• Previous Article
    Mean-field analysis of a scaling MAC radio protocol
  • JIMO Home
  • This Issue
  • Next Article
    Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets
doi: 10.3934/jimo.2020023

Optimal Placement of wireless charging lanes in road networks

1. 

School of Computing, Clemson University, Clemson, SC 29634, USA

2. 

Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA

* Corresponding authors: Hayato Ushijima-Mwesigwa

Received  August 2018 Revised  September 2019 Published  February 2020

The emergence of electric vehicle wireless charging technology, where a whole lane can be turned into a charging infrastructure, leads to new challenges in the design and analysis of road networks. From a network perspective, a major challenge is determining the most important nodes with respect to the placement of the wireless charging lanes. In other words, given a limited budget, cities could face the decision problem of where to place these wireless charging lanes. With a heavy price tag, a placement without a careful study can lead to inefficient use of limited resources. In this work, the placement of wireless charging lanes is modeled as an integer programming problem. The basic formulation is used as a building block for different realistic scenarios. We carry out experiments using real geospatial data and compare our results to different network-based heuristics.

Reproducibility: all datasets, algorithm implementations and mathematical programming formulation presented in this work are available at https://github.com/hmwesigwa/smartcities.git

Citation: Hayato Ushijima-Mwesigwa, MD Zadid Khan, Mashrur A. Chowdhury, Ilya Safro. Optimal Placement of wireless charging lanes in road networks. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020023
References:
[1]

H. Bar-Gera, Transportation test problems, Website: http://www.bgu.ac.il/~bargera/tntp/. Accessed April, 28 (2009), 2009. Google Scholar

[2]

Z. BiT. KanC. C. MiY. ZhangZ. Zhao and G. A. Keoleian, A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility, Applied Energy, 179 (2016), 413-425.  doi: 10.1016/j.apenergy.2016.07.003.  Google Scholar

[3]

P. Bogaert, V. Fack, N. Van de Weghe and P. De Maeyer, On Line Graphs and Road Networks, in topology and Spatial Databases Workshop, Glasgow, Scotland, 2005. Google Scholar

[4]

S. P. Borgatti, Centrality and aids, Connections, 18 (1995), 112-114.   Google Scholar

[5]

W.-Y. Chang, The state of charge estimating methods for battery: A review, ISRN Applied Mathematics, 2013 (2013), Article ID 953792, 7 pages. doi: 10.1155/2013/953792.  Google Scholar

[6]

Z. ChenF. He and Y. Yin, Optimal deployment of charging lanes for electric vehicles in transportation networks, Transportation Research Part B: Methodological, 91 (2016), 344-365.  doi: 10.1016/j.trb.2016.05.018.  Google Scholar

[7]

D. Cho and J. Kim, Magnetic field design for low emf and high efficiency wireless power transfer system in on-line electric vehicle, in CIRP Design Conference 2011, 2011. Google Scholar

[8]

R. Church and C. R. Velle, The maximal covering location problem, Papers in regional science, 32 (1974), 101-118.   Google Scholar

[9]

V. Cirimele, F. Freschi and P. Guglielmi, Wireless power transfer structure design for electric vehicle in charge while driving, in Electrical Machines (ICEM), 2014 International Conference on, IEEE, 2014, 2461–2467. doi: 10.1109/ICELMACH.2014.6960532.  Google Scholar

[10]

M. S. Daskin, What you should know about location modeling, Naval Research Logistics (NRL), 55 (2008), 283-294.  doi: 10.1002/nav.20284.  Google Scholar

[11]

J. DongC. Liu and Z. Lin, Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data, Transportation Research Part C: Emerging Technologies, 38 (2014), 44-55.  doi: 10.1016/j.trc.2013.11.001.  Google Scholar

[12]

R. Z. FarahaniN. AsgariN. HeidariM. Hosseininia and M. Goh, Covering problems in facility location: A review, Computers & Industrial Engineering, 62 (2012), 368-407.  doi: 10.1016/j.cie.2011.08.020.  Google Scholar

[13]

M. W. Fontana, Optimal Routes for Electric Vehicles Facing Uncertainty, Congestion, and Energy Constraints, PhD thesis, Massachusetts Institute of Technology, 2013. Google Scholar

[14]

T. FrankeI. NeumannF. BühlerP. Cocron and J. F. Krems, Experiencing range in an electric vehicle: Understanding psychological barriers, Applied Psychology, 61 (2012), 368-391.  doi: 10.1111/j.1464-0597.2011.00474.x.  Google Scholar

[15]

L. C. Freeman, Centrality in social networks conceptual clarification, Social Networks, 1 (1978), 215-239.  doi: 10.1016/0378-8733(78)90021-7.  Google Scholar

[16]

M. Fuller, Wireless charging in california: Range, recharge, and vehicle electrification, Transportation Research Part C: Emerging Technologies, 67 (2016), 343-356.  doi: 10.1016/j.trc.2016.02.013.  Google Scholar

[17]

J. S. GillP. BhavsarM. ChowdhuryJ. JohnsonJ. Taiber and R. Fries, Infrastructure cost issues related to inductively coupled power transfer for electric vehicles, Procedia Computer Science, 32 (2014), 545-552.  doi: 10.1016/j.procs.2014.05.459.  Google Scholar

[18]

M. GreenleafO. DalchandH. Li and J. P. Zheng, A temperature-dependent study of sealed lead-acid batteries using physical equivalent circuit modeling with impedance spectra derived high current/power correction, IEEE Transactions on Sustainable Energy, 6 (2015), 380-387.  doi: 10.1109/TSTE.2014.2371435.  Google Scholar

[19]

A. Gutfraind, I. Safro and L. A. Meyers, Multiscale network generation, in Information Fusion (Fusion), 2015 18th International Conference on, IEEE, 2015,158–165. Google Scholar

[20]

M. Haklay and P. Weber, Openstreetmap: User-generated street maps, IEEE Pervasive Computing, 7 (2008), 12-18.  doi: 10.1109/MPRV.2008.80.  Google Scholar

[21]

T. S. Hale and C. R. Moberg, Location science research: A review, Annals of Operations Research, 123 (2003), 21-35.  doi: 10.1023/A:1026110926707.  Google Scholar

[22]

