• Previous Article
    Machine interference problem involving unsuccessful switchover for a group of repairable servers with vacations
  • JIMO Home
  • This Issue
  • Next Article
    Scale efficiency of China's regional R & D value chain: A double frontier network DEA approach
May  2021, 17(3): 1383-1410. doi: 10.3934/jimo.2020026

Time-consistent strategy for a multi-period mean-variance asset-liability management problem with stochastic interest rate

1. 

School of Finance and Economics, Qinghai University, Xining 810016, PR China

2. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, PR China

3. 

Sun Yat-sen Business School, Sun Yat-sen University, Guangzhou 510275, China

4. 

School of Management, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China

5. 

School of Finance, Guangdong University of Foreign Studies, Guangzhou 510006, China

* Corresponding author: Zhongfei Li

Received  December 2018 Revised  October 2019 Published  February 2020

Fund Project: This research is supported by the National Natural Science Foundation of China (Nos. 71721001, 71871071, 71471045), the Natural Science Foundation of Guangdong Province of China (Nos. 2014A030312003, 2017A030313399, 2018B030311004), the Innovation Team Project of Guangdong Colleges and Universities (No. 2016WCXTD012), and the Innovative School Project in Higher Education of Guangdong Province of China (No. GWTP-GC-2017-03)

In this paper, we investigate a multi-period mean-variance asset-liability management problem with stochastic interest rate and seek its time-consistent strategy. The financial market is assumed to be composed of one risk-free asset and multiple risky assets, and the stochastic interest rate is characterized by the discrete-time Vasicek model proposed by Yao et al. (2016a)[38]. We regard this problem as a non-cooperative game whose equilibrium strategy is the desired time-consistent strategy. We derive the analytical expressions of the equilibrium strategy, the equilibrium value function and the equilibrium efficient frontier by the extended Bellman equation. Some special cases of our model are discussed, and some properties of our equilibrium strategy, including a two-fund separation theorem, are proposed. Finally, a numerical example with real data is given to illustrate our theoretical results.

Citation: Lihua Bian, Zhongfei Li, Haixiang Yao. Time-consistent strategy for a multi-period mean-variance asset-liability management problem with stochastic interest rate. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1383-1410. doi: 10.3934/jimo.2020026
References:
[1]

L. H. BianZ. F. Li and H. X. Yao, Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause, Insurance: Mathematics and Economics, 81 (2018), 78-94.  doi: 10.1016/j.insmatheco.2018.05.005.  Google Scholar

[2]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.  Google Scholar

[3]

T. Björk and A. Murgoci, A theory of Markovian time-inconsitent stochastic control in discrete time, Finance and Stochastics, 18 (2014), 545-592.  doi: 10.1007/s00780-014-0234-y.  Google Scholar

[4]

C. Chang, Dynamic mean-variance portfolio selection with liability and stochastic interest rate, Economic Modelling, 51 (2015), 172-182.  doi: 10.1016/j.econmod.2015.07.017.  Google Scholar

[5]

P. Chen and H. L. Yang, Markowitz's mean-variance asset-liability management with regime switching: A multi-period model, Applied Mathematical Finance, 18 (2011), 29-50.  doi: 10.1080/13504861003703633.  Google Scholar

[6]

P. ChenH. L. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.  doi: 10.1016/j.insmatheco.2008.09.001.  Google Scholar

[7]

M. C. Chiu and H. Y. Wong, Mean-variance asset-liability management with asset correlation risk and insurance liabilities, Insurance: Mathematics and Economics, 59 (2014), 300-310.  doi: 10.1016/j.insmatheco.2014.10.003.  Google Scholar

[8]

R. Ferland and F. Watier, Mean-variance efficiency with extended CIR interest rates, Applied Stochastic Models in Business and Industry, 26 (2010), 71-84.  doi: 10.1002/asmb.767.  Google Scholar

[9]

D. Hainaut, Dynamic asset allocation under VaR constraint with stochastic interest rates, Annals of Operations Research, 172 (2009), 97-117.  doi: 10.1007/s10479-008-0509-9.  Google Scholar

[10]

L. He and Z. X. Liang, Optimal investment strategy for the DC plan with the return of premiums clauses in a mean-variance framework, Insurance: Mathematics and Economics, 53 (2013), 643-649.  doi: 10.1016/j.insmatheco.2013.09.002.  Google Scholar

