• Previous Article
    Finite-horizon optimal control of discrete-time linear systems with completely unknown dynamics using Q-learning
  • JIMO Home
  • This Issue
  • Next Article
    Optimal pricing and advertising decisions with suppliers' oligopoly competition: Stakelberg-Nash game structures
May  2021, 17(3): 1451-1469. doi: 10.3934/jimo.2020029

Utility maximization with habit formation of interaction

1. 

Department of Actuarial Science, School of Insurance, , Central University of Finance and Economics Beijing 100081, China

2. 

Department of Actuarial Science, School of Insurance; , China Institute for Actuarial Science, , Central University of Finance and Economics, Beijing 100081, China

* Corresponding author: Yike Wang

Received  February 2019 Revised  September 2019 Published  May 2021 Early access  February 2020

Fund Project: The first author is supported by Projects 11771466 and 11571388 supported by National Natural Science Foundation of China, and Program for Innovation Research in Central University of Finance and Economics

In this paper, we analytically solve the utility maximization problem for a consumption set with multiple habit formation of interaction. Consumption is here composed of habitual and nonhabitual components, where habitual consumption represents the effect of past consumption. We further assume that the individual seeks to maximize his/her expected utility from nonhabitual consumption. Although there is usually no explicit solution of linear dynamic systems in the habit formation model, we study the functional minimum of habitual consumption. To solve the optimization problem with a general utility function, we adopt the convex dual martingale approach to construct the optimal consumption strategy and provide an economic interpretation for nearly every object throughout the solution process.

Citation: Jingzhen Liu, Yike Wang, Ming Zhou. Utility maximization with habit formation of interaction. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1451-1469. doi: 10.3934/jimo.2020029
References:
[1]

J. Bismut, Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.

[2]

G. Constantinides, Habit formation: A resolution of the equity premium puzzle, Journal of Political Economy, 98 (1990), 519-543.  doi: 10.1086/261693.

[3]

J. Cvitanić and I. Karatzas, Convex duality in constrained portfolio optimization, Annals of Applied Probability, 2 (1992), 767-818.  doi: 10.1214/aoap/1177005576.

[4]

J. Cvitanić and I. Karatzas, Hedging contingent claims with constrained portfolios, Annals of Applied Probability, 3 (1993), 652-681.  doi: 10.1214/aoap/1177005357.

[5]

J. Detemple and I. Karatzas, Non-addictive habits: Optimal consumption portfolio policies, Journal of Economic Theory, 113 (2003), 265-285.  doi: 10.1016/S0022-0531(03)00099-1.

[6]

J. Detemple and F. Zapatero, Asset prices in an exchange economy with habit formation, Econometrica, 59 (1991), 1633-1657.  doi: 10.2307/2938283.

[7]

J. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.  doi: 10.1111/j.1467-9965.1992.tb00032.x.

[8]

N. Englezos and I. Karatzas, Utility maximization with habit formation: Dynamic programming and stochastic pdes, SIAM Journal on Control and Optimization, 48 (2009), 481-520.  doi: 10.1137/070686998.

[9] J. Hicks, Capital and Growth, Oxford Univ. Press, New York, 1965. 
[10]

J. Kakeu and P. Nguimkeu, Habit formation and exhaustible resource risk-pricing, Energy Economics, 64 (2017), 1-12.  doi: 10.1016/j.eneco.2017.03.013.

[11]

I. KaratzasJ. LehoczkyS. Sethi and S. Shreve, Explicit solution of a general consumption/investment problem, Mathematics of Operations Research, 11 (1986), 261-294.  doi: 10.1287/moor.11.2.261.

[12]

I. KaratzasJ. Lehoczky and S. Shreve, Optimal portfolio and consumption decisions for a "small investor" on a finite horizon, SIAM Journal on Control and Optimization, 25 (1987), 1557-1586.  doi: 10.1137/0325086.

[13]

I. Karatzas and S. Shreve, Methods of Mathematical Finance, Springer, 1998. doi: 10.1007/b98840.

[14]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.

[15]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.

[16]

C. Munk, Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences, Journal of Economic Dynamics and Control, 32 (2008), 3560-3589.  doi: 10.1016/j.jedc.2008.02.005.

[17]

R. Muraviev, Additive habit formation: consumption in incomplete markets with random endowments, Mathematics and Financial Economics, 5 (2011), 67-99.  doi: 10.1007/s11579-011-0049-y.

[18]

M. Schroder and C. Skiadas, An isomorphism between asset pricing models with and without linear habit formation, Review of Financial Studies, 15 (2002), 1189-1221. 

[19]

S. Shreve, Stochastic Calculus for Finance, Springer, 2004.

[20]

S. Sundaresan, Intertemporally dependent preferences and the volatility of consumption and wealth, Review of Financial Studies, 2 (1989), 73-89.  doi: 10.1093/rfs/2.1.73.

show all references

References:
[1]

J. Bismut, Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.

[2]

G. Constantinides, Habit formation: A resolution of the equity premium puzzle, Journal of Political Economy, 98 (1990), 519-543.  doi: 10.1086/261693.

[3]

J. Cvitanić and I. Karatzas, Convex duality in constrained portfolio optimization, Annals of Applied Probability, 2 (1992), 767-818.  doi: 10.1214/aoap/1177005576.

[4]

J. Cvitanić and I. Karatzas, Hedging contingent claims with constrained portfolios, Annals of Applied Probability, 3 (1993), 652-681.  doi: 10.1214/aoap/1177005357.

