• Previous Article
    Research on cascading failure modes and attack strategies of multimodal transport network
  • JIMO Home
  • This Issue
  • Next Article
    Channel leadership and recycling channel in closed-loop supply chain: The case of recycling price by the recycling party
doi: 10.3934/jimo.2020033

Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets

1. 

China Academy of Corporate Governance & Department of Financial Management, Business School, Nankai University, 94 Weijin Road, Tianjin 300071, China

2. 

Department of Financial Management, Business School, Nankai University, 94 Weijin Road, Tianjin 300071, China

* Corresponding author: Su Zhang

Received  May 2019 Revised  August 2019 Published  February 2020

Fund Project: The research is supported by the National Social Science Fund of China 2018 (Grant No. 18BGL063)

Markowitz proposes portfolio selection as a 2-objective model and emphasizes computing (whole) efficient sets and nondominated sets. Computing the sets has long been a topic in multiple-objective optimization. Researchers have gradually recognized other criteria in addition to variance and expected return. To formulate the additional criteria, researchers propose multiple-objective portfolio selection. However, computing the corresponding efficient set and nondominated set is not fully achieved. Moreover, discovering the sets' properties and utilizing the properties remain typically unanswered.

In this paper, we extend Sharpe's and Merton's model by adding a general linear objective and imposing equality constraints. To optimize the model, we analytically derive the minimum-variance surface (defined later), prove it as a nondegenerate paraboloid, and prove the nondominated set as a paraboloidal segment. We also analytically derive the efficient set and prove it as a 2-dimensional translated cone. We then prove that the set subsumes the efficient set of the corresponding traditional model, so the efficient set expands as the general linear objective is added. Furthermore, constraints can be changed or added. We utilize the translated-cone properties and readily compute the changing constraints' effect on the efficient sets by formulae or linear-equation systems.

Citation: Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020033
References:
[1]

V. V. Acharya and L. H. Pedersen, Asset pricing with liquidity risk, J. Financial Economics, 77 (2005), 375-410.  doi: 10.3386/w10814.  Google Scholar

[2]

A. Alankar, P. Blaustein and M. S. Scholes, The cost of constraints: Risk management, agency theory and asset prices, work in progress, Stanford University, Graduate School of Business, 2014. doi: 10.2139/ssrn.2337797.  Google Scholar

[3]

A. AlmazanK. C. BrownM. Carlson and D. A. Chapman, Why constrain your mutual fund manager?, J. Financial Economics, 73 (2004), 289-321.  doi: 10.1016/j.jfineco.2003.05.007.  Google Scholar

[4]

Y. Amihud and H. Mendelson, Asset pricing and the bid-ask spread, in Market Liquidity, Cambridge University Press, 2012, 9-46. doi: 10.1017/CBO9780511844393.003.  Google Scholar

[5]

M. AmmannG. Coqueret and J.-P. Schade, Characteristics-based portfolio choice with leverage constraints, J. Banking & Finance, 70 (2016), 23-37.  doi: 10.2139/ssrn.2736324.  Google Scholar

[6]

B. AouniM. DoumposB. Pérez-Gladish and R. E. Steuer, On the increasing importance of multiple criteria decision aid methods for portfolio selection, J. Oper. Research Society, 69 (2018), 1525-1542.  doi: 10.1080/01605682.2018.1475118.  Google Scholar

[7]

F. D. Arditti, Risk and the required return on equity, J. Finance, 22 (1967), 19-36.  doi: 10.1111/j.1540-6261.1967.tb01651.x.  Google Scholar

[8]

C. A. Bana e Costa and J. O. Soares, Multicriteria approaches for portfolio selection: An overview, Rev. Financial Markets, 4 (2001), 19-26.   Google Scholar

[9]

P. BehrA. Guettler and F. Truebenbach, Using industry momentum to improve portfolio performance, J. Banking & Finance, 36 (2012), 1414-1423.  doi: 10.1016/j.jbankfin.2011.12.007.  Google Scholar

[10]

M. J. Best, An algorithm for the solution of the parametric quadratic programming problem, in Applied Mathematics and Parallel Computing, Physica, Heidelberg, 1996, 57–76. doi: 10.1007/978-3-642-99789-1_5.  Google Scholar

[11]

A. Bilbao-Terol, M. Arenas-Parra, V. Cañal-Fernández and C. Bilbao-Terol, Selection of socially responsible portfolios using hedonic prices, in Operations Research Proceedings 2012, Operations Research Proceedings, Springer, Cham, 2014. doi: 10.1007/978-3-319-00795-3_8.  Google Scholar

[12]

F. Black, Capital market equilibrium with restricted borrowing, J. Business, 45 (1972), 444-455.  doi: 10.1086/295472.  Google Scholar

[13]

Z. Bodie, A. Kane and A. J. Marcus, Investments, McGraw-Hill Education, New York, 2018. Google Scholar

[14]