[11]

R. Korn and H. Kraft, A stochastic control approach to portfolio problems with stochastic interest rates, SIAM Journal on Control and Optimization, 40 (2002), 1250-1269.  doi: 10.1137/S0363012900377791.  Google Scholar

[12]

M. LeippoldF. Trojani and P. Vanini, A geomeric approach to multiperiod mean variance optimization of assets and liabilities, Journal of Economic Dynamics and Control, 28 (2004), 1079-1113.  doi: 10.1016/S0165-1889(03)00067-8.  Google Scholar

[13]

M. LeippoldF. Trojani and P. Vanini, Multiperiod mean-variance efficient portfolios with endogenous liabilities, Quantitative Finance, 11 (2011), 1535-1546.  doi: 10.1080/14697680902950813.  Google Scholar

[14]

C. J. Li and Z. F. Li, Multi-period portfolio optimization for asset-liability management with bankrupt control, Applied Mathematics and Computation, 218 (2012), 11196-11208.  doi: 10.1016/j.amc.2012.05.010.  Google Scholar

[15]

C. J. LiZ. F. LiK. Fu and H. Q. Song, Time-consistent optimal portfolio strategy for asset-liability management under mean-variance criterion, Accounting and Finance Research, 2 (2013), 89-104.  doi: 10.5430/afr.v2n2p89.  Google Scholar

[16]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.  Google Scholar

[17]

Z. X. Liang and M. Ma, Optimal dynamic asset allocation of pension fund in mortality and salary risks framework, Insurance: Mathematics and Economics, 64 (2015), 151-161.  doi: 10.1016/j.insmatheco.2015.05.008.  Google Scholar

[18]

A. Lioui and P. Poncet, On optimal portfolio choice under stochastic interest rates, Journal of Economic Dynamics and Control, 25 (2001), 1841-1865.  doi: 10.1016/S0165-1889(00)00005-1.  Google Scholar

[19]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.   Google Scholar

[20]

F. Menoncin and E. Vigna, Mean-variance target-based optimization for defined contribution pension schemes in a stochastic framework, Insurance: Mathematics and Economics, 76 (2017), 172-184.  doi: 10.1016/j.insmatheco.2017.08.002.  Google Scholar

[21]

R. J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley, New York, 1982. Google Scholar

[22]

C. Munk and C. Sørensen, Dynamic asset allocation with stochastic income and interest rates, Journal of Financial Economics, 96 (2010), 433-462.   Google Scholar

[23]

S. Mushtaq and D. A. Siddiqui, Effect of interest rate on economic performance: Evidence from Islamic and non-Islamic economies, Financial Innovation, 2 (2016), 2-9.  doi: 10.1186/s40854-016-0028-7.  Google Scholar

[24]

J. Pan and Q. X. Xiao, Optimal asset-liability management with liquidity constraints and stochastic interest rates in the expected utility framework, Journal of Computational and Applied Mathematics, 317 (2017a), 371-387.  doi: 10.1016/j.cam.2016.11.037.  Google Scholar

[25]

J. Pan and Q. X. Xiao, Optimal mean-variance asset-liability management with stochastic interest rates and inflation risks, Mathematical Methods of Operations Research, 85 (2017b), 491-519.  doi: 10.1007/s00186-017-0580-6.  Google Scholar

[26]

W. F. Sharpe and L. G. Tint, Liabilities-a new approach, Journal of Portfolio Management, 16 (1990), 5-10.  doi: 10.3905/jpm.1990.409248.  Google Scholar

[27]

Y. Shen and T. K. Siu, Asset allocation under stochastic interest rate with regime switching, Economic Modelling, 29 (2012), 1126-1136.  doi: 10.1016/j.econmod.2012.03.024.  Google Scholar

[28]

R. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, (1973), 128–143. doi: 10.1007/978-1-349-15492-0_10.  Google Scholar

[29]

J. Y. SunZ. F. Li and Y. Zeng, Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model, Insurance: Mathematics and Economics, 67 (2016), 158-172.  doi: 10.1016/j.insmatheco.2016.01.005.  Google Scholar

[30]

J. Tobin, Liquidity preference as behavior toward risk, Review of Economic Studies, 67 (1958), 65-86.  doi: 10.2307/2296205.  Google Scholar

