doi: 10.3934/jimo.2020029

Utility maximization with habit formation of interaction

1. 

Department of Actuarial Science, School of Insurance, , Central University of Finance and Economics Beijing 100081, China

2. 

Department of Actuarial Science, School of Insurance; , China Institute for Actuarial Science, , Central University of Finance and Economics, Beijing 100081, China

* Corresponding author: Yike Wang

Received  February 2019 Revised  September 2019 Published  February 2020

Fund Project: The first author is supported by Projects 11771466 and 11571388 supported by National Natural Science Foundation of China, and Program for Innovation Research in Central University of Finance and Economics

In this paper, we analytically solve the utility maximization problem for a consumption set with multiple habit formation of interaction. Consumption is here composed of habitual and nonhabitual components, where habitual consumption represents the effect of past consumption. We further assume that the individual seeks to maximize his/her expected utility from nonhabitual consumption. Although there is usually no explicit solution of linear dynamic systems in the habit formation model, we study the functional minimum of habitual consumption. To solve the optimization problem with a general utility function, we adopt the convex dual martingale approach to construct the optimal consumption strategy and provide an economic interpretation for nearly every object throughout the solution process.

Citation: Jingzhen Liu, Yike Wang, Ming Zhou. Utility maximization with habit formation of interaction. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020029
References:
[1]

J. Bismut, Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[2]

G. Constantinides, Habit formation: A resolution of the equity premium puzzle, Journal of Political Economy, 98 (1990), 519-543.  doi: 10.1086/261693.  Google Scholar

[3]

J. Cvitanić and I. Karatzas, Convex duality in constrained portfolio optimization, Annals of Applied Probability, 2 (1992), 767-818.  doi: 10.1214/aoap/1177005576.  Google Scholar

[4]

J. Cvitanić and I. Karatzas, Hedging contingent claims with constrained portfolios, Annals of Applied Probability, 3 (1993), 652-681.  doi: 10.1214/aoap/1177005357.  Google Scholar

[5]

J. Detemple and I. Karatzas, Non-addictive habits: Optimal consumption portfolio policies, Journal of Economic Theory, 113 (2003), 265-285.  doi: 10.1016/S0022-0531(03)00099-1.  Google Scholar

[6]

J. Detemple and F. Zapatero, Asset prices in an exchange economy with habit formation, Econometrica, 59 (1991), 1633-1657.  doi: 10.2307/2938283.  Google Scholar

[7]

J. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.  doi: 10.1111/j.1467-9965.1992.tb00032.x.  Google Scholar

[8]

N. Englezos and I. Karatzas, Utility maximization with habit formation: Dynamic programming and stochastic pdes, SIAM Journal on Control and Optimization, 48 (2009), 481-520.  doi: 10.1137/070686998.  Google Scholar

[9] J. Hicks, Capital and Growth, Oxford Univ. Press, New York, 1965.   Google Scholar
[10]

J. Kakeu and P. Nguimkeu, Habit formation and exhaustible resource risk-pricing, Energy Economics, 64 (2017), 1-12.  doi: 10.1016/j.eneco.2017.03.013.  Google Scholar

[11]

I. KaratzasJ. LehoczkyS. Sethi and S. Shreve, Explicit solution of a general consumption/investment problem, Mathematics of Operations Research, 11 (1986), 261-294.  doi: 10.1287/moor.11.2.261.  Google Scholar

[12]

I. KaratzasJ. Lehoczky and S. Shreve, Optimal portfolio and consumption decisions for a "small investor" on a finite horizon, SIAM Journal on Control and Optimization, 25 (1987), 1557-1586.  doi: 10.1137/0325086.  Google Scholar

[13]

I. Karatzas and S. Shreve, Methods of Mathematical Finance, Springer, 1998. doi: 10.1007/b98840.  Google Scholar

[14]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[15]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[16]

C. Munk, Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences, Journal of Economic Dynamics and Control, 32 (2008), 3560-3589.  doi: 10.1016/j.jedc.2008.02.005.  Google Scholar

[17]

R. Muraviev, Additive habit formation: consumption in incomplete markets with random endowments, Mathematics and Financial Economics, 5 (2011), 67-99.  doi: 10.1007/s11579-011-0049-y.  Google Scholar