M. W. BrandtP. Santa-Clara and R. Valkanov, Parametric portfolio policies: Exploiting characteristics in the cross-section of equity returns, Rev. Financial Studies, 22 (2009), 3411-3447.  doi: 10.3386/w10996.  Google Scholar

[15]

P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Springer Series in Statistics, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4899-0004-3.  Google Scholar

[16]

O. BunnA. StaalJ. ZhuangA. LazanasC. Ural and R. Shiller, Es-cape-ing from overvalued sectors: Sector selection based on the cyclically adjusted price-earnings (CAPE) ratio, J. Portfolio Management, 41 (2014), 16-33.  doi: 10.3905/jpm.2014.41.1.016.  Google Scholar

[17]

G. Capelle-Blancard and S. Monjon, The performance of socially responsible funds: Does the screening process matter?, European Financial Management, 20 (2014), 494-520.  doi: 10.1111/j.1468-036X.2012.00643.x.  Google Scholar

[18]

L. K. ChanJ. Karceski and J. Lakonishok, The risk and return from factors, J. Financial Quantitative Anal., 33 (1998), 159-188.  doi: 10.3386/w6098.  Google Scholar

[19]

G. Chow, Portfolio selection based on return, risk, and relative performance, Financial Analysts Journal, 51 (1995), 54-60.  doi: 10.2469/faj.v51.n2.1881.  Google Scholar

[20]

T. ChowE. Kose and F. Li, The impact of constraints on minimum-variance portfolios, Financial Analysts Journal, 72 (2016), 52-70.  doi: 10.2469/faj.v72.n2.5.  Google Scholar

[21]

V. DeMiguelL. GarlappiF. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms, Management Science, 55 (2009), 798-812.   Google Scholar

[22]

V. DeMiguelL. Garlappi and R. Uppal, Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?, Rev. Financial Studies, 22 (2009), 1915-1953.  doi: 10.1093/acprof:oso/9780199744282.003.0034.  Google Scholar

[23]

G. DorfleitnerM. Leidl and J. Reeder, Theory of social returns in portfolio choice with application to microfinance, J. Asset Management, 13 (2012), 384-400.  doi: 10.1057/jam.2012.18.  Google Scholar

[24]

P. H. DybvigH. K. Farnsworth and J. N. Carpenter, Portfolio performance and agency, Rev. Financial Studies, 23 (2010), 1-23.  doi: 10.1093/rfs/hhp056.  Google Scholar

[25]

M. EhrgottK. Klamroth and C. Schwehm, An MCDM approach to portfolio optimization, European J. Oper. Res., 155 (2004), 752-770.  doi: 10.1016/S0377-2217(02)00881-0.  Google Scholar

[26]

E. J. Elton, M. J. Gruber, S. J. Brown and W. N. Goetzmann, Modern Portfolio Theory and Investment Analysis, John Wiley & Sons, New York, 2014. Google Scholar

[27]

F. J. FabozziS. Focardi and C. Jonas, Trends in quantitative equity management: Survey results, Quantitative Finance, 7 (2007), 115-122.  doi: 10.1080/14697680701195941.  Google Scholar

[28]

E. F. Fama, Foundations of Finance: Portfolio Decisions and Securities Prices, Basic Books, Inc., New York, 1976. doi: 10.2307/2553407.  Google Scholar

[29]

E. F. Fama and K. R. French, The cross-section of expected stock returns, J. Finance, 47 (1992), 427-465.  doi: 10.1111/j.1540-6261.1992.tb04398.x.  Google Scholar

[30]

E. F. Fama and K. R. French, International tests of a five-factor asset pricing model, J. Financial Economics, 123 (2017), 441-463.  doi: 10.1016/j.jfineco.2016.11.004.  Google Scholar

[31]

M. A. Ferreira and P. Matos, The colors of investors' money: The role of institutional investors around the world, J. Financial Economics, 88 (2008), 499-533.  doi: 10.1016/j.jfineco.2007.07.003.  Google Scholar

[32]

A. M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl., 22 (1968), 618-630.  doi: 10.1016/0022-247X(68)90201-1.  Google Scholar

[33]

R. R. Grauer and F. C. Shen, Do constraints improve portfolio performance?, J. Banking & Finance, 24 (2000), 1253-1274.  doi: 10.1016/S0378-4266(99)00069-2.  Google Scholar

[34]

J. B. Guerard and A. Mark, The optimization of efficient portfolios: The case for an R & D quadratic term, Research in Finance, 20 (2003), 217-247.  doi: 10.1016/S0196-3821(03)20011-3.  Google Scholar

[35]

C. R. HarveyJ. C. LiechtyM. W. Liechty and P. Müller, Portfolio selection with higher moments, Quant. Finance, 10 (2010), 469-485.  doi: 10.1080/14697681003756877.  Google Scholar

[36]