[31]

J. Wei and T. X. Wang, Time-consistent mean-variance asset-liability management with random coefficients, Insurance: Mathematics and Economics, 77 (2017), 84-96.  doi: 10.1016/j.insmatheco.2017.08.011.  Google Scholar

[32]

J. WeiK. C. WongS. C. P. Yam and S. P. Yung, Liquidity preference as behavior toward risk, Review of Economic Studies, 67 (1958), 65-86.   Google Scholar

[33]

H. L. Wu, Time-consistent strategies for a multiperiod mean-variance portfolio selection problem, Journal of Applied Mathematics, 2013 (2013), Art. ID 841627, 13 pp. doi: 10.1155/2013/841627.  Google Scholar

[34]

H. L. Wu and H. Chen, Nash equilibrium strategy for a multi-period mean-variance portfolio selection problem with regime switching, Economic Modelling, 46 (2015), 79-90.  doi: 10.1016/j.econmod.2014.12.024.  Google Scholar

[35]

S. X. Xie, Continuous-time mean-variance portfolio selection with liability and regime switching, Insurance: Mathematics and Economics, 45 (2009), 148-155.  doi: 10.1016/j.insmatheco.2009.05.005.  Google Scholar

[36]

H. X. YaoX. LiZ. F. Hao and Y. Li, Dynamic asset-liability management in a Markov market with stochastic cash flows, Quantitative Finance, 16 (2016b), 1575-1597.  doi: 10.1080/14697688.2016.1151070.  Google Scholar

[37]

H. X. YaoZ. F. Li and Y. Z. Lai, Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate, Journal of Industrial and Management Optimization, 12 (2016c), 187-209.  doi: 10.3934/jimo.2016.12.187.  Google Scholar

[38]

H. X. YaoZ. F. Li and D. Li, Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability, European Journal of Operational Research, 252 (2016a), 837-851.  doi: 10.1016/j.ejor.2016.01.049.  Google Scholar

[39]

H. X. YaoY. Zeng and S. M. Chen, Multi-period mean-variance asset-liability management with uncontrolled cash flow and uncertain time-horizon, Economic Modelling, 30 (2013), 492-500.  doi: 10.1016/j.econmod.2012.10.004.  Google Scholar

[40]

F. Z. Zhang, Matrix Theory: Basic Results and Techniques, 2$^{nd}$ edition, Springer-Verlag, New York, 2011. Google Scholar

[41]

L. ZhangH. Zhang and H. X. Yao, Optimal investment management for a defined contribution pension fund under imperfect information, Insurance: Mathematics and Economics, 79 (2018), 210-224.  doi: 10.1016/j.insmatheco.2018.01.007.  Google Scholar

[42]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.  Google Scholar

show all references

References:
[1]

L. H. BianZ. F. Li and H. X. Yao, Pre-commitment and equilibrium investment strategies for the DC pension plan with regime switching and a return of premiums clause, Insurance: Mathematics and Economics, 81 (2018), 78-94.  doi: 10.1016/j.insmatheco.2018.05.005.  Google Scholar

[2]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.  Google Scholar

[3]

T. Björk and A. Murgoci, A theory of Markovian time-inconsitent stochastic control in discrete time, Finance and Stochastics, 18 (2014), 545-592.  doi: 10.1007/s00780-014-0234-y.  Google Scholar

[4]

C. Chang, Dynamic mean-variance portfolio selection with liability and stochastic interest rate, Economic Modelling, 51 (2015), 172-182.  doi: 10.1016/j.econmod.2015.07.017.  Google Scholar

[5]

P. Chen and H. L. Yang, Markowitz's mean-variance asset-liability management with regime switching: A multi-period model, Applied Mathematical Finance, 18 (2011), 29-50.  doi: 10.1080/13504861003703633.  Google Scholar

[6]

P. ChenH. L. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.  doi: 10.1016/j.insmatheco.2008.09.001.  Google Scholar

[7]

M. C. Chiu and H. Y. Wong, Mean-variance asset-liability management with asset correlation risk and insurance liabilities, Insurance: Mathematics and Economics, 59 (2014), 300-310.  doi: 10.1016/j.insmatheco.2014.10.003.  Google Scholar

[8]