[18]

M. Schroder and C. Skiadas, An isomorphism between asset pricing models with and without linear habit formation, Review of Financial Studies, 15 (2002), 1189-1221.   Google Scholar

[19]

S. Shreve, Stochastic Calculus for Finance, Springer, 2004.  Google Scholar

[20]

S. Sundaresan, Intertemporally dependent preferences and the volatility of consumption and wealth, Review of Financial Studies, 2 (1989), 73-89.  doi: 10.1093/rfs/2.1.73.  Google Scholar

show all references

References:
[1]

J. Bismut, Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[2]

G. Constantinides, Habit formation: A resolution of the equity premium puzzle, Journal of Political Economy, 98 (1990), 519-543.  doi: 10.1086/261693.  Google Scholar

[3]

J. Cvitanić and I. Karatzas, Convex duality in constrained portfolio optimization, Annals of Applied Probability, 2 (1992), 767-818.  doi: 10.1214/aoap/1177005576.  Google Scholar

[4]

J. Cvitanić and I. Karatzas, Hedging contingent claims with constrained portfolios, Annals of Applied Probability, 3 (1993), 652-681.  doi: 10.1214/aoap/1177005357.  Google Scholar

[5]

J. Detemple and I. Karatzas, Non-addictive habits: Optimal consumption portfolio policies, Journal of Economic Theory, 113 (2003), 265-285.  doi: 10.1016/S0022-0531(03)00099-1.  Google Scholar

[6]

J. Detemple and F. Zapatero, Asset prices in an exchange economy with habit formation, Econometrica, 59 (1991), 1633-1657.  doi: 10.2307/2938283.  Google Scholar

[7]

J. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.  doi: 10.1111/j.1467-9965.1992.tb00032.x.  Google Scholar

[8]

N. Englezos and I. Karatzas, Utility maximization with habit formation: Dynamic programming and stochastic pdes, SIAM Journal on Control and Optimization, 48 (2009), 481-520.  doi: 10.1137/070686998.  Google Scholar

[9] J. Hicks, Capital and Growth, Oxford Univ. Press, New York, 1965.   Google Scholar
[10]

J. Kakeu and P. Nguimkeu, Habit formation and exhaustible resource risk-pricing, Energy Economics, 64 (2017), 1-12.  doi: 10.1016/j.eneco.2017.03.013.  Google Scholar

[11]

I. KaratzasJ. LehoczkyS. Sethi and S. Shreve, Explicit solution of a general consumption/investment problem, Mathematics of Operations Research, 11 (1986), 261-294.  doi: 10.1287/moor.11.2.261.  Google Scholar

[12]

I. KaratzasJ. Lehoczky and S. Shreve, Optimal portfolio and consumption decisions for a "small investor" on a finite horizon, SIAM Journal on Control and Optimization, 25 (1987), 1557-1586.  doi: 10.1137/0325086.  Google Scholar

[13]

I. Karatzas and S. Shreve, Methods of Mathematical Finance, Springer, 1998. doi: 10.1007/b98840.  Google Scholar

[14]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[15]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[16]

C. Munk, Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences, Journal of Economic Dynamics and Control, 32 (2008), 3560-3589.  doi: 10.1016/j.jedc.2008.02.005.  Google Scholar

[17]

R. Muraviev, Additive habit formation: consumption in incomplete markets with random endowments, Mathematics and Financial Economics, 5 (2011), 67-99.  doi: 10.1007/s11579-011-0049-y.  Google Scholar

[18]

M. Schroder and C. Skiadas, An isomorphism between asset pricing models with and without linear habit formation, Review of Financial Studies, 15 (2002), 1189-1221.   Google Scholar

[19]

S. Shreve, Stochastic Calculus for Finance, Springer, 2004.  Google Scholar

[20]

S. Sundaresan, Intertemporally dependent preferences and the volatility of consumption and wealth, Review of Financial Studies, 2 (1989), 73-89.  doi: 10.1093/rfs/2.1.73.  Google Scholar

[1]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[2]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[3]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[4]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[5]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[6]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[7]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[8]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[9]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[10]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[11]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[12]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[13]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[14]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[18]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[19]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 1.366

Article outline

[Back to Top]