M. HirschbergerY. Qi and R. E. Steuer, Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming, European J. Oper. Res., 204 (2010), 581-588.  doi: 10.1016/j.ejor.2009.11.016.  Google Scholar

[37]

M. HirschbergerR. E. SteuerS. UtzM. Wimmer and Y. Qi, Computing the nondominated surface in tri-criterion portfolio selection, Oper. Res., 61 (2013), 169-183.  doi: 10.1287/opre.1120.1140.  Google Scholar

[38]

C. Huang and R. H. Litzenberger, Foundations for Financial Economics, North-Holland Publishing Co., New York, 1988.  Google Scholar

[39]

R. Jagannathan and T. Ma, Risk reduction in large portfolios: Why imposing the wrong constraints helps, J. Finance, 58 (2003), 1651-1684.  doi: 10.3386/w8922.  Google Scholar

[40]

C. P. Jones and G. R. Jensen, Investments: Analysis and Management, John Wiley & Sons, New York, 2016. Google Scholar

[41]

B. D. Jordan, T. W. Miller and S. D. Dolvin, Fundamentals of Investments: Valuation and Management, McGraw-Hill Education, New York, 2015. Google Scholar

[42]

P. Jorion, Portfolio optimization with tracking-error constraints, Financial Analysts Journal, 59 (2003), 70-82.  doi: 10.2469/faj.v59.n5.2565.  Google Scholar

[43]

C. Kirby and B. Ostdiek, It's all in the timing: Simple active portfolio strategies that outperform naïve diversification, J. Financial and Quantitative Analysis, 47 (2012), 437-467.  doi: 10.2139/ssrn.1530022.  Google Scholar

[44]

M. KritzmanS. Page and D. Turkington, In defense of optimization: The fallacy of 1/$N$, Financial Analysts Journal, 66 (2010), 31-39.  doi: 10.2469/faj.v66.n2.6.  Google Scholar

[45]

P. D. Lax, Linear Algebra and Its Applications, Pure and Applied Mathematics, John Wiley & Sons, Inc., Hoboken, NJ, 2007.  Google Scholar

[46]

A. W. LoC. Petrov and M. Wierzbicki, It's 11pm – Do you know where your liquidity is? The mean-variance-liquidity frontier, J. Investment Management, 1 (2003), 55-93.  doi: 10.1142/9789812700865_0003.  Google Scholar

[47]

H. M. Markowitz, Foundations of portfolio selection, J. Finance, 46 (1991), 469-477.   Google Scholar

[48]

H. M. Markowitz, The optimization of a quadratic function subject to linear constraints, Naval Res. Logist. Quart., 3 (1956), 111-133.  doi: 10.1002/nav.3800030110.  Google Scholar

[49]

H. M. Markowitz, Portfolio selection, J. Finance, 7 (1952), 77-91.  doi: 10.1111/j.1540-6261.1952.tb01525.x.  Google Scholar

[50]

H. M. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Monograph, 16, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1959.  Google Scholar

[51]

H. M. Markowitz, Mean-Variance Analysis in Portfolio Choice and Capital Markets, Basil Blackwell, Oxford, 1987.  Google Scholar

[52]

M. Masmoudi and F. B. Abdelaziz, Portfolio selection problem: A review of deterministic and stochastic multiple objective programming models, Ann. Oper. Res., 267 (2018), 335-352.  doi: 10.1007/s10479-017-2466-7.  Google Scholar

[53]

H. B. Mayo, Investments: An Introduction, Cengage Learning, Mason, OH, 2017. Google Scholar

[54]

R. C. Merton, An analytical derivation of the efficient portfolio frontier, J. Financial and Quantitative Analysis, 7 (1972), 1851-1872.  doi: 10.2307/2329621.  Google Scholar

[55]

K. Metaxiotis and K. Liagkouras, Multiobjective evolutionary algorithms for portfolio management: A comprehensive literature review, Expert Systems with Applications, 39 (2012), 11685-11698.  doi: 10.1016/j.eswa.2012.04.053.  Google Scholar

[56]

A. PonsichA. L. Jaimes and C. A. C. Coello, A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications, IEEE Transac. Evol. Comput., 17 (2013), 321-344.  doi: 10.1109/TEVC.2012.2196800.  Google Scholar

[57]

Y. Qi, Parametrically computing efficient frontiers of portfolio selection and reporting and utilizing the piecewise-segment structure, preprint, J. Oper. Res. Soc.. doi: 10.1080/01605682.2019.1623477.  Google Scholar

[58]

Y. Qi, On outperforming social-screening-indexing by multiple-objective portfolio selection, Ann. Oper. Res., 267 (2018), 493-513.  doi: 10.1007/s10479-018-2921-0.  Google Scholar

[59]

