | 0.43 | 0.04 | 0.05 | 0.08 | 0.23 | ||
M0-LWT | 4093 | 6059 | 10466 | 16743 | 1002 | 1947 | 1726 | 3677 | |
17052 | 23743 | 44256 | 70611 | 3124 | 7355 | 6522 | 14022 | ||
1434 | 1912 | 3808 | 5674 | 156 | 333 | 126 | 830 | ||
0.38 | 0.62 | 1.0 | 1.0 | 0.06 | 0.16 | 0.12 | 0.33 | ||
M1-M2-WGP | 1261 | 1608 | 1205 | 1136 | 598 | 578 | 528 | 633 | |
11303 | 15041 | 12840 | 10871 | 2202 | 4029 | 2336 | 3878 | ||
1350 | 2117 | 1138 | 1645 | 0 | 3 | 2 | 6 | ||
0.23 | 0.41 | 0.23 | 0.29 | 0.02 | 0.04 | 0.02 | 0.04 | ||
M1-M2-CP | 1278 | 1674 | 1217 | 1069 | 627 | 619 | 531 | 712 | |
11048 | 16595 | 12358 | 9831 | 2197 | 2454 | 1988 | 3554 | ||
1486 | 2512 | 1140 | 1795 | 92 | 50 | 5 | 190 | ||
0.25 | 0.47 | 0.23 | 0.3 | 0.04 | 0.04 | 0.02 | 0.06 | ||
M1-M2-LWT | 4806 | 8617 | 4168 | 5018 | 841 | 906 | 727 | 1253 | |
20346 | 34350 | 16584 | 20148 | 2316 | 2578 | 1798 | 3606 | ||
1711 | 2793 | 1427 | 1619 | 11 | 10 | 56 | 79 | ||
0.46 | 0.91 | 0.39 | 0.51 | 0.03 | 0.04 | 0.04 | 0.07 | ||
SA-M3 | 1249 | 1807 | 1047 | 977 | 876 | 651 | 639 | 738 | |
9711 | 14617 | 6886 | 5216 | 2845 | 1635 | 1121 | 1539 | ||
1941 | 2752 | 1318 | 1327 | 315 | 28 | 39 | 457 | ||
0.27 | 0.48 | 0.20 | 0.21 | 0.08 | 0.03 | 0.03 | 0.08 | ||
231 | 232 | 198 | 235 | 34 | 33 | 37 | 38 |
Test No | 9-1 | 10-1 | 11-1 | 12-1 | 13-1 | 14-1 | 15-1 | 16-1 | |
M0-WGP | 1539 | 1896 | 1515 | - | 645 | 709 | - | 1336 | |
17499 | 25024 | 19640 | - | 3198 | 4627 | - | 14430 | ||
1092 | 1396 | 3426 | - | 0 | 3 | - | 1094 | ||
0.27 | 0.43 | 0.51 | - | 0.03 | 0.05 | - | 0.29 | ||
M0-CP | 1487 | 2179 | 1515 | 1798 | 756 | 784 | 815 | 1219 | |
18635 | 24170 | 19422 | 20895 | 3262 | 3674 | 6330 | 10974 | ||
1530 | 2531 | 3777 | 1862 | 66 | 7 | 94 | 869 | ||
0.31 | 0.55 | 0.54 | 0.43 | 0.04 | 0.05 | 0.08 | 0.23 | ||
M0-LWT | 4093 | 6059 | 10466 | 16743 | 1002 | 1947 | 1726 | 3677 | |
17052 | 23743 | 44256 | 70611 | 3124 | 7355 | 6522 | 14022 | ||
1434 | 1912 | 3808 | 5674 | 156 | 333 | 126 | 830 | ||
0.38 | 0.62 | 1.0 | 1.0 | 0.06 | 0.16 | 0.12 | 0.33 | ||
M1-M2-WGP | 1261 | 1608 | 1205 | 1136 | 598 | 578 | 528 | 633 | |
11303 | 15041 | 12840 | 10871 | 2202 | 4029 | 2336 | 3878 | ||
1350 | 2117 | 1138 | 1645 | 0 | 3 | 2 | 6 | ||
0.23 | 0.41 | 0.23 | 0.29 | 0.02 | 0.04 | 0.02 | 0.04 | ||
M1-M2-CP | 1278 | 1674 | 1217 | 1069 | 627 | 619 | 531 | 712 | |
11048 | 16595 | 12358 | 9831 | 2197 | 2454 | 1988 | 3554 | ||
1486 | 2512 | 1140 | 1795 | 92 | 50 | 5 | 190 | ||
0.25 | 0.47 | 0.23 | 0.3 | 0.04 | 0.04 | 0.02 | 0.06 | ||
M1-M2-LWT | 4806 | 8617 | 4168 | 5018 | 841 | 906 | 727 | 1253 | |
20346 | 34350 | 16584 | 20148 | 2316 | 2578 | 1798 | 3606 | ||
1711 | 2793 | 1427 | 1619 | 11 | 10 | 56 | 79 | ||
0.46 | 0.91 | 0.39 | 0.51 | 0.03 | 0.04 | 0.04 | 0.07 | ||
SA-M3 | 1249 | 1807 | 1047 | 977 | 876 | 651 | 639 | 738 | |
9711 | 14617 | 6886 | 5216 | 2845 | 1635 | 1121 | 1539 | ||
1941 | 2752 | 1318 | 1327 | 315 | 28 | 39 | 457 | ||
0.27 | 0.48 | 0.20 | 0.21 | 0.08 | 0.03 | 0.03 | 0.08 | ||
231 | 232 | 198 | 235 | 34 | 33 | 37 | 38 |
Test No | 1-1 | 2-1 | 3-1 | 4-1 | 5-1 | 6-1 | 7-1 | 8-1 | |
M0-WGP | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
M0-CP | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
M0-LWT | 5499 | 7943 | - | - | 5224 | 5683 | - | - | |
371810 | 394667 | - | - | 394518 | 388008 | - | - | ||