W. E. Hart, C. Laird, J.-P. Watson and D. L. Woodruff, Pyomo–optimization Modeling in Python, vol. 67, Springer Science & Business Media, 2012. Google Scholar

[23]

W. E. HartJ.-P. Watson and D. L. Woodruff, Pyomo: Modeling and solving mathematical programs in python, Mathematical Programming Computation, 3 (2011), 219-260.  doi: 10.1007/s12532-011-0026-8.  Google Scholar

[24]

F. HeD. WuY. Yin and Y. Guan, Optimal deployment of public charging stations for plug-in hybrid electric vehicles, Transportation Research Part B: Methodological, 47 (2013), 87-101.  doi: 10.1016/j.trb.2012.09.007.  Google Scholar

[25]

F. HeY. Yin and J. Zhou, Integrated pricing of roads and electricity enabled by wireless power transfer, Transportation Research Part C: Emerging Technologies, 34 (2013), 1-15.  doi: 10.1016/j.trc.2013.05.005.  Google Scholar

[26]

F. HeY. Yin and J. Zhou, Deploying public charging stations for electric vehicles on urban road networks, Transportation Research Part C: Emerging Technologies, 60 (2015), 227-240.  doi: 10.1016/j.trc.2015.08.018.  Google Scholar

[27]

S. Helber, J. Broihan, Y. Jang, P. Hecker and T. Feuerle, Location planning for dynamic wireless charging systems for electric airport passenger buses, Energies, 11 (2018), 258. doi: 10.3390/en11020258.  Google Scholar

[28]

M. J. Hodgson, A flow-capturing location-allocation model, Geographical Analysis, 22 (1990), 270-279.  doi: 10.1111/j.1538-4632.1990.tb00210.x.  Google Scholar

[29]

Y. HuangS. Li and Z. S. Qian, Optimal deployment of alternative fueling stations on transportation networks considering deviation paths, Networks and Spatial Economics, 15 (2015), 183-204.  doi: 10.1007/s11067-014-9275-1.  Google Scholar

[30]

I. HwangY. J. JangY. D. Ko and M. S. Lee, System optimization for dynamic wireless charging electric vehicles operating in a multiple-route environment, IEEE Transactions on Intelligent Transportation Systems, 19 (2018), 1709-1726.  doi: 10.1109/TITS.2017.2731787.  Google Scholar

[31]

I. ILOG, Cplex optimization studio, http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer, 2014. Google Scholar

[32]

Y. J. Jang, Y. D. Ko and S. Jeong, Creating innovation with systems integration, road and vehicle integrated electric transportation system, in Systems Conference (SysCon), 2012 IEEE International, IEEE, 2012, 1–4. doi: 10.1109/SysCon.2012.6189531.  Google Scholar

[33]

Y. J. Jang, Y. D. Ko and S. Jeong, Optimal design of the wireless charging electric vehicle, in Electric Vehicle Conference (IEVC), 2012 IEEE International, IEEE, 2012, 1–5. doi: 10.1109/IEVC.2012.6183294.  Google Scholar

[34]

J. JohnsonM. ChowdhuryY. He and J. Taiber, Utilizing real-time information transferring potentials to vehicles to improve the fast-charging process in electric vehicles, Transportation Research Part C: Emerging Technologies, 26 (2013), 352-366.  doi: 10.1016/j.trc.2012.10.009.  Google Scholar

[35]

G. Jung, B. Song, S. Shin, S. Lee, J. Shin, Y. Kim and S. Jeon, High efficient inductive power supply and pickup system for on-line electric bus, in Electric Vehicle Conference (IEVC), 2012 IEEE International, IEEE, 2012, 1–5. doi: 10.1109/IEVC.2012.6183263.  Google Scholar

[36]

J. JungJ. Y. ChowR. Jayakrishnan and J. Y. Park, Stochastic dynamic itinerary interception refueling location problem with queue delay for electric taxi charging stations, Transportation Research Part C: Emerging Technologies, 40 (2014), 123-142.  doi: 10.1016/j.trc.2014.01.008.  Google Scholar

[37]

J. E. Kang and W. Recker, Strategic hydrogen refueling station locations with scheduling and routing considerations of individual vehicles, Transportation Science, 49 (2014), 767-783.  doi: 10.1287/trsc.2014.0519.  Google Scholar

[38]

M. Khan, M. Chowdhury, S. M. Khan, I. Safro and H. Ushijima-Mwesigwa, Utility maximization framework for opportunistic wireless electric vehicle charging, preprint, arXiv: 1708.07526. Google Scholar

[39]

J.-G. Kim and M. Kuby, The deviation-flow refueling location model for optimizing a network of refueling stations, international Journal of Hydrogen Energy, 37 (2012), 5406-5420.  doi: 10.1016/j.ijhydene.2011.08.108.  Google Scholar

[40]

J.-G. Kim and M. Kuby, A network transformation heuristic approach for the deviation flow refueling location model, Computers & Operations Research, 40 (2013), 1122-1131.  doi: 10.1016/j.cor.2012.10.021.  Google Scholar

[41]

Y. Kim, Y. Son, S. Shin, J. Shin, B. Song, S. Lee, G. Jung and S. Jeon, Design of a regulator for multi-pick-up systems through using current offsets, in Electric Vehicle Conference (IEVC), 2012 IEEE International, IEEE, 2012, 1–6. doi: 10.1109/IEVC.2012.6183256.  Google Scholar

[42]

Y. D. Ko and Y. J. Jang, The optimal system design of the online electric vehicle utilizing wireless power transmission technology, IEEE Transactions on Intelligent Transportation Systems, 14 (2013), 1255-1265.  doi: 10.1109/TITS.2013.2259159.  Google Scholar

[43]

N. Koirala, F. He and W. Shen, Comparison of two battery equivalent circuit models for state of charge estimation in electric vehicles, in Industrial Electronics and Applications (ICIEA), 2015 IEEE 10th Conference on, IEEE, 2015, 17–22. doi: 10.1109/ICIEA.2015.7334077.  Google Scholar

[44]

M. Kuby and S. Lim, The flow-refueling location problem for alternative-fuel vehicles, Socio-Economic Planning Sciences, 39 (2005), 125-145.  doi: 10.1016/j.seps.2004.03.001.  Google Scholar

[45]