Y. QiR. E. Steuer and M. Wimmer, An analytical derivation of the efficient surface in portfolio selection with three criteria, Ann. Oper. Res., 251 (2017), 161-177.  doi: 10.1007/s10479-015-1900-y.  Google Scholar

[60]

F. K. Reilly, K. C. Brown and S. Leeds, Investment Analysis and Portfolio Management, Cengage Learning, Mason, OH, 2018. Google Scholar

[61]

R. Roll, A critique of the asset pricing theory's tests Part Ⅰ : On past and potential testability of the theory, J. Financial Economics, 4 (1977), 129-176.  doi: 10.1016/0304-405X(77)90009-5.  Google Scholar

[62]

D. RomanK. Darby-Dowman and G. Mitra, Mean-risk models using two risk measures: A multi-objective approach, Quant. Finance, 7 (2007), 443-458.  doi: 10.1080/14697680701448456.  Google Scholar

[63]

T. L. SaatyP. C. Rogers and R. Pell, Portfolio selection through hierarchies, J. Portfolio Management, 6 (1980), 16-21.  doi: 10.3905/jpm.1980.408749.  Google Scholar

[64]

B. Scherer and X. Xu, The impact of constraints on value-added, J. Portfolio Management, 33 (2007), 45-54.  doi: 10.3905/jpm.2007.690605.  Google Scholar

[65]

W. F. Sharpe, Portfolio Theory and Capital Markets, McGraw-Hill, New York, 1970. Google Scholar

[66]

W. F. Sharpe, Optimal portfolios without bounds on holdings, Graduate School of Business, Stanford University, 2001. Available from: https://web.stanford.edu/{}wfsharpe/mia/opt/mia_opt2.htm. Google Scholar

[67]

H. Shefrin and M. Statman, Behavioral portfolio theory, J. Financial and Quantitative Analysis, 35 (2000), 121-151.  doi: 10.2307/2676187.  Google Scholar

[68]

T. Shifrin, Abstract Algebra - A Geometric Approach, Prentice Hall, Englewood Cliffs, NJ, 1996. Google Scholar

[69]

J. Spronk and W. G. Hallerbach, Financial modelling: Where to go? With an illustration for portfolio management, European J. Oper. Res., 99 (1997), 113-125.  doi: 10.1016/S0377-2217(96)00386-4.  Google Scholar

[70] M. Statman, Finance for Normal People: How Investors and Markets Behave, Oxford University Press, New York, 2017.   Google Scholar
[71]

M. Statman, What Investors Really Want: Know What Drives Investor Behavior and Make Smarter Financial Decisions, McGraw-Hill Education, New York, 2011. doi: 10.2139/ssrn.1743173.  Google Scholar

[72]

M. SteinJ. Branke and H. Schmeck, Efficient implementation of an active set algorithm for large-scale portfolio selection, Comput. Oper. Res., 35 (2008), 3945-3961.  doi: 10.1016/j.cor.2007.05.004.  Google Scholar

[73]

R. E. Steuer and P. Na, Multiple criteria decision making combined with finance: A categorized bibliographic study, European J. Oper. Res., 150 (2003), 496-515.  doi: 10.1016/S0377-2217(02)00774-9.  Google Scholar

[74]

R. E. SteuerY. Qi and M. Hirschberger, Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection, Ann. Oper. Res., 152 (2007), 297-317.  doi: 10.1007/s10479-006-0137-1.  Google Scholar

[75]

S. UtzM. WimmerM. Hirschberger and R. E. Steuer, Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds, European J. Oper. Res., 234 (2014), 491-498.  doi: 10.1016/j.ejor.2013.07.024.  Google Scholar

[76]

S. UtzM. Wimmer and R. E. Steuer, Tri-criterion modeling for constructing more-sustainable mutual funds, European J. Oper. Res., 246 (2015), 331-338.  doi: 10.1016/j.ejor.2015.04.035.  Google Scholar

[77]

M. Woodside-OriakhiC. Lucas and J. Beasley, Heuristic algorithms for the cardinality constrained efficient frontier, European J. Oper. Res., 213 (2011), 538-550.  doi: 10.1016/j.ejor.2011.03.030.  Google Scholar

[78]

V. Zakamulin, Superiority of optimized portfolios to naive diversification: Fact or fiction?, Finance Research Letters, 22 (2017), 122-128.  doi: 10.2139/ssrn.2786291.  Google Scholar

[79]

C. ZopounidisE. GalariotisM. DoumposS. Sarri and K. Andriosopoulos, Multiple criteria decision aiding for finance: An updated bibliographic survey, European J. Oper. Res., 247 (2015), 339-348.  doi: 10.1016/j.ejor.2015.05.032.  Google Scholar

show all references

References:
[1]

V. V. Acharya and L. H. Pedersen, Asset pricing with liquidity risk, J. Financial Economics, 77 (2005), 375-410.  doi: 10.3386/w10814.  Google Scholar

[2]

