• Previous Article
    Finite-horizon optimal control of discrete-time linear systems with completely unknown dynamics using Q-learning
  • JIMO Home
  • This Issue
  • Next Article
    Optimal pricing and advertising decisions with suppliers' oligopoly competition: Stakelberg-Nash game structures
May  2021, 17(3): 1451-1469. doi: 10.3934/jimo.2020029

Utility maximization with habit formation of interaction

1. 

Department of Actuarial Science, School of Insurance, , Central University of Finance and Economics Beijing 100081, China

2. 

Department of Actuarial Science, School of Insurance; , China Institute for Actuarial Science, , Central University of Finance and Economics, Beijing 100081, China

* Corresponding author: Yike Wang

Received  February 2019 Revised  September 2019 Published  February 2020

Fund Project: The first author is supported by Projects 11771466 and 11571388 supported by National Natural Science Foundation of China, and Program for Innovation Research in Central University of Finance and Economics

In this paper, we analytically solve the utility maximization problem for a consumption set with multiple habit formation of interaction. Consumption is here composed of habitual and nonhabitual components, where habitual consumption represents the effect of past consumption. We further assume that the individual seeks to maximize his/her expected utility from nonhabitual consumption. Although there is usually no explicit solution of linear dynamic systems in the habit formation model, we study the functional minimum of habitual consumption. To solve the optimization problem with a general utility function, we adopt the convex dual martingale approach to construct the optimal consumption strategy and provide an economic interpretation for nearly every object throughout the solution process.

Citation: Jingzhen Liu, Yike Wang, Ming Zhou. Utility maximization with habit formation of interaction. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1451-1469. doi: 10.3934/jimo.2020029
References:
[1]

J. Bismut, Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[2]

G. Constantinides, Habit formation: A resolution of the equity premium puzzle, Journal of Political Economy, 98 (1990), 519-543.  doi: 10.1086/261693.  Google Scholar

[3]

J. Cvitanić and I. Karatzas, Convex duality in constrained portfolio optimization, Annals of Applied Probability, 2 (1992), 767-818.  doi: 10.1214/aoap/1177005576.  Google Scholar

[4]

J. Cvitanić and I. Karatzas, Hedging contingent claims with constrained portfolios, Annals of Applied Probability, 3 (1993), 652-681.  doi: 10.1214/aoap/1177005357.  Google Scholar

[5]

J. Detemple and I. Karatzas, Non-addictive habits: Optimal consumption portfolio policies, Journal of Economic Theory, 113 (2003), 265-285.  doi: 10.1016/S0022-0531(03)00099-1.  Google Scholar

[6]

J. Detemple and F. Zapatero, Asset prices in an exchange economy with habit formation, Econometrica, 59 (1991), 1633-1657.  doi: 10.2307/2938283.  Google Scholar

[7]

J. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.  doi: 10.1111/j.1467-9965.1992.tb00032.x.  Google Scholar

[8]

N. Englezos and I. Karatzas, Utility maximization with habit formation: Dynamic programming and stochastic pdes, SIAM Journal on Control and Optimization, 48 (2009), 481-520.  doi: 10.1137/070686998.  Google Scholar

[9] J. Hicks, Capital and Growth, Oxford Univ. Press, New York, 1965.   Google Scholar
[10]

J. Kakeu and P. Nguimkeu, Habit formation and exhaustible resource risk-pricing, Energy Economics, 64 (2017), 1-12.  doi: 10.1016/j.eneco.2017.03.013.  Google Scholar

[11]

I. KaratzasJ. LehoczkyS. Sethi and S. Shreve, Explicit solution of a general consumption/investment problem, Mathematics of Operations Research, 11 (1986), 261-294.  doi: 10.1287/moor.11.2.261.  Google Scholar

[12]

I. KaratzasJ. Lehoczky and S. Shreve, Optimal portfolio and consumption decisions for a "small investor" on a finite horizon, SIAM Journal on Control and Optimization, 25 (1987), 1557-1586.  doi: 10.1137/0325086.  Google Scholar

[13]

I. Karatzas and S. Shreve, Methods of Mathematical Finance, Springer, 1998. doi: 10.1007/b98840.  Google Scholar

[14]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[15]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[16]

C. Munk, Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences, Journal of Economic Dynamics and Control, 32 (2008), 3560-3589.  doi: 10.1016/j.jedc.2008.02.005.  Google Scholar

[17]