M. Kuby and S. Lim, Location of alternative-fuel stations using the flow-refueling location model and dispersion of candidate sites on arcs, Networks and Spatial Economics, 7 (2007), 129-152.  doi: 10.1007/s11067-006-9003-6.  Google Scholar

[46]

S. Lee, J. Huh, C. Park, N.-S. Choi, G.-H. Cho and C.-T. Rim, On-Line Electric Vehicle using inductive power transfer system, in 2010 IEEE Energy Conversion Congress and Exposition, IEEE, 2010, 1598–1601. doi: 10.1109/ECCE.2010.5618092.  Google Scholar

[47]

J. LeskovecK. J. LangA. Dasgupta and M. W. Mahoney, Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters, Internet Mathematics, 6 (2009), 29-123.  doi: 10.1080/15427951.2009.10129177.  Google Scholar

[48]

S. Li and C. C. Mi, Wireless power transfer for electric vehicle applications, IEEE journal of emerging and selected topics in power electronics, 3 (2015), 4-17.   Google Scholar

[49]

Z. LiM. ChowdhuryP. Bhavsar and Y. He, Optimizing the performance of vehicle-to-grid (v2g) enabled battery electric vehicles through a smart charge scheduling model, International Journal of Automotive Technology, 16 (2015), 827-837.  doi: 10.1007/s12239-015-0085-3.  Google Scholar

[50]

Z. Li, K. Dey, M. Chowdhury and P. Bhavsar, Connectivity supported dynamic routing of electric vehicles in an inductively coupled power transfer environment, IET Intelligent Transport Systems, 10 (2016), 370. doi: 10.1049/iet-its.2015.0154.  Google Scholar

[51]

S. Lukic and Z. Pantic, Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles, IEEE Electrification Magazine, 1 (2013), 57-64.  doi: 10.1109/MELE.2013.2273228.  Google Scholar

[52]

S. Mohrehkesh and T. Nadeem, Toward a wireless charging for battery electric vehicles at traffic intersections, in 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE, 2011,113–118. doi: 10.1109/ITSC.2011.6083137.  Google Scholar

[53]

N. Mouhrim, A. E. H. Alaoui and J. Boukachour, Optimal allocation of wireless power transfer system for electric vehicles in a multipath environment, in Logistics Operations Management (GOL), 2016 3rd International Conference on, IEEE, 2016, 1–7. doi: 10.1109/GOL.2016.7731684.  Google Scholar

[54]

M. Newman, Networks: An Introduction, Oxford University Press, Inc., New York, NY, USA, 2010.  Google Scholar

[55]

M. E. Newman, The mathematics of networks, The new palgrave encyclopedia of economics, 2 (2008), 1-12.   Google Scholar

[56]

P. Ning, J. M. Miller, O. C. Onar and C. P. White, A compact wireless charging system for electric vehicles, in Energy Conversion Congress and Exposition (ECCE), 2013 IEEE, IEEE, 2013, 3629–3634. doi: 10.1109/ECCE.2013.6647179.  Google Scholar

[57]

F. Pan, R. Bent, A. Berscheid and D. Izraelevitz, Locating phev exchange stations in v2g, in Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on, IEEE, 2010,173–178. doi: 10.1109/SMARTGRID.2010.5622037.  Google Scholar

[58]

C. PanchalS. Stegen and J. Lu, Review of static and dynamic wireless electric vehicle charging system, Engineering Science and Technology, an International Journal, 21 (2018), 922-937.  doi: 10.1016/j.jestch.2018.06.015.  Google Scholar

[59]

C. Qiu, K. Chau, C. Liu and C. Chan, Overview of wireless power transfer for electric vehicle charging, in Electric Vehicle Symposium and Exhibition (EVS27), 2013 World, IEEE, 2013, 1–9. Google Scholar

[60]

R. RiemannD. Z. Wang and F. Busch, Optimal location of wireless charging facilities for electric vehicles: flow-capturing location model with stochastic user equilibrium, Transportation Research Part C: Emerging Technologies, 58 (2015), 1-12.   Google Scholar

[61]

A. Sarker, C. Qiu, H. Shen, A. Gil, J. Taiber, M. Chowdhury, J. Martin, M. Devine and A. Rindos, An efficient wireless power transfer system to balance the state of charge of electric vehicles, in Parallel Processing (ICPP), 2016 45th International Conference on, IEEE, 2016,324–333. doi: 10.1109/ICPP.2016.44.  Google Scholar

[62]

C. L. Staudt, M. Hamann, I. Safro, A. Gutfraind and H. Meyerhenke, Generating scaled replicas of real-world complex networks, in International Workshop on Complex Networks and their Applications, Springer, 2016, 17–28. doi: 10.1007/978-3-319-50901-3_2.  Google Scholar

[63]

K. D. StetzelL. L. AldrichM. S. Trimboli and G. L. Plett, Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended kalman filter, Journal of Power Sources, 278 (2015), 490-505.  doi: 10.1016/j.jpowsour.2014.11.135.  Google Scholar

[64]

F. SunR. Xiong and H. He, A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique, Applied Energy, 162 (2016), 1399-1409.  doi: 10.1016/j.apenergy.2014.12.021.  Google Scholar

[65]

C. UpchurchM. Kuby and S. Lim, A model for location of capacitated alternative-fuel stations, Geographical Analysis, 41 (2009), 85-106.  doi: 10.1111/j.1538-4632.2009.00744.x.  Google Scholar

[66]

US, Fuel economy, http://fueleconomy.gov/, 2017, Accessed: 03-29-2017. Google Scholar

[67]

H. Ushijima-MwesigwaZ. KhanM. A. Chowdhury and I. Safro, Centralities for networks with consumable resources, Network Science, 7 (2019), 376-401.  doi: 10.1017/nws.2019.7.  Google Scholar

[68]

H. M. Ushijima-Mwesigwa, Models for networks with consumable resources: Applications to smart cities., Google Scholar

[69]

D. Vilathgamuwa and J. Sampath, Wireless power transfer for electric vehicles, present and future trends, in Plug in Electric Vehicles in Smart Grids, Springer, 2015, 33–60. doi: 10.1007/978-981-287-299-9_2.  Google Scholar

[70]

T. Wang, B. Yang, C. Chen and X. Guan, Wireless charging lane deployment in urban areas considering traffic light and regional energy supply-demand balance, in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), IEEE, 2019, 1–5. doi: 10.1109/VTCSpring.2019.8746492.  Google Scholar