A. Alankar, P. Blaustein and M. S. Scholes, The cost of constraints: Risk management, agency theory and asset prices, work in progress, Stanford University, Graduate School of Business, 2014. doi: 10.2139/ssrn.2337797.  Google Scholar

[3]

A. AlmazanK. C. BrownM. Carlson and D. A. Chapman, Why constrain your mutual fund manager?, J. Financial Economics, 73 (2004), 289-321.  doi: 10.1016/j.jfineco.2003.05.007.  Google Scholar

[4]

Y. Amihud and H. Mendelson, Asset pricing and the bid-ask spread, in Market Liquidity, Cambridge University Press, 2012, 9-46. doi: 10.1017/CBO9780511844393.003.  Google Scholar

[5]

M. AmmannG. Coqueret and J.-P. Schade, Characteristics-based portfolio choice with leverage constraints, J. Banking & Finance, 70 (2016), 23-37.  doi: 10.2139/ssrn.2736324.  Google Scholar

[6]

B. AouniM. DoumposB. Pérez-Gladish and R. E. Steuer, On the increasing importance of multiple criteria decision aid methods for portfolio selection, J. Oper. Research Society, 69 (2018), 1525-1542.  doi: 10.1080/01605682.2018.1475118.  Google Scholar

[7]

F. D. Arditti, Risk and the required return on equity, J. Finance, 22 (1967), 19-36.  doi: 10.1111/j.1540-6261.1967.tb01651.x.  Google Scholar

[8]

C. A. Bana e Costa and J. O. Soares, Multicriteria approaches for portfolio selection: An overview, Rev. Financial Markets, 4 (2001), 19-26.   Google Scholar

[9]

P. BehrA. Guettler and F. Truebenbach, Using industry momentum to improve portfolio performance, J. Banking & Finance, 36 (2012), 1414-1423.  doi: 10.1016/j.jbankfin.2011.12.007.  Google Scholar

[10]

M. J. Best, An algorithm for the solution of the parametric quadratic programming problem, in Applied Mathematics and Parallel Computing, Physica, Heidelberg, 1996, 57–76. doi: 10.1007/978-3-642-99789-1_5.  Google Scholar

[11]

A. Bilbao-Terol, M. Arenas-Parra, V. Cañal-Fernández and C. Bilbao-Terol, Selection of socially responsible portfolios using hedonic prices, in Operations Research Proceedings 2012, Operations Research Proceedings, Springer, Cham, 2014. doi: 10.1007/978-3-319-00795-3_8.  Google Scholar

[12]

F. Black, Capital market equilibrium with restricted borrowing, J. Business, 45 (1972), 444-455.  doi: 10.1086/295472.  Google Scholar

[13]

Z. Bodie, A. Kane and A. J. Marcus, Investments, McGraw-Hill Education, New York, 2018. Google Scholar

[14]

M. W. BrandtP. Santa-Clara and R. Valkanov, Parametric portfolio policies: Exploiting characteristics in the cross-section of equity returns, Rev. Financial Studies, 22 (2009), 3411-3447.  doi: 10.3386/w10996.  Google Scholar

[15]

P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, Springer Series in Statistics, Springer-Verlag, New York, 1987. doi: 10.1007/978-1-4899-0004-3.  Google Scholar

[16]

O. BunnA. StaalJ. ZhuangA. LazanasC. Ural and R. Shiller, Es-cape-ing from overvalued sectors: Sector selection based on the cyclically adjusted price-earnings (CAPE) ratio, J. Portfolio Management, 41 (2014), 16-33.  doi: 10.3905/jpm.2014.41.1.016.  Google Scholar

[17]

G. Capelle-Blancard and S. Monjon, The performance of socially responsible funds: Does the screening process matter?, European Financial Management, 20 (2014), 494-520.  doi: 10.1111/j.1468-036X.2012.00643.x.  Google Scholar

[18]

L. K. ChanJ. Karceski and J. Lakonishok, The risk and return from factors, J. Financial Quantitative Anal., 33 (1998), 159-188.  doi: 10.3386/w6098.  Google Scholar

[19]

G. Chow, Portfolio selection based on return, risk, and relative performance, Financial Analysts Journal, 51 (1995), 54-60.  doi: 10.2469/faj.v51.n2.1881.  Google Scholar

[20]

T. ChowE. Kose and F. Li, The impact of constraints on minimum-variance portfolios, Financial Analysts Journal, 72 (2016), 52-70.  doi: 10.2469/faj.v72.n2.5.  Google Scholar

[21]

V. DeMiguelL. GarlappiF. J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms, Management Science, 55 (2009), 798-812.   Google Scholar

[22]

V. DeMiguelL. Garlappi and R. Uppal, Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?, Rev. Financial Studies, 22 (2009), 1915-1953.  doi: 10.1093/acprof:oso/9780199744282.003.0034.  Google Scholar

[23]