R. Ferland and F. Watier, Mean-variance efficiency with extended CIR interest rates, Applied Stochastic Models in Business and Industry, 26 (2010), 71-84.  doi: 10.1002/asmb.767.  Google Scholar

[9]

D. Hainaut, Dynamic asset allocation under VaR constraint with stochastic interest rates, Annals of Operations Research, 172 (2009), 97-117.  doi: 10.1007/s10479-008-0509-9.  Google Scholar

[10]

L. He and Z. X. Liang, Optimal investment strategy for the DC plan with the return of premiums clauses in a mean-variance framework, Insurance: Mathematics and Economics, 53 (2013), 643-649.  doi: 10.1016/j.insmatheco.2013.09.002.  Google Scholar

[11]

R. Korn and H. Kraft, A stochastic control approach to portfolio problems with stochastic interest rates, SIAM Journal on Control and Optimization, 40 (2002), 1250-1269.  doi: 10.1137/S0363012900377791.  Google Scholar

[12]

M. LeippoldF. Trojani and P. Vanini, A geomeric approach to multiperiod mean variance optimization of assets and liabilities, Journal of Economic Dynamics and Control, 28 (2004), 1079-1113.  doi: 10.1016/S0165-1889(03)00067-8.  Google Scholar

[13]

M. LeippoldF. Trojani and P. Vanini, Multiperiod mean-variance efficient portfolios with endogenous liabilities, Quantitative Finance, 11 (2011), 1535-1546.  doi: 10.1080/14697680902950813.  Google Scholar

[14]

C. J. Li and Z. F. Li, Multi-period portfolio optimization for asset-liability management with bankrupt control, Applied Mathematics and Computation, 218 (2012), 11196-11208.  doi: 10.1016/j.amc.2012.05.010.  Google Scholar

[15]

C. J. LiZ. F. LiK. Fu and H. Q. Song, Time-consistent optimal portfolio strategy for asset-liability management under mean-variance criterion, Accounting and Finance Research, 2 (2013), 89-104.  doi: 10.5430/afr.v2n2p89.  Google Scholar

[16]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.  Google Scholar

[17]

Z. X. Liang and M. Ma, Optimal dynamic asset allocation of pension fund in mortality and salary risks framework, Insurance: Mathematics and Economics, 64 (2015), 151-161.  doi: 10.1016/j.insmatheco.2015.05.008.  Google Scholar

[18]

A. Lioui and P. Poncet, On optimal portfolio choice under stochastic interest rates, Journal of Economic Dynamics and Control, 25 (2001), 1841-1865.  doi: 10.1016/S0165-1889(00)00005-1.  Google Scholar

[19]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.   Google Scholar

[20]

F. Menoncin and E. Vigna, Mean-variance target-based optimization for defined contribution pension schemes in a stochastic framework, Insurance: Mathematics and Economics, 76 (2017), 172-184.  doi: 10.1016/j.insmatheco.2017.08.002.  Google Scholar

[21]

R. J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley, New York, 1982. Google Scholar

[22]

C. Munk and C. Sørensen, Dynamic asset allocation with stochastic income and interest rates, Journal of Financial Economics, 96 (2010), 433-462.   Google Scholar

[23]

S. Mushtaq and D. A. Siddiqui, Effect of interest rate on economic performance: Evidence from Islamic and non-Islamic economies, Financial Innovation, 2 (2016), 2-9.  doi: 10.1186/s40854-016-0028-7.  Google Scholar

[24]

J. Pan and Q. X. Xiao, Optimal asset-liability management with liquidity constraints and stochastic interest rates in the expected utility framework, Journal of Computational and Applied Mathematics, 317 (2017a), 371-387.  doi: 10.1016/j.cam.2016.11.037.  Google Scholar

[25]

J. Pan and Q. X. Xiao, Optimal mean-variance asset-liability management with stochastic interest rates and inflation risks, Mathematical Methods of Operations Research, 85 (2017b), 491-519.  doi: 10.1007/s00186-017-0580-6.  Google Scholar

[26]

W. F. Sharpe and L. G. Tint, Liabilities-a new approach, Journal of Portfolio Management, 16 (1990), 5-10.  doi: 10.3905/jpm.1990.409248.  Google Scholar

[27]