1399 | 5206 | - | - | 942 | 1450 | - | - | ||
0.71 | 0.89 | - | - | 0.72 | 0.76 | - | - | ||
M1-M2-WGP | 5737 | 8535 | 6578 | 6779 | 5073 | 5495 | 5340 | 5873 | |
133487 | 275567 | 218122 | 226738 | 114247 | 154587 | 1222567 | 151816 | ||
1928 | 6108 | 3476 | 3618 | 310 | 1371 | 64 | 1643 | ||
0.35 | 0.75 | 0.55 | 0.53 | 0.24 | 0.39 | 0.23 | 0.4 | ||
M1-M2-CP | - | - | - | - | 5196 | - | - | 6133 | |
- | - | - | - | 122797 | - | - | 148961 | ||
- | - | - | - | 847 | - | - | 1784 | ||
- | - | - | - | 0.29 | - | - | 0.41 | ||
M1-M2-LWT | 4975 | 7435 | 5715 | - | - | 5068 | 5098 | 6142 | |
371810 | 394667 | 381471 | - | - | 388008 | 405443 | 393012 | ||
797 | 3158 | 1725 | - | - | 999 | 336 | 1841 | ||
0.67 | 0.80 | 0.72 | - | - | 0.72 | 0.66 | 0.79 | ||
SA-M3 | 3536 | 4105 | 3452 | 3849 | 3124 | 3530 | 4285 | 4252 | |
18409 | 24746 | 26997 | 23597 | 15347 | 20652 | 9298 | 26957 | ||
192 | 158 | 241 | 86 | 0 | 173 | 0 | 108 | ||
0.05 | 0.07 | 0.07 | 0.06 | 0.04 | 0.06 | 0.04 | 0.07 | ||
66 | 70 | 72 | 82 | 64 | 65 | 74 | 68 |
Test No | 1-1 | 2-1 | 3-1 | 4-1 | 5-1 | 6-1 | 7-1 | 8-1 | |
M0-WGP | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
M0-CP | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
M0-LWT | 5499 | 7943 | - | - | 5224 | 5683 | - | - | |
371810 | 394667 | - | - | 394518 | 388008 | - | - | ||
1399 | 5206 | - | - | 942 | 1450 | - | - | ||
0.71 | 0.89 | - | - | 0.72 | 0.76 | - | - | ||
M1-M2-WGP | 5737 | 8535 | 6578 | 6779 | 5073 | 5495 | 5340 | 5873 | |
133487 | 275567 | 218122 | 226738 | 114247 | 154587 | 1222567 | 151816 | ||
1928 | 6108 | 3476 | 3618 | 310 | 1371 | 64 | 1643 | ||
0.35 | 0.75 | 0.55 | 0.53 | 0.24 | 0.39 | 0.23 | 0.4 | ||
M1-M2-CP | - | - | - | - | 5196 | - | - | 6133 | |
- | - | - | - | 122797 | - | - | 148961 | ||
- | - | - | - | 847 | - | - | 1784 | ||
- | - | - | - | 0.29 | - | - | 0.41 | ||
M1-M2-LWT | 4975 | 7435 | 5715 | - | - | 5068 | 5098 | 6142 | |
371810 | 394667 | 381471 | - | - | 388008 | 405443 | 393012 | ||
797 | 3158 | 1725 | - | - | 999 | 336 | 1841 | ||
0.67 | 0.80 | 0.72 | - | - | 0.72 | 0.66 | 0.79 | ||
SA-M3 | 3536 | 4105 | 3452 | 3849 | 3124 | 3530 | 4285 | 4252 | |
18409 | 24746 | 26997 | 23597 | 15347 | 20652 | 9298 | 26957 | ||
192 | 158 | 241 | 86 | 0 | 173 | 0 | 108 | ||
0.05 | 0.07 | 0.07 | 0.06 | 0.04 | 0.06 | 0.04 | 0.07 | ||
66 | 70 | 72 | 82 | 64 | 65 | 74 | 68 |
Test No | 9-1 | 10-1 | 11-1 | 12-1 | 13-1 | 14-1 | 15-1 | 16-1 | |
M0-WGP | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
M0-CP | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
M0-LWT | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
M1-M2-WGP | 1865 | 4259 | 1637 | 4430 | 1048 | 578 | 1093 | 1744 | |
49222 | 144672 | 38766 | 156241 | 15984 | 4029 | 17236 | 399726 | ||
3562 | 17320 | 2274 | 22013 | 1 | 3 | 0 | 2472 | ||
0.24 | 0.95 | 0.15 | 1.0 | 0.03 | 0.04 | 0.03 | 0.25 | ||
M1-M2-CP | 1862 | 4431 | 2063 | 4710 | 1415 | 2107 | 1291 | 2050 | |
56691 | 158564 | 59000 | 186431 | 25063 | 41366 | 21170 | 42777 | ||
3674 | 19700 | 4637 | 22460 | 1388 | 1930 | 125 | 1954 | ||
0.25 | 1.0 | 0.27 | 1.0 | 0.12 | 0.20 | 0.04 | 0.22 | ||
M1-M2-LWT | 11668 | - | 13751 | - | 2141 | 16990 | 2203 | 14119 | |
123224 | - | 142194 | - | 15990 | 178534 | 17515 | 140421 | ||
3611 | - | 4665 | - | 0 | 3370 | 71 | 2534 | ||
0.48 | - | 0.54 | - | 0.04 | 0.66 | 0.05 | 0.57 | ||