G. DorfleitnerM. Leidl and J. Reeder, Theory of social returns in portfolio choice with application to microfinance, J. Asset Management, 13 (2012), 384-400.  doi: 10.1057/jam.2012.18.  Google Scholar

[24]

P. H. DybvigH. K. Farnsworth and J. N. Carpenter, Portfolio performance and agency, Rev. Financial Studies, 23 (2010), 1-23.  doi: 10.1093/rfs/hhp056.  Google Scholar

[25]

M. EhrgottK. Klamroth and C. Schwehm, An MCDM approach to portfolio optimization, European J. Oper. Res., 155 (2004), 752-770.  doi: 10.1016/S0377-2217(02)00881-0.  Google Scholar

[26]

E. J. Elton, M. J. Gruber, S. J. Brown and W. N. Goetzmann, Modern Portfolio Theory and Investment Analysis, John Wiley & Sons, New York, 2014. Google Scholar

[27]

F. J. FabozziS. Focardi and C. Jonas, Trends in quantitative equity management: Survey results, Quantitative Finance, 7 (2007), 115-122.  doi: 10.1080/14697680701195941.  Google Scholar

[28]

E. F. Fama, Foundations of Finance: Portfolio Decisions and Securities Prices, Basic Books, Inc., New York, 1976. doi: 10.2307/2553407.  Google Scholar

[29]

E. F. Fama and K. R. French, The cross-section of expected stock returns, J. Finance, 47 (1992), 427-465.  doi: 10.1111/j.1540-6261.1992.tb04398.x.  Google Scholar

[30]

E. F. Fama and K. R. French, International tests of a five-factor asset pricing model, J. Financial Economics, 123 (2017), 441-463.  doi: 10.1016/j.jfineco.2016.11.004.  Google Scholar

[31]

M. A. Ferreira and P. Matos, The colors of investors' money: The role of institutional investors around the world, J. Financial Economics, 88 (2008), 499-533.  doi: 10.1016/j.jfineco.2007.07.003.  Google Scholar

[32]

A. M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl., 22 (1968), 618-630.  doi: 10.1016/0022-247X(68)90201-1.  Google Scholar

[33]

R. R. Grauer and F. C. Shen, Do constraints improve portfolio performance?, J. Banking & Finance, 24 (2000), 1253-1274.  doi: 10.1016/S0378-4266(99)00069-2.  Google Scholar

[34]

J. B. Guerard and A. Mark, The optimization of efficient portfolios: The case for an R & D quadratic term, Research in Finance, 20 (2003), 217-247.  doi: 10.1016/S0196-3821(03)20011-3.  Google Scholar

[35]

C. R. HarveyJ. C. LiechtyM. W. Liechty and P. Müller, Portfolio selection with higher moments, Quant. Finance, 10 (2010), 469-485.  doi: 10.1080/14697681003756877.  Google Scholar

[36]

M. HirschbergerY. Qi and R. E. Steuer, Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming, European J. Oper. Res., 204 (2010), 581-588.  doi: 10.1016/j.ejor.2009.11.016.  Google Scholar

[37]

M. HirschbergerR. E. SteuerS. UtzM. Wimmer and Y. Qi, Computing the nondominated surface in tri-criterion portfolio selection, Oper. Res., 61 (2013), 169-183.  doi: 10.1287/opre.1120.1140.  Google Scholar

[38]

C. Huang and R. H. Litzenberger, Foundations for Financial Economics, North-Holland Publishing Co., New York, 1988.  Google Scholar

[39]

R. Jagannathan and T. Ma, Risk reduction in large portfolios: Why imposing the wrong constraints helps, J. Finance, 58 (2003), 1651-1684.  doi: 10.3386/w8922.  Google Scholar

[40]

C. P. Jones and G. R. Jensen, Investments: Analysis and Management, John Wiley & Sons, New York, 2016. Google Scholar

[41]

B. D. Jordan, T. W. Miller and S. D. Dolvin, Fundamentals of Investments: Valuation and Management, McGraw-Hill Education, New York, 2015. Google Scholar

[42]

P. Jorion, Portfolio optimization with tracking-error constraints, Financial Analysts Journal, 59 (2003), 70-82.  doi: 10.2469/faj.v59.n5.2565.  Google Scholar

[43]

C. Kirby and B. Ostdiek, It's all in the timing: Simple active portfolio strategies that outperform naïve diversification, J. Financial and Quantitative Analysis, 47 (2012), 437-467.  doi: 10.2139/ssrn.1530022.  Google Scholar

[44]

M. KritzmanS. Page and D. Turkington, In defense of optimization: The fallacy of 1/$N$, Financial Analysts Journal, 66 (2010), 31-39.  doi: 10.2469/faj.v66.n2.6.  Google Scholar

[45]

P. D. Lax, Linear Algebra and Its Applications, Pure and Applied Mathematics, John Wiley & Sons, Inc., Hoboken, NJ, 2007.  Google Scholar