Y. Shen and T. K. Siu, Asset allocation under stochastic interest rate with regime switching, Economic Modelling, 29 (2012), 1126-1136.  doi: 10.1016/j.econmod.2012.03.024.  Google Scholar

[28]

R. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, (1973), 128–143. doi: 10.1007/978-1-349-15492-0_10.  Google Scholar

[29]

J. Y. SunZ. F. Li and Y. Zeng, Precommitment and equilibrium investment strategies for defined contribution pension plans under a jump-diffusion model, Insurance: Mathematics and Economics, 67 (2016), 158-172.  doi: 10.1016/j.insmatheco.2016.01.005.  Google Scholar

[30]

J. Tobin, Liquidity preference as behavior toward risk, Review of Economic Studies, 67 (1958), 65-86.  doi: 10.2307/2296205.  Google Scholar

[31]

J. Wei and T. X. Wang, Time-consistent mean-variance asset-liability management with random coefficients, Insurance: Mathematics and Economics, 77 (2017), 84-96.  doi: 10.1016/j.insmatheco.2017.08.011.  Google Scholar

[32]

J. WeiK. C. WongS. C. P. Yam and S. P. Yung, Liquidity preference as behavior toward risk, Review of Economic Studies, 67 (1958), 65-86.   Google Scholar

[33]

H. L. Wu, Time-consistent strategies for a multiperiod mean-variance portfolio selection problem, Journal of Applied Mathematics, 2013 (2013), Art. ID 841627, 13 pp. doi: 10.1155/2013/841627.  Google Scholar

[34]

H. L. Wu and H. Chen, Nash equilibrium strategy for a multi-period mean-variance portfolio selection problem with regime switching, Economic Modelling, 46 (2015), 79-90.  doi: 10.1016/j.econmod.2014.12.024.  Google Scholar

[35]

S. X. Xie, Continuous-time mean-variance portfolio selection with liability and regime switching, Insurance: Mathematics and Economics, 45 (2009), 148-155.  doi: 10.1016/j.insmatheco.2009.05.005.  Google Scholar

[36]

H. X. YaoX. LiZ. F. Hao and Y. Li, Dynamic asset-liability management in a Markov market with stochastic cash flows, Quantitative Finance, 16 (2016b), 1575-1597.  doi: 10.1080/14697688.2016.1151070.  Google Scholar

[37]

H. X. YaoZ. F. Li and Y. Z. Lai, Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate, Journal of Industrial and Management Optimization, 12 (2016c), 187-209.  doi: 10.3934/jimo.2016.12.187.  Google Scholar

[38]

H. X. YaoZ. F. Li and D. Li, Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability, European Journal of Operational Research, 252 (2016a), 837-851.  doi: 10.1016/j.ejor.2016.01.049.  Google Scholar

[39]

H. X. YaoY. Zeng and S. M. Chen, Multi-period mean-variance asset-liability management with uncontrolled cash flow and uncertain time-horizon, Economic Modelling, 30 (2013), 492-500.  doi: 10.1016/j.econmod.2012.10.004.  Google Scholar

[40]

F. Z. Zhang, Matrix Theory: Basic Results and Techniques, 2$^{nd}$ edition, Springer-Verlag, New York, 2011. Google Scholar

[41]

L. ZhangH. Zhang and H. X. Yao, Optimal investment management for a defined contribution pension fund under imperfect information, Insurance: Mathematics and Economics, 79 (2018), 210-224.  doi: 10.1016/j.insmatheco.2018.01.007.  Google Scholar

[42]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.  Google Scholar

Figure 1.  The equilibrium strategies with and without liability
Figure 2.  The surplus process of the equilibrium strategies with and without liability
Figure 3.  The effect of liability on the equilibrium strategy
Figure 4.  The effect of stochastic interest rate on the equilibrium strategy
Figure 5.  A comparison of the equilibrium strategy and precommitment strategy
Figure 6.  The effect of liability on the equilibrium efficient frontier
Figure 7.  The effect of stochastic interest rate on the equilibrium efficient frontier
Figure 8.  A comparison of the equilibrium efficient frontier and pre-commitment efficient frontier
[1]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[4]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[5]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[6]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[7]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[8]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[9]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[10]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[11]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[12]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[14]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[15]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[16]

Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[17]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[18]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[19]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[20]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]