SA-M3 | 1617 | 4096 | 1443 | 3695 | 1113 | 1746 | 1095 | 1350 | |
25013 | 109062 | 18602 | 93653 | 3156 | 11361 | 5052 | 9681 | ||
2138 | 15728 | 2054 | 13899 | 0 | 1535 | 88 | 878 | ||
0.14 | 0.84 | 0.11 | 0.70 | 0.01 | 0.13 | 0.02 | 0.09 | ||
90 | 276 | 275 | 267 | 72 | 173 | 69 | 277 |
Test No | 9-1 | 10-1 | 11-1 | 12-1 | 13-1 | 14-1 | 15-1 | 16-1 | |
M0-WGP | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
M0-CP | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
M0-LWT | - | - | - | - | - | - | - | - | |
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
- | - | - | - | - | - | - | - | ||
M1-M2-WGP | 1865 | 4259 | 1637 | 4430 | 1048 | 578 | 1093 | 1744 | |
49222 | 144672 | 38766 | 156241 | 15984 | 4029 | 17236 | 399726 | ||
3562 | 17320 | 2274 | 22013 | 1 | 3 | 0 | 2472 | ||
0.24 | 0.95 | 0.15 | 1.0 | 0.03 | 0.04 | 0.03 | 0.25 | ||
M1-M2-CP | 1862 | 4431 | 2063 | 4710 | 1415 | 2107 | 1291 | 2050 | |
56691 | 158564 | 59000 | 186431 | 25063 | 41366 | 21170 | 42777 | ||
3674 | 19700 | 4637 | 22460 | 1388 | 1930 | 125 | 1954 | ||
0.25 | 1.0 | 0.27 | 1.0 | 0.12 | 0.20 | 0.04 | 0.22 | ||
M1-M2-LWT | 11668 | - | 13751 | - | 2141 | 16990 | 2203 | 14119 | |
123224 | - | 142194 | - | 15990 | 178534 | 17515 | 140421 | ||
3611 | - | 4665 | - | 0 | 3370 | 71 | 2534 | ||
0.48 | - | 0.54 | - | 0.04 | 0.66 | 0.05 | 0.57 | ||
SA-M3 | 1617 | 4096 | 1443 | 3695 | 1113 | 1746 | 1095 | 1350 | |
25013 | 109062 | 18602 | 93653 | 3156 | 11361 | 5052 | 9681 | ||
2138 | 15728 | 2054 | 13899 | 0 | 1535 | 88 | 878 | ||
0.14 | 0.84 | 0.11 | 0.70 | 0.01 | 0.13 | 0.02 | 0.09 | ||
90 | 276 | 275 | 267 | 72 | 173 | 69 | 277 |
[1] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[2] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021051 |
[3] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058 |
[6] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021102 |
[7] |
Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055 |
[8] |
Ana Rita Nogueira, João Gama, Carlos Abreu Ferreira. Causal discovery in machine learning: Theories and applications. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021008 |
[9] |
Shan-Shan Lin. Due-window assignment scheduling with learning and deterioration effects. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021081 |
[10] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[11] |
Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021044 |
[12] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[13] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[14] |
Saeed Assani, Muhammad Salman Mansoor, Faisal Asghar, Yongjun Li, Feng Yang. Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021053 |
[15] |
Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033 |
[16] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[17] |
Muberra Allahverdi, Harun Aydilek, Asiye Aydilek, Ali Allahverdi. A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1973-1991. doi: 10.3934/jimo.2020054 |
[18] |
Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211 |
[19] |
Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035 |
[20] |
Yongkun Wang, Fengshou He, Xiaobo Deng. Multi-aircraft cooperative path planning for maneuvering target detection. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021050 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]