[46]

A. W. LoC. Petrov and M. Wierzbicki, It's 11pm – Do you know where your liquidity is? The mean-variance-liquidity frontier, J. Investment Management, 1 (2003), 55-93.  doi: 10.1142/9789812700865_0003.  Google Scholar

[47]

H. M. Markowitz, Foundations of portfolio selection, J. Finance, 46 (1991), 469-477.   Google Scholar

[48]

H. M. Markowitz, The optimization of a quadratic function subject to linear constraints, Naval Res. Logist. Quart., 3 (1956), 111-133.  doi: 10.1002/nav.3800030110.  Google Scholar

[49]

H. M. Markowitz, Portfolio selection, J. Finance, 7 (1952), 77-91.  doi: 10.1111/j.1540-6261.1952.tb01525.x.  Google Scholar

[50]

H. M. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Monograph, 16, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1959.  Google Scholar

[51]

H. M. Markowitz, Mean-Variance Analysis in Portfolio Choice and Capital Markets, Basil Blackwell, Oxford, 1987.  Google Scholar

[52]

M. Masmoudi and F. B. Abdelaziz, Portfolio selection problem: A review of deterministic and stochastic multiple objective programming models, Ann. Oper. Res., 267 (2018), 335-352.  doi: 10.1007/s10479-017-2466-7.  Google Scholar

[53]

H. B. Mayo, Investments: An Introduction, Cengage Learning, Mason, OH, 2017. Google Scholar

[54]

R. C. Merton, An analytical derivation of the efficient portfolio frontier, J. Financial and Quantitative Analysis, 7 (1972), 1851-1872.  doi: 10.2307/2329621.  Google Scholar

[55]

K. Metaxiotis and K. Liagkouras, Multiobjective evolutionary algorithms for portfolio management: A comprehensive literature review, Expert Systems with Applications, 39 (2012), 11685-11698.  doi: 10.1016/j.eswa.2012.04.053.  Google Scholar

[56]

A. PonsichA. L. Jaimes and C. A. C. Coello, A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications, IEEE Transac. Evol. Comput., 17 (2013), 321-344.  doi: 10.1109/TEVC.2012.2196800.  Google Scholar

[57]

Y. Qi, Parametrically computing efficient frontiers of portfolio selection and reporting and utilizing the piecewise-segment structure, preprint, J. Oper. Res. Soc.. doi: 10.1080/01605682.2019.1623477.  Google Scholar

[58]

Y. Qi, On outperforming social-screening-indexing by multiple-objective portfolio selection, Ann. Oper. Res., 267 (2018), 493-513.  doi: 10.1007/s10479-018-2921-0.  Google Scholar

[59]

Y. QiR. E. Steuer and M. Wimmer, An analytical derivation of the efficient surface in portfolio selection with three criteria, Ann. Oper. Res., 251 (2017), 161-177.  doi: 10.1007/s10479-015-1900-y.  Google Scholar

[60]

F. K. Reilly, K. C. Brown and S. Leeds, Investment Analysis and Portfolio Management, Cengage Learning, Mason, OH, 2018. Google Scholar

[61]

R. Roll, A critique of the asset pricing theory's tests Part Ⅰ : On past and potential testability of the theory, J. Financial Economics, 4 (1977), 129-176.  doi: 10.1016/0304-405X(77)90009-5.  Google Scholar

[62]

D. RomanK. Darby-Dowman and G. Mitra, Mean-risk models using two risk measures: A multi-objective approach, Quant. Finance, 7 (2007), 443-458.  doi: 10.1080/14697680701448456.  Google Scholar

[63]

T. L. SaatyP. C. Rogers and R. Pell, Portfolio selection through hierarchies, J. Portfolio Management, 6 (1980), 16-21.  doi: 10.3905/jpm.1980.408749.  Google Scholar

[64]

B. Scherer and X. Xu, The impact of constraints on value-added, J. Portfolio Management, 33 (2007), 45-54.  doi: 10.3905/jpm.2007.690605.  Google Scholar

[65]

W. F. Sharpe, Portfolio Theory and Capital Markets, McGraw-Hill, New York, 1970. Google Scholar

[66]

W. F. Sharpe, Optimal portfolios without bounds on holdings, Graduate School of Business, Stanford University, 2001. Available from: https://web.stanford.edu/{}wfsharpe/mia/opt/mia_opt2.htm. Google Scholar

[67]

H. Shefrin and M. Statman, Behavioral portfolio theory, J. Financial and Quantitative Analysis, 35 (2000), 121-151.  doi: 10.2307/2676187.  Google Scholar

[68]

T. Shifrin, Abstract Algebra - A Geometric Approach, Prentice Hall, Englewood Cliffs, NJ, 1996. Google Scholar

[69]