[71]

W. Wang, D. Wang, X. Wang, T. Li, R. Ahmed, S. Habibi and A. Emadi, Comparison of kalman filter-based state of charge estimation strategies for li-ion batteries, in Transportation Electrification Conference and Expo (ITEC), 2016 IEEE, IEEE, 2016, 1–6. Google Scholar

[72]

Y.-W. Wang, Locating flow-recharging stations at tourist destinations to serve recreational travelers, International Journal of Sustainable Transportation, 5 (2011), 153-171.  doi: 10.1080/15568311003717199.  Google Scholar

[73]

Y.-W. Wang and C.-C. Lin, Locating road-vehicle refueling stations, Transportation Research Part E: Logistics and Transportation Review, 45 (2009), 821-829.  doi: 10.1016/j.tre.2009.03.002.  Google Scholar

[74]

Y.-W. Wang and C.-C. Lin, Locating multiple types of recharging stations for battery-powered electric vehicle transport, Transportation Research Part E: Logistics and Transportation Review, 58 (2013), 76-87.  doi: 10.1016/j.tre.2013.07.003.  Google Scholar

[75]

Y.-W. Wang and C.-R. Wang, Locating passenger vehicle refueling stations, Transportation Research Part E: Logistics and Transportation Review, 46 (2010), 791-801.  doi: 10.1016/j.tre.2009.12.001.  Google Scholar

[76]

N. Watrin, B. Blunier and A. Miraoui, Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation, in Transportation Electrification Conference and Expo (ITEC), 2012 IEEE, IEEE, 2012, 1–6. Google Scholar

[77]

S. Winter, Modeling costs of turns in route planning, GeoInformatica, 6 (2002), 345-361.  doi: 10.1023/A:1020853410145.  Google Scholar

[78]

L. Zamparini and A. Reggiani, The value of travel time in passenger and freight transport: An overview, in Policy Analysis of Transport Networks, Routledge, 2016,161–178. Google Scholar

[79]

C. ZhangK. LiL. Pei and C. Zhu, An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries, Journal of Power Sources, 283 (2015), 24-36.  doi: 10.1016/j.jpowsour.2015.02.099.  Google Scholar

[80]

S. ZhangZ. QianJ. WuF. Kong and S. Lu, Wireless charger placement and power allocation for maximizing charging quality, IEEE Transactions on Mobile Computing, 17 (2018), 1483-1496.  doi: 10.1109/TMC.2017.2771425.  Google Scholar

show all references

References:
[1]

H. Bar-Gera, Transportation test problems, Website: http://www.bgu.ac.il/~bargera/tntp/. Accessed April, 28 (2009), 2009. Google Scholar

[2]

Z. BiT. KanC. C. MiY. ZhangZ. Zhao and G. A. Keoleian, A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility, Applied Energy, 179 (2016), 413-425.  doi: 10.1016/j.apenergy.2016.07.003.  Google Scholar

[3]

P. Bogaert, V. Fack, N. Van de Weghe and P. De Maeyer, On Line Graphs and Road Networks, in topology and Spatial Databases Workshop, Glasgow, Scotland, 2005. Google Scholar

[4]

S. P. Borgatti, Centrality and aids, Connections, 18 (1995), 112-114.   Google Scholar

[5]

W.-Y. Chang, The state of charge estimating methods for battery: A review, ISRN Applied Mathematics, 2013 (2013), Article ID 953792, 7 pages. doi: 10.1155/2013/953792.  Google Scholar

[6]

Z. ChenF. He and Y. Yin, Optimal deployment of charging lanes for electric vehicles in transportation networks, Transportation Research Part B: Methodological, 91 (2016), 344-365.  doi: 10.1016/j.trb.2016.05.018.  Google Scholar

[7]

D. Cho and J. Kim, Magnetic field design for low emf and high efficiency wireless power transfer system in on-line electric vehicle, in CIRP Design Conference 2011, 2011. Google Scholar

[8]

R. Church and C. R. Velle, The maximal covering location problem, Papers in regional science, 32 (1974), 101-118.   Google Scholar

[9]

V. Cirimele, F. Freschi and P. Guglielmi, Wireless power transfer structure design for electric vehicle in charge while driving, in Electrical Machines (ICEM), 2014 International Conference on, IEEE, 2014, 2461–2467. doi: 10.1109/ICELMACH.2014.6960532.  Google Scholar

[10]

M. S. Daskin, What you should know about location modeling, Naval Research Logistics (NRL), 55 (2008), 283-294.  doi: 10.1002/nav.20284.  Google Scholar

[11]

J. DongC. Liu and Z. Lin, Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data, Transportation Research Part C: Emerging Technologies, 38 (2014), 44-55.  doi: 10.1016/j.trc.2013.11.001.  Google Scholar

[12]

R. Z. FarahaniN. AsgariN. HeidariM. Hosseininia and M. Goh, Covering problems in facility location: A review, Computers & Industrial Engineering, 62 (2012), 368-407.  doi: 10.1016/j.cie.2011.08.020.  Google Scholar

[13]

M. W. Fontana, Optimal Routes for Electric Vehicles Facing Uncertainty, Congestion, and Energy Constraints, PhD thesis, Massachusetts Institute of Technology, 2013. Google Scholar

[14]

T. FrankeI. NeumannF. BühlerP. Cocron and J. F. Krems, Experiencing range in an electric vehicle: Understanding psychological barriers, Applied Psychology, 61 (2012), 368-391.  doi: 10.1111/j.1464-0597.2011.00474.x.  Google Scholar

[15]

L. C. Freeman, Centrality in social networks conceptual clarification, Social Networks, 1 (1978), 215-239.  doi: 10.1016/0378-8733(78)90021-7.  Google Scholar

[16]

M. Fuller, Wireless charging in california: Range, recharge, and vehicle electrification, Transportation Research Part C: Emerging Technologies, 67 (2016), 343-356.  doi: 10.1016/j.trc.2016.02.013.  Google Scholar

[17]

J. S. GillP. BhavsarM. ChowdhuryJ. JohnsonJ. Taiber and R. Fries, Infrastructure cost issues related to inductively coupled power transfer for electric vehicles, Procedia Computer Science, 32 (2014), 545-552.  doi: 10.1016/j.procs.2014.05.459.  Google Scholar