[5]

J. Detemple and I. Karatzas, Non-addictive habits: Optimal consumption portfolio policies, Journal of Economic Theory, 113 (2003), 265-285.  doi: 10.1016/S0022-0531(03)00099-1.

[6]

J. Detemple and F. Zapatero, Asset prices in an exchange economy with habit formation, Econometrica, 59 (1991), 1633-1657.  doi: 10.2307/2938283.

[7]

J. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.  doi: 10.1111/j.1467-9965.1992.tb00032.x.

[8]

N. Englezos and I. Karatzas, Utility maximization with habit formation: Dynamic programming and stochastic pdes, SIAM Journal on Control and Optimization, 48 (2009), 481-520.  doi: 10.1137/070686998.

[9] J. Hicks, Capital and Growth, Oxford Univ. Press, New York, 1965. 
[10]

J. Kakeu and P. Nguimkeu, Habit formation and exhaustible resource risk-pricing, Energy Economics, 64 (2017), 1-12.  doi: 10.1016/j.eneco.2017.03.013.

[11]

I. KaratzasJ. LehoczkyS. Sethi and S. Shreve, Explicit solution of a general consumption/investment problem, Mathematics of Operations Research, 11 (1986), 261-294.  doi: 10.1287/moor.11.2.261.

[12]

I. KaratzasJ. Lehoczky and S. Shreve, Optimal portfolio and consumption decisions for a "small investor" on a finite horizon, SIAM Journal on Control and Optimization, 25 (1987), 1557-1586.  doi: 10.1137/0325086.

[13]

I. Karatzas and S. Shreve, Methods of Mathematical Finance, Springer, 1998. doi: 10.1007/b98840.

[14]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.

[15]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.

[16]

C. Munk, Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences, Journal of Economic Dynamics and Control, 32 (2008), 3560-3589.  doi: 10.1016/j.jedc.2008.02.005.

[17]

R. Muraviev, Additive habit formation: consumption in incomplete markets with random endowments, Mathematics and Financial Economics, 5 (2011), 67-99.  doi: 10.1007/s11579-011-0049-y.

[18]

M. Schroder and C. Skiadas, An isomorphism between asset pricing models with and without linear habit formation, Review of Financial Studies, 15 (2002), 1189-1221. 

[19]

S. Shreve, Stochastic Calculus for Finance, Springer, 2004.

[20]

S. Sundaresan, Intertemporally dependent preferences and the volatility of consumption and wealth, Review of Financial Studies, 2 (1989), 73-89.  doi: 10.1093/rfs/2.1.73.

[1]

Yang Shen, Tak Kuen Siu. Consumption-portfolio optimization and filtering in a hidden Markov-modulated asset price model. Journal of Industrial and Management Optimization, 2017, 13 (1) : 23-46. doi: 10.3934/jimo.2016002

[2]

Jingzhen Liu, Liyuan Lin, Ka Fai Cedric Yiu, Jiaqin Wei. Non-exponential discounting portfolio management with habit formation. Mathematical Control and Related Fields, 2020, 10 (4) : 761-783. doi: 10.3934/mcrf.2020019

[3]

Jingzhen Liu, Shiqi Yan, Shan Jiang, Jiaqin Wei. Optimal investment, consumption and life insurance strategies under stochastic differential utility with habit formation. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022040

[4]

Ailing Shi, Xingyi Li, Zhongfei Li. Optimal portfolio selection with life insurance under subjective survival belief and habit formation. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022051

[5]

Zhifeng Dai, Fenghua Wen. A generalized approach to sparse and stable portfolio optimization problem. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1651-1666. doi: 10.3934/jimo.2018025

[6]

Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6209-6238. doi: 10.3934/dcdsb.2019136

[7]

Ying Ji, Shaojian Qu, Yeming Dai. A new approach for worst-case regret portfolio optimization problem. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 761-770. doi: 10.3934/dcdss.2019050

[8]

Jin-Zan Liu, Xin-Wei Liu. A dual Bregman proximal gradient method for relatively-strongly convex optimization. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021028

[9]

Ferenc Weisz. Dual spaces of mixed-norm martingale Hardy spaces. Communications on Pure and Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285

[10]

Caibin Zhang, Zhibin Liang, Kam Chuen Yuen. Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach. Journal of Industrial and Management Optimization, 2022, 18 (1) : 341-366. doi: 10.3934/jimo.2020156

[11]

Tone Arnold, Myrna Wooders. Dynamic club formation with coordination. Journal of Dynamics and Games, 2015, 2 (3&4) : 341-361. doi: 10.3934/jdg.2015010

[12]

Yanqin Bai, Xuerui Gao, Guoqiang Wang. Primal-dual interior-point algorithms for convex quadratic circular cone optimization. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 211-231. doi: 10.3934/naco.2015.5.211

[13]

Yuan Shen, Chang Liu, Yannian Zuo, Xingying Zhang. A modified self-adaptive dual ascent method with relaxed stepsize condition for linearly constrained quadratic convex optimization. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022101

[14]

Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360

[15]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial and Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128

[16]

Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial and Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189

[17]

Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473

[18]

Yiqiu Mao, Dongming Yan, ChunHsien Lu. Dynamic transitions and stability for the acetabularia whorl formation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5989-6004. doi: 10.3934/dcdsb.2019117

[19]

Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809

[20]

Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (396)
  • HTML views (679)
  • Cited by (0)

Other articles
by authors

[Back to Top]