J. Spronk and W. G. Hallerbach, Financial modelling: Where to go? With an illustration for portfolio management, European J. Oper. Res., 99 (1997), 113-125.  doi: 10.1016/S0377-2217(96)00386-4.  Google Scholar

[70] M. Statman, Finance for Normal People: How Investors and Markets Behave, Oxford University Press, New York, 2017.   Google Scholar
[71]

M. Statman, What Investors Really Want: Know What Drives Investor Behavior and Make Smarter Financial Decisions, McGraw-Hill Education, New York, 2011. doi: 10.2139/ssrn.1743173.  Google Scholar

[72]

M. SteinJ. Branke and H. Schmeck, Efficient implementation of an active set algorithm for large-scale portfolio selection, Comput. Oper. Res., 35 (2008), 3945-3961.  doi: 10.1016/j.cor.2007.05.004.  Google Scholar

[73]

R. E. Steuer and P. Na, Multiple criteria decision making combined with finance: A categorized bibliographic study, European J. Oper. Res., 150 (2003), 496-515.  doi: 10.1016/S0377-2217(02)00774-9.  Google Scholar

[74]

R. E. SteuerY. Qi and M. Hirschberger, Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection, Ann. Oper. Res., 152 (2007), 297-317.  doi: 10.1007/s10479-006-0137-1.  Google Scholar

[75]

S. UtzM. WimmerM. Hirschberger and R. E. Steuer, Tri-criterion inverse portfolio optimization with application to socially responsible mutual funds, European J. Oper. Res., 234 (2014), 491-498.  doi: 10.1016/j.ejor.2013.07.024.  Google Scholar

[76]

S. UtzM. Wimmer and R. E. Steuer, Tri-criterion modeling for constructing more-sustainable mutual funds, European J. Oper. Res., 246 (2015), 331-338.  doi: 10.1016/j.ejor.2015.04.035.  Google Scholar

[77]

M. Woodside-OriakhiC. Lucas and J. Beasley, Heuristic algorithms for the cardinality constrained efficient frontier, European J. Oper. Res., 213 (2011), 538-550.  doi: 10.1016/j.ejor.2011.03.030.  Google Scholar

[78]

V. Zakamulin, Superiority of optimized portfolios to naive diversification: Fact or fiction?, Finance Research Letters, 22 (2017), 122-128.  doi: 10.2139/ssrn.2786291.  Google Scholar

[79]

C. ZopounidisE. GalariotisM. DoumposS. Sarri and K. Andriosopoulos, Multiple criteria decision aiding for finance: An updated bibliographic survey, European J. Oper. Res., 247 (2015), 339-348.  doi: 10.1016/j.ejor.2015.05.032.  Google Scholar

Figure 1.  Major methods to solve (1) and (3) in the central and right parts, respectively
Figure 4.  The minimum-variance surface
Figure 2.  An efficient set and efficient sets under changing constraints in $ \mathbb{R}^n $
Figure 3.  The existence of many nondominated portfolios for $ z_1 = 1 $ of (4) for the proof of Theorem 4.5
Figure 5.  The nondominated set
Figure 6.  The existence of zero-covariance portfolio $ \mathbf{{z}}^{zcp} $ for (2)
Table 1.  The result of the hypotheses (24)-(27)
For (24) For (25) For (26) For (27)
mean for $ \mathbf{{x}}^e $: 0.0052 mean for $ \mathbf{{x}}^e $: 0.0022 mean for $ \mathbf{{x}}^e $: 0.0052 mean for $ \mathbf{{x}}^e $: 0.0022
mean for $ \mathbf{{x}}^n $: 0.0054 mean for $ \mathbf{{x}}^n $: 0.0020 mean for $ \mathbf{{x}}^p $: 0.0055 mean for $ \mathbf{{x}}^p $: 0.0019
p-value: 0.9585 p-value: 0.0130 p-value: 0.9268 p-value: 0.0085
accept $ H_0 $ reject $ H_0 $ accept $ H_0 $ reject $ H_0 $
For (24) For (25) For (26) For (27)
mean for $ \mathbf{{x}}^e $: 0.0052 mean for $ \mathbf{{x}}^e $: 0.0022 mean for $ \mathbf{{x}}^e $: 0.0052 mean for $ \mathbf{{x}}^e $: 0.0022
mean for $ \mathbf{{x}}^n $: 0.0054 mean for $ \mathbf{{x}}^n $: 0.0020 mean for $ \mathbf{{x}}^p $: 0.0055 mean for $ \mathbf{{x}}^p $: 0.0019
p-value: 0.9585 p-value: 0.0130 p-value: 0.9268 p-value: 0.0085
accept $ H_0 $ reject $ H_0 $ accept $ H_0 $ reject $ H_0 $
[1]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[2]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[3]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[4]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[5]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[6]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[7]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[8]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[9]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[10]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[11]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[12]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[13]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]