[18]

M. GreenleafO. DalchandH. Li and J. P. Zheng, A temperature-dependent study of sealed lead-acid batteries using physical equivalent circuit modeling with impedance spectra derived high current/power correction, IEEE Transactions on Sustainable Energy, 6 (2015), 380-387.  doi: 10.1109/TSTE.2014.2371435.  Google Scholar

[19]

A. Gutfraind, I. Safro and L. A. Meyers, Multiscale network generation, in Information Fusion (Fusion), 2015 18th International Conference on, IEEE, 2015,158–165. Google Scholar

[20]

M. Haklay and P. Weber, Openstreetmap: User-generated street maps, IEEE Pervasive Computing, 7 (2008), 12-18.  doi: 10.1109/MPRV.2008.80.  Google Scholar

[21]

T. S. Hale and C. R. Moberg, Location science research: A review, Annals of Operations Research, 123 (2003), 21-35.  doi: 10.1023/A:1026110926707.  Google Scholar

[22]

W. E. Hart, C. Laird, J.-P. Watson and D. L. Woodruff, Pyomo–optimization Modeling in Python, vol. 67, Springer Science & Business Media, 2012. Google Scholar

[23]

W. E. HartJ.-P. Watson and D. L. Woodruff, Pyomo: Modeling and solving mathematical programs in python, Mathematical Programming Computation, 3 (2011), 219-260.  doi: 10.1007/s12532-011-0026-8.  Google Scholar

[24]

F. HeD. WuY. Yin and Y. Guan, Optimal deployment of public charging stations for plug-in hybrid electric vehicles, Transportation Research Part B: Methodological, 47 (2013), 87-101.  doi: 10.1016/j.trb.2012.09.007.  Google Scholar

[25]

F. HeY. Yin and J. Zhou, Integrated pricing of roads and electricity enabled by wireless power transfer, Transportation Research Part C: Emerging Technologies, 34 (2013), 1-15.  doi: 10.1016/j.trc.2013.05.005.  Google Scholar

[26]

F. HeY. Yin and J. Zhou, Deploying public charging stations for electric vehicles on urban road networks, Transportation Research Part C: Emerging Technologies, 60 (2015), 227-240.  doi: 10.1016/j.trc.2015.08.018.  Google Scholar

[27]

S. Helber, J. Broihan, Y. Jang, P. Hecker and T. Feuerle, Location planning for dynamic wireless charging systems for electric airport passenger buses, Energies, 11 (2018), 258. doi: 10.3390/en11020258.  Google Scholar

[28]

M. J. Hodgson, A flow-capturing location-allocation model, Geographical Analysis, 22 (1990), 270-279.  doi: 10.1111/j.1538-4632.1990.tb00210.x.  Google Scholar

[29]

Y. HuangS. Li and Z. S. Qian, Optimal deployment of alternative fueling stations on transportation networks considering deviation paths, Networks and Spatial Economics, 15 (2015), 183-204.  doi: 10.1007/s11067-014-9275-1.  Google Scholar

[30]

I. HwangY. J. JangY. D. Ko and M. S. Lee, System optimization for dynamic wireless charging electric vehicles operating in a multiple-route environment, IEEE Transactions on Intelligent Transportation Systems, 19 (2018), 1709-1726.  doi: 10.1109/TITS.2017.2731787.  Google Scholar

[31]

I. ILOG, Cplex optimization studio, http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer, 2014. Google Scholar

[32]

Y. J. Jang, Y. D. Ko and S. Jeong, Creating innovation with systems integration, road and vehicle integrated electric transportation system, in Systems Conference (SysCon), 2012 IEEE International, IEEE, 2012, 1–4. doi: 10.1109/SysCon.2012.6189531.  Google Scholar

[33]

Y. J. Jang, Y. D. Ko and S. Jeong, Optimal design of the wireless charging electric vehicle, in Electric Vehicle Conference (IEVC), 2012 IEEE International, IEEE, 2012, 1–5. doi: 10.1109/IEVC.2012.6183294.  Google Scholar

[34]

J. JohnsonM. ChowdhuryY. He and J. Taiber, Utilizing real-time information transferring potentials to vehicles to improve the fast-charging process in electric vehicles, Transportation Research Part C: Emerging Technologies, 26 (2013), 352-366.  doi: 10.1016/j.trc.2012.10.009.  Google Scholar

[35]

G. Jung, B. Song, S. Shin, S. Lee, J. Shin, Y. Kim and S. Jeon, High efficient inductive power supply and pickup system for on-line electric bus, in Electric Vehicle Conference (IEVC), 2012 IEEE International, IEEE, 2012, 1–5. doi: 10.1109/IEVC.2012.6183263.  Google Scholar

[36]

J. JungJ. Y. ChowR. Jayakrishnan and J. Y. Park, Stochastic dynamic itinerary interception refueling location problem with queue delay for electric taxi charging stations, Transportation Research Part C: Emerging Technologies, 40 (2014), 123-142.  doi: 10.1016/j.trc.2014.01.008.  Google Scholar

[37]

J. E. Kang and W. Recker, Strategic hydrogen refueling station locations with scheduling and routing considerations of individual vehicles, Transportation Science, 49 (2014), 767-783.  doi: 10.1287/trsc.2014.0519.  Google Scholar

[38]

M. Khan, M. Chowdhury, S. M. Khan, I. Safro and H. Ushijima-Mwesigwa, Utility maximization framework for opportunistic wireless electric vehicle charging, preprint, arXiv: 1708.07526. Google Scholar

[39]

J.-G. Kim and M. Kuby, The deviation-flow refueling location model for optimizing a network of refueling stations, international Journal of Hydrogen Energy, 37 (2012), 5406-5420.  doi: 10.1016/j.ijhydene.2011.08.108.  Google Scholar

[40]

J.-G. Kim and M. Kuby, A network transformation heuristic approach for the deviation flow refueling location model, Computers & Operations Research, 40 (2013), 1122-1131.  doi: 10.1016/j.cor.2012.10.021.  Google Scholar

[41]

