July  2021, 17(4): 1593-1612. doi: 10.3934/jimo.2020036

Independent sales or bundling? Decisions under different market-dominant powers

School of Management and Economics, University of Electronic Science and Technology of China, Chengdu Sichuan 611731, China

* Corresponding author: Feng Wei

Received  June 2019 Revised  September 2019 Published  July 2021 Early access  February 2020

Fund Project: This research is supported by the National Natural Science Foundation of China(71472026)

Enterprises are aware that bundling strategies can improve profitability in the highly competitive marketplace. This study evaluates an online to offline (O2O) supply chain system made up of a supplier and an e-retailer who can sell two products independently or bundled through online and offline channels, and discuss the influence of pricing strategy and channel choice on profit under different market-dominant powers. Based on a game theory model, we derive an optimal wholesale price for the supplier, an optimal sale price for the e-retailer, and their respective profit. We demonstrate that a Stackelberg leader is more profitable, irrespective of whether independent sales or bundling are chosen. Regardless of who the leader is, the whole supply chain receive equal profit. For a market leader, independent sales or bundling decisions should be made according to market size. Sensitivity analysis show that as the self-price sensitivity coefficient increases, the profit monotonically decreases for both independent sales and bundling; this occur for both the market dominated by the supplier and that dominated by the e-retailer. For independent sales, as the cross-price sensitivity coefficient increases, the profit monotonically increases; for bundled sales, the profit of the game players is not affected.

Citation: Feng Wei, Hong Chen. Independent sales or bundling? Decisions under different market-dominant powers. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1593-1612. doi: 10.3934/jimo.2020036
References:
[1]

A. BalakrishnanS. Sundaresan and B. Zhang, Browse-and-Switch: Retail-online competition under value uncertainty, Prod. Oper. Management, 23 (2014), 1129-1145.  doi: 10.1111/poms.12165.

[2]

M. Banciu and F. Degaard, Optimal product bundling with dependent valuations: The price of independence, European J. Oper. Res., 255 (2016), 481-495.  doi: 10.1016/j.ejor.2016.05.022.

[3]

H. K. Bhargava, Retailer-driven product bundling in a distribution channel, Marketing Sci., 31 (2012), 1014-1021.  doi: 10.1287/mksc.1120.0725.

[4]

Q. N. CaoX. J. Geng and J. Zhang, Strategic role of retailer bundling in a distribution channel, J. Retailing, 91 (2015), 50-67.  doi: 10.1016/j.jretai.2014.10.005.

[5]

Q. N. CaoK. E. Stecke and J. Zhang, The impact of limited supply on a firm's bundling strategy, Prod. Oper. Management, 24 (2015), 1931-1944.  doi: 10.1111/poms.12388.

[6]

W. CaoB. Jiang and D. M. Zhou, The effects of demand uncertainty on channel structure, European J. Oper. Res., 207 (2010), 1471-1488.  doi: 10.1016/j.ejor.2010.06.001.

[7]

A. ChakravartyA. Mild and A. Taudes, Bundling decisions in supply chains, European J. Oper. Res., 231 (2013), 617-630.  doi: 10.1016/j.ejor.2013.06.026.

[8]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583.  doi: 10.1016/j.omega.2011.11.005.

[9]

Y. C. ChenS. C. Fang and U. P. Wen, Pricing policies for substitutable products in a supply chain with Internet and traditional channels, European J. Oper. Res., 224 (2013), 542-551.  doi: 10.1016/j.ejor.2012.09.003.

[10]

W. Y. K. ChiangD. Chhajed and J. D. Hess, Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design, Management Sci., 49 (2003), 1-20.  doi: 10.1287/mnsc.49.1.1.12749.

[11]

P. K. ChintaguntaJ. H. Chu and J. Cebollada, Quantifying transaction costs in online/off-line grocery channel choice, Marketing Sci., 31 (2012), 96-114.  doi: 10.1287/mksc.1110.0678.

[12]

S. C. Choi, Price competition in a channel structure with a common retailer, Marketing Sci., 10 (1991), 271-296.  doi: 10.1287/mksc.10.4.271.

[13]

B. DanG. Y. Xu and C. Liu, Pricing policies in a dual-channel supply chain with retail services, Internat. J. Prod. Econ., 139 (2012), 312-320.  doi: 10.1016/j.ijpe.2012.05.014.

[14]

F. Gao and X. M. Su, Omnichannel retail operations with buy-online-and-pick-up-in-store, Management Sci., 63 (2016), 1-15.  doi: 10.1287/mnsc.2016.2473.

[15]

M. GirjuA. Prasad and B. T. Ratchford, Pure components versus pure bundling in a marketing channel, J. Retailing, 89 (2013), 423-437.  doi: 10.1016/j.jretai.2013.06.001.

[16]

U. GurlerS. Oztop and A. Sen, Optimal bundle formation and pricing of two products with limited stock, Internat. J. Prod. Econ., 118 (2009), 442-462.  doi: 10.1016/j.ijpe.2008.11.012.

[17]

W. Hanson and R. K. Martin, Optimal bundle pricing, Management Sci., 36 (1990), 155-174.  doi: 10.1287/mnsc.36.2.155.

[18]

Y. Y. HeJ. ZhangQ. L. Gou and G. B. Bi, Supply chain decisions with reference quality effect under the O2O environment, Ann. Oper. Res., 268 (2018), 273-292.  doi: 10.1007/s10479-016-2224-2.