R. Muraviev, Additive habit formation: consumption in incomplete markets with random endowments, Mathematics and Financial Economics, 5 (2011), 67-99.  doi: 10.1007/s11579-011-0049-y.  Google Scholar

[18]

M. Schroder and C. Skiadas, An isomorphism between asset pricing models with and without linear habit formation, Review of Financial Studies, 15 (2002), 1189-1221.   Google Scholar

[19]

S. Shreve, Stochastic Calculus for Finance, Springer, 2004.  Google Scholar

[20]

S. Sundaresan, Intertemporally dependent preferences and the volatility of consumption and wealth, Review of Financial Studies, 2 (1989), 73-89.  doi: 10.1093/rfs/2.1.73.  Google Scholar

show all references

References:
[1]

J. Bismut, Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[2]

G. Constantinides, Habit formation: A resolution of the equity premium puzzle, Journal of Political Economy, 98 (1990), 519-543.  doi: 10.1086/261693.  Google Scholar

[3]

J. Cvitanić and I. Karatzas, Convex duality in constrained portfolio optimization, Annals of Applied Probability, 2 (1992), 767-818.  doi: 10.1214/aoap/1177005576.  Google Scholar

[4]

J. Cvitanić and I. Karatzas, Hedging contingent claims with constrained portfolios, Annals of Applied Probability, 3 (1993), 652-681.  doi: 10.1214/aoap/1177005357.  Google Scholar

[5]

J. Detemple and I. Karatzas, Non-addictive habits: Optimal consumption portfolio policies, Journal of Economic Theory, 113 (2003), 265-285.  doi: 10.1016/S0022-0531(03)00099-1.  Google Scholar

[6]

J. Detemple and F. Zapatero, Asset prices in an exchange economy with habit formation, Econometrica, 59 (1991), 1633-1657.  doi: 10.2307/2938283.  Google Scholar

[7]

J. Detemple and F. Zapatero, Optimal consumption-portfolio policies with habit formation, Mathematical Finance, 2 (1992), 251-274.  doi: 10.1111/j.1467-9965.1992.tb00032.x.  Google Scholar

[8]

N. Englezos and I. Karatzas, Utility maximization with habit formation: Dynamic programming and stochastic pdes, SIAM Journal on Control and Optimization, 48 (2009), 481-520.  doi: 10.1137/070686998.  Google Scholar

[9] J. Hicks, Capital and Growth, Oxford Univ. Press, New York, 1965.   Google Scholar
[10]

J. Kakeu and P. Nguimkeu, Habit formation and exhaustible resource risk-pricing, Energy Economics, 64 (2017), 1-12.  doi: 10.1016/j.eneco.2017.03.013.  Google Scholar

[11]

I. KaratzasJ. LehoczkyS. Sethi and S. Shreve, Explicit solution of a general consumption/investment problem, Mathematics of Operations Research, 11 (1986), 261-294.  doi: 10.1287/moor.11.2.261.  Google Scholar

[12]

I. KaratzasJ. Lehoczky and S. Shreve, Optimal portfolio and consumption decisions for a "small investor" on a finite horizon, SIAM Journal on Control and Optimization, 25 (1987), 1557-1586.  doi: 10.1137/0325086.  Google Scholar

[13]

I. Karatzas and S. Shreve, Methods of Mathematical Finance, Springer, 1998. doi: 10.1007/b98840.  Google Scholar

[14]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[15]

R. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[16]

C. Munk, Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences, Journal of Economic Dynamics and Control, 32 (2008), 3560-3589.  doi: 10.1016/j.jedc.2008.02.005.  Google Scholar

[17]

R. Muraviev, Additive habit formation: consumption in incomplete markets with random endowments, Mathematics and Financial Economics, 5 (2011), 67-99.  doi: 10.1007/s11579-011-0049-y.  Google Scholar

[18]

M. Schroder and C. Skiadas, An isomorphism between asset pricing models with and without linear habit formation, Review of Financial Studies, 15 (2002), 1189-1221.   Google Scholar

[19]

S. Shreve, Stochastic Calculus for Finance, Springer, 2004.  Google Scholar

[20]

S. Sundaresan, Intertemporally dependent preferences and the volatility of consumption and wealth, Review of Financial Studies, 2 (1989), 73-89.  doi: 10.1093/rfs/2.1.73.  Google Scholar

[1]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[2]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[3]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[4]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[6]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[7]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[8]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[9]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[10]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[11]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[12]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[13]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[14]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[15]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[16]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[17]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[18]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[19]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[20]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

2019 Impact Factor: 1.366

Article outline

[Back to Top]