Y. Kim, Y. Son, S. Shin, J. Shin, B. Song, S. Lee, G. Jung and S. Jeon, Design of a regulator for multi-pick-up systems through using current offsets, in Electric Vehicle Conference (IEVC), 2012 IEEE International, IEEE, 2012, 1–6. doi: 10.1109/IEVC.2012.6183256.  Google Scholar

[42]

Y. D. Ko and Y. J. Jang, The optimal system design of the online electric vehicle utilizing wireless power transmission technology, IEEE Transactions on Intelligent Transportation Systems, 14 (2013), 1255-1265.  doi: 10.1109/TITS.2013.2259159.  Google Scholar

[43]

N. Koirala, F. He and W. Shen, Comparison of two battery equivalent circuit models for state of charge estimation in electric vehicles, in Industrial Electronics and Applications (ICIEA), 2015 IEEE 10th Conference on, IEEE, 2015, 17–22. doi: 10.1109/ICIEA.2015.7334077.  Google Scholar

[44]

M. Kuby and S. Lim, The flow-refueling location problem for alternative-fuel vehicles, Socio-Economic Planning Sciences, 39 (2005), 125-145.  doi: 10.1016/j.seps.2004.03.001.  Google Scholar

[45]

M. Kuby and S. Lim, Location of alternative-fuel stations using the flow-refueling location model and dispersion of candidate sites on arcs, Networks and Spatial Economics, 7 (2007), 129-152.  doi: 10.1007/s11067-006-9003-6.  Google Scholar

[46]

S. Lee, J. Huh, C. Park, N.-S. Choi, G.-H. Cho and C.-T. Rim, On-Line Electric Vehicle using inductive power transfer system, in 2010 IEEE Energy Conversion Congress and Exposition, IEEE, 2010, 1598–1601. doi: 10.1109/ECCE.2010.5618092.  Google Scholar

[47]

J. LeskovecK. J. LangA. Dasgupta and M. W. Mahoney, Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters, Internet Mathematics, 6 (2009), 29-123.  doi: 10.1080/15427951.2009.10129177.  Google Scholar

[48]

S. Li and C. C. Mi, Wireless power transfer for electric vehicle applications, IEEE journal of emerging and selected topics in power electronics, 3 (2015), 4-17.   Google Scholar

[49]

Z. LiM. ChowdhuryP. Bhavsar and Y. He, Optimizing the performance of vehicle-to-grid (v2g) enabled battery electric vehicles through a smart charge scheduling model, International Journal of Automotive Technology, 16 (2015), 827-837.  doi: 10.1007/s12239-015-0085-3.  Google Scholar

[50]

Z. Li, K. Dey, M. Chowdhury and P. Bhavsar, Connectivity supported dynamic routing of electric vehicles in an inductively coupled power transfer environment, IET Intelligent Transport Systems, 10 (2016), 370. doi: 10.1049/iet-its.2015.0154.  Google Scholar

[51]

S. Lukic and Z. Pantic, Cutting the cord: Static and dynamic inductive wireless charging of electric vehicles, IEEE Electrification Magazine, 1 (2013), 57-64.  doi: 10.1109/MELE.2013.2273228.  Google Scholar

[52]

S. Mohrehkesh and T. Nadeem, Toward a wireless charging for battery electric vehicles at traffic intersections, in 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE, 2011,113–118. doi: 10.1109/ITSC.2011.6083137.  Google Scholar

[53]

N. Mouhrim, A. E. H. Alaoui and J. Boukachour, Optimal allocation of wireless power transfer system for electric vehicles in a multipath environment, in Logistics Operations Management (GOL), 2016 3rd International Conference on, IEEE, 2016, 1–7. doi: 10.1109/GOL.2016.7731684.  Google Scholar

[54]

M. Newman, Networks: An Introduction, Oxford University Press, Inc., New York, NY, USA, 2010.  Google Scholar

[55]

M. E. Newman, The mathematics of networks, The new palgrave encyclopedia of economics, 2 (2008), 1-12.   Google Scholar

[56]

P. Ning, J. M. Miller, O. C. Onar and C. P. White, A compact wireless charging system for electric vehicles, in Energy Conversion Congress and Exposition (ECCE), 2013 IEEE, IEEE, 2013, 3629–3634. doi: 10.1109/ECCE.2013.6647179.  Google Scholar

[57]

F. Pan, R. Bent, A. Berscheid and D. Izraelevitz, Locating phev exchange stations in v2g, in Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on, IEEE, 2010,173–178. doi: 10.1109/SMARTGRID.2010.5622037.  Google Scholar

[58]

C. PanchalS. Stegen and J. Lu, Review of static and dynamic wireless electric vehicle charging system, Engineering Science and Technology, an International Journal, 21 (2018), 922-937.  doi: 10.1016/j.jestch.2018.06.015.  Google Scholar

[59]

C. Qiu, K. Chau, C. Liu and C. Chan, Overview of wireless power transfer for electric vehicle charging, in Electric Vehicle Symposium and Exhibition (EVS27), 2013 World, IEEE, 2013, 1–9. Google Scholar

[60]

R. RiemannD. Z. Wang and F. Busch, Optimal location of wireless charging facilities for electric vehicles: flow-capturing location model with stochastic user equilibrium, Transportation Research Part C: Emerging Technologies, 58 (2015), 1-12.   Google Scholar

[61]

A. Sarker, C. Qiu, H. Shen, A. Gil, J. Taiber, M. Chowdhury, J. Martin, M. Devine and A. Rindos, An efficient wireless power transfer system to balance the state of charge of electric vehicles, in Parallel Processing (ICPP), 2016 45th International Conference on, IEEE, 2016,324–333. doi: 10.1109/ICPP.2016.44.  Google Scholar

[62]

C. L. Staudt, M. Hamann, I. Safro, A. Gutfraind and H. Meyerhenke, Generating scaled replicas of real-world complex networks, in International Workshop on Complex Networks and their Applications, Springer, 2016, 17–28. doi: 10.1007/978-3-319-50901-3_2.  Google Scholar

[63]

K. D. StetzelL. L. AldrichM. S. Trimboli and G. L. Plett, Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended kalman filter, Journal of Power Sources, 278 (2015), 490-505.  doi: 10.1016/j.jpowsour.2014.11.135.  Google Scholar

[64]

F. SunR. Xiong and H. He, A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique, Applied Energy, 162 (2016), 1399-1409.  doi: 10.1016/j.apenergy.2014.12.021.  Google Scholar

[65]

C. UpchurchM. Kuby and S. Lim, A model for location of capacitated alternative-fuel stations, Geographical Analysis, 41 (2009), 85-106.  doi: 10.1111/j.1538-4632.2009.00744.x.  Google Scholar

[66]

US, Fuel economy, http://fueleconomy.gov/, 2017, Accessed: 03-29-2017. Google Scholar

[67]

H. Ushijima-MwesigwaZ. KhanM. A. Chowdhury and I. Safro, Centralities for networks with consumable resources, Network Science, 7 (2019), 376-401.  doi: 10.1017/nws.2019.7.  Google Scholar

[68]

H. M. Ushijima-Mwesigwa, Models for networks with consumable resources: Applications to smart cities., Google Scholar

[69]

D. Vilathgamuwa and J. Sampath, Wireless power transfer for electric vehicles, present and future trends, in Plug in Electric Vehicles in Smart Grids, Springer, 2015, 33–60. doi: 10.1007/978-981-287-299-9_2.  Google Scholar

[70]

T. Wang, B. Yang, C. Chen and X. Guan, Wireless charging lane deployment in urban areas considering traffic light and regional energy supply-demand balance, in 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), IEEE, 2019, 1–5. doi: 10.1109/VTCSpring.2019.8746492.  Google Scholar

[71]

W. Wang, D. Wang, X. Wang, T. Li, R. Ahmed, S. Habibi and A. Emadi, Comparison of kalman filter-based state of charge estimation strategies for li-ion batteries, in Transportation Electrification Conference and Expo (ITEC), 2016 IEEE, IEEE, 2016, 1–6. Google Scholar

[72]

Y.-W. Wang, Locating flow-recharging stations at tourist destinations to serve recreational travelers, International Journal of Sustainable Transportation, 5 (2011), 153-171.  doi: 10.1080/15568311003717199.  Google Scholar

[73]

Y.-W. Wang and C.-C. Lin, Locating road-vehicle refueling stations, Transportation Research Part E: Logistics and Transportation Review, 45 (2009), 821-829.  doi: 10.1016/j.tre.2009.03.002.  Google Scholar

[74]

Y.-W. Wang and C.-C. Lin, Locating multiple types of recharging stations for battery-powered electric vehicle transport, Transportation Research Part E: Logistics and Transportation Review, 58 (2013), 76-87.  doi: 10.1016/j.tre.2013.07.003.  Google Scholar

[75]

Y.-W. Wang and C.-R. Wang, Locating passenger vehicle refueling stations, Transportation Research Part E: Logistics and Transportation Review, 46 (2010), 791-801.  doi: 10.1016/j.tre.2009.12.001.  Google Scholar

[76]

N. Watrin, B. Blunier and A. Miraoui, Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation, in Transportation Electrification Conference and Expo (ITEC), 2012 IEEE, IEEE, 2012, 1–6. Google Scholar

[77]

S. Winter, Modeling costs of turns in route planning, GeoInformatica, 6 (2002), 345-361.  doi: 10.1023/A:1020853410145.  Google Scholar

[78]

L. Zamparini and A. Reggiani, The value of travel time in passenger and freight transport: An overview, in Policy Analysis of Transport Networks, Routledge, 2016,161–178. Google Scholar

[79]

C. ZhangK. LiL. Pei and C. Zhu, An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries, Journal of Power Sources, 283 (2015), 24-36.  doi: 10.1016/j.jpowsour.2015.02.099.  Google Scholar

[80]

S. ZhangZ. QianJ. WuF. Kong and S. Lu, Wireless charger placement and power allocation for maximizing charging quality, IEEE Transactions on Mobile Computing, 17 (2018), 1483-1496.  doi: 10.1109/TMC.2017.2771425.  Google Scholar

Figure 1.  Example of $ \mathcal{G}_r $ with $ r = (u_1, u_2, u_3) $ and $ nLayers = 4 $. $ u_4 $ is an artificial road segment added to capture the final $\textsf{SOC} $ from $ u_3 $. The nodes in the set $ \mathcal{B}_r = \{\mu_{i, j} | i = 4 \text{ or } j = 4\} $ are referred to as the boundary nodes. The out going edges of each node $ \mu_{i, j} $ are determined by an $\textsf{SOC} $ function. Each node represents a discretized $\textsf{SOC} $ value
Figure 2.  Optimal solution with a four unit installation budget. The thick ends of the edges are used to indicate the direction of the edge. Taking $ \alpha = 0 $ without any installation, there are 70 number of infeasible routes. An optimal installation of 5 WCLs would ensure zero infeasible routes. With an optimal installation of 4 WCLs, the nodes colored in red, there would have 12 infeasible routes
Figure 3.  Directed toy graphs of 26 and 110 vertices used for problems 1 and 2, respectively. The bold end points on the edges of (a) represent edge directions. The graphs are subgraphs of the California road network taken from the dataset SNAP in [47]
Figure 4.  Comparison of the different methods. The minimum number of WCL installation needed to eliminate all infeasible routes is $ B $. The nodes colored red indicate location of WCL installation. In (a), we demonstrate the result given by our model requiring a budget of 12 WCL'sin order to have zero infeasible routes. In (b) and (c), we demonstrate solutions from the betweenness and eigenvector heuristics that give budgets of 20 and 23 WCL's, respectively
Figure 5.  Figures (a) to (f) are plots showing the number of routes ending with final $\textsf{SOC} $ below a given value via the different models. Legend "model: random routes" represents the solution from the proposed model when 100 routes were chosen uniformly at random with $ \alpha = 0 $ and different budget scenarios. The solution is compared to the solutions from the different centrality measures, a random installation and one with no WCL installation. The $ y $-intercept of the different lines shows the number of infeasible routes for the different methods. Our model gives a smaller number in all cases. The plots go further and show how a specific solution affects the $\textsf{SOC} $ of all routes. As the budget approaches 50%, we demonstrate that our model gives a significant reduction to the number of infeasible routes while also improving the $\textsf{SOC} $ in general of the feasible routes
Figure 6.  Road segment graphs from real geospatial data: a node, drawn in blue, represents a road segment. Two road segments $ u $ and $ v $ are connected by a directed edge $ (u, v) $ if and only if the end point of $ u $ is that start point of $ v $
Figure 7.  Histograms showing the number of infeasible routes for different values of $ \alpha $ and $ \beta $ for the Manhattan neighborhood graph. The vertical line indicates the value of $ \alpha $. In (a) with a budget of 10%, our model gives a solution with at least 50% less infeasible routes compared to the betweenness heuristic. In (b), we demonstrate how the effects of a 20% budget on the $\textsf{SOC} $ distribution within the network. In (c), our model gives a solution with at least 25% less infeasible routes
Figure 8.  The number of routes ending with final $\textsf{SOC} $ below a given value in the lower Manhattan graph. The solution was obtained with $ \alpha = 0.7 $ and $ \beta = 0.1 $. The blue curve shows the $\textsf{SOC} $ distribution when no WCL are installed. Green and red curves show the $\textsf{SOC} $ distribution after an installation using the proposed model and the betweenness heuristic, respectively. Plot (b) a gives closer look into (a) for the $\textsf{SOC} $ values below 0.7
Figure 9.  Each boxplot depicts the average final $\textsf{SOC} $ for 30 infeasible routes under 50 randomly generated velocity modification scenarios for each $ \epsilon_{\nu} $
Figure 10.  Using Betweenness Centrality Heuristic to find an Initial Solution
Table 2.  Road category with corresponding speed in Miles/Hr
Category Road Type Urban Speed Rural Speed
1 Motorway 60 70
2 Trunk 45 55
3 Primary 30 50
4 Secondary 20 45
5 Tertiary 15 35
6 Residential/Unclassified 8 25
7 Service 5 10
8 Living street 5 10
Category Road Type Urban Speed Rural Speed
1 Motorway 60 70
2 Trunk 45 55
3 Primary 30 50
4 Secondary 20 45
5 Tertiary 15 35
6 Residential/Unclassified 8 25
7 Service 5 10
8 Living street 5 10
Table 1.  Average number of Infeasible Routes for the different methods while varying the global parameter $ \alpha $
$ \alpha $ Model $ BTN $ $ EIG $ $ CLN $ $ RND $
0 3180.4 4445.4 6761 6392.4 6637.2
0.2 7159.2 8157.4 9236.6 8845.6 9572.6
0.5 9388.2 9412.6 25411.6 9388.8 10273.8
$ \alpha $ Model $ BTN $ $ EIG $ $ CLN $ $ RND $
0 3180.4 4445.4 6761 6392.4 6637.2
0.2 7159.2 8157.4 9236.6 8845.6 9572.6
0.5 9388.2 9412.6 25411.6 9388.8 10273.8
[1]

Alexei Korolev, Gennady Ougolnitsky. Optimal resource allocation in the difference and differential Stackelberg games on marketing networks. Journal of Dynamics & Games, 2020, 7 (2) : 141-162. doi: 10.3934/jdg.2020009

[2]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[3]

Sedighe Asghariniya, Hamed Zhiani Rezai, Saeid Mehrabian. Resource allocation: A common set of weights model. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 257-273. doi: 10.3934/naco.2020001

[4]

Irina Kareva, Faina Berezovkaya, Georgy Karev. Mixed strategies and natural selection in resource allocation. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1561-1586. doi: 10.3934/mbe.2013.10.1561

[5]

Roderick V.N. Melnik, Ningning Song, Per Sandholdt. Dynamics of torque-speed profiles for electric vehicles and nonlinear models based on differential-algebraic equations. Conference Publications, 2003, 2003 (Special) : 610-617. doi: 10.3934/proc.2003.2003.610

[6]

Shuang Zhao. Resource allocation flowshop scheduling with learning effect and slack due window assignment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020096

[7]

Ali Gharouni, Lin Wang. Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences & Engineering, 2016, 13 (5) : 969-980. doi: 10.3934/mbe.2016025

[8]

Jafar Sadeghi, Mojtaba Ghiyasi, Akram Dehnokhalaji. Resource allocation and target setting based on virtual profit improvement. Numerical Algebra, Control & Optimization, 2020, 10 (2) : 127-142. doi: 10.3934/naco.2019043

[9]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks & Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[10]

Raul Borsche, Anne Meurer. Interaction of road networks and pedestrian motion at crosswalks. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 363-377. doi: 10.3934/dcdss.2014.7.363

[11]

Linet Ozdamar, Dilek Tuzun Aksu, Elifcan Yasa, Biket Ergunes. Disaster relief routing in limited capacity road networks with heterogeneous flows. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1367-1380. doi: 10.3934/jimo.2018011

[12]

Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks & Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227

[13]

Lino J. Alvarez-Vázquez, Néstor García-Chan, Aurea Martínez, Miguel E. Vázquez-Méndez. Optimal control of urban air pollution related to traffic flow in road networks. Mathematical Control & Related Fields, 2018, 8 (1) : 177-193. doi: 10.3934/mcrf.2018008

[14]

Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011

[15]

Jin Soo Park, Kyung Jae Kim, Yun Han Bae, Bong Dae Choi. Admission control by dynamic bandwidth reservation using road layout and bidirectional navigator in wireless multimedia networks. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 627-638. doi: 10.3934/naco.2011.1.627

[16]

Shiyong Li, Wei Sun, Quan-Lin Li. Utility maximization for bandwidth allocation in peer-to-peer file-sharing networks. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1099-1117. doi: 10.3934/jimo.2018194

[17]

Shunfu Jin, Wuyi Yue, Zsolt Saffer. Analysis and optimization of a gated polling based spectrum allocation mechanism in cognitive radio networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 687-702. doi: 10.3934/jimo.2016.12.687

[18]

João Borges de Sousa, Bernardo Maciel, Fernando Lobo Pereira. Sensor systems on networked vehicles. Networks & Heterogeneous Media, 2009, 4 (2) : 223-247. doi: 10.3934/nhm.2009.4.223

[19]

Andrea Scapin. Electrocommunication for weakly electric fish. Inverse Problems & Imaging, 2020, 14 (1) : 97-115. doi: 10.3934/ipi.2019065

[20]

Gilbert Strang. Three steps on an open road. Inverse Problems & Imaging, 2013, 7 (3) : 961-966. doi: 10.3934/ipi.2013.7.961

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (69)
  • HTML views (283)
  • Cited by (0)

[Back to Top]