[19]

D. Honhon and X. J. A. Pan, Improving profits by bundling vertically differentiated products, Prod. Oper. Management, 26 (2017), 1481-1497.  doi: 10.1111/poms.12686.

[20]

W. Hu and Y. J. Li, Retail service for mixed retail and e-tail channels, Ann. Oper. Res., 192 (2012), 151-171.  doi: 10.1007/s10479-010-0818-7.

[21]

G. W. HuaS. Y. Wang and T. C. E. Cheng, Price and lead time decisions in dual-channel supply chains, European Internat. J. Prod. Econ., 205 (2010), 113-126.  doi: 10.1016/j.ejor.2009.12.012.

[22]

J. N. JiZ. Y. Zhang and L. Yang, Comparisons of initial carbon allowance allocation rules in an O2O retail supply chain with the cap-and-trade regulation, Internat. J. Prod. Econ., 187 (2017), 68-84.  doi: 10.1016/j.ijpe.2017.02.011.

[23]

Y. C. JiangY. Z. LiuH. WangJ. Shang and S. Ding, Online pricing with bundling and coupon discounts, Internat. J. Prod. Res., 56 (2018), 1773-1788.  doi: 10.1080/00207543.2015.1112443.

[24]

Q. H. Lu and N. Liu, Pricing games of mixed conventional and e-commerce distribution channels, Comput. Industrial Engineering, 64 (2013), 122-132.  doi: 10.1016/j.cie.2012.09.018.

[25]

Z. LuoX. ChenJ. Chen and X. J. Wang, Optimal pricing policies for differentiated brands under different supply chain power structures, European J. Oper. Res., 259 (2017), 437-451.  doi: 10.1016/j.ejor.2016.10.046.

[26]

Z. LuoX. Chen and M. Kai, The effect of customer value and power structure on retail supply chain product choice and pricing decisions, Omega, 77 (2018), 115-126.  doi: 10.1016/j.omega.2017.06.003.

[27]

S. MayerR. Klein and S. Seiermann, A simulation-based approach to price optimisation of the mixed bundling problem with capacity constraints, Internat. J. Prod. Econ., 145 (2013), 584-598.  doi: 10.1016/j.ijpe.2013.05.014.

[28]

A. MehraS. Kumar and J. S. Raju, Competitive strategies for brick-and-mortar stores to counter "showrooming", Management Sci., 64 (2018), 3076-3090.  doi: 10.1287/mnsc.2017.2764.

[29]

A. PrasadR. Venkatesh and V. Mahajan, Optimal bundling of technological products with network externality, Management Sci., 56 (2010), 2224-2236.  doi: 10.1287/mnsc.1100.1259.

[30]

A. PrasadR. Venkatesh and V. Mahajan, Product bundling or reserved product pricing? Price discrimination with myopic and strategic consumers, Internat. J. Res. Marketing, 32 (2015), 1-8.  doi: 10.1016/j.ijresmar.2014.06.004.

[31]

A. PrasadR. Venkatesh and V. Mahajan, Temporal product bundling with myopic and strategic consumers: Manifestations and relative effectiveness, Quantitative Marketing Economics, 15 (2017), 341-368.  doi: 10.1007/s11129-017-9189-6.

[32]

J. K. RyanD. Sun and X. Y. Zhao, Coordinating a supply chain with a manufacturer-owned online channel: A dual channel model under price competition, IEEE Transac. Engineering Manag., 60 (2013), 247-259.  doi: 10.1109/TEM.2012.2207903.

[33]

M. Sarkar and Y. H. Lee, Optimum pricing strategy for complementary products with reservation price in a supply chain model, J. Ind. Manag. Optim., 13 (2017), 1579-1612.  doi: 10.3934/jimo.2017007.

[34]

M. Sheikhzadeh and E. Elahi, Product bundling: Impacts of product heterogeneity and risk considerations, Internat. J. Prod. Econ., 144 (2013), 209-222.  doi: 10.1016/j.ijpe.2013.02.006.

[35]

W. WangG. Li and T. C. E. Cheng, Channel selection in a supply chain with a multi-channel retailer: The role of channel operating costs, Internat. J. Prod. Econ., 173 (2016), 54-65.  doi: 10.1016/j.ijpe.2015.12.004.

[36]

J. P. XieL. LiangL. H. Liu and P. Ieromonachou, Coordination contracts of dual-channel with cooperation advertising in closed-loop supply chains, Internat. J. Prod. Econ., 183 (2017), 528-538.  doi: 10.1016/j.ijpe.2016.07.026.

[37]

R. L. Yan and S. Bandyopadhyay, The profit benefits of bundle pricing of complementary products, J. Retailing Consumer Services, 18 (2011), 355-361.  doi: 10.1016/j.jretconser.2011.04.001.

[38]

R. L. YanC. MyersJ. Wang and S. Ghose, Bundling products to success: The influence of complementarity and advertising, J. Retailing Consumer Services, 21 (2014), 48-53.  doi: 10.1016/j.jretconser.2013.07.007.

[39]

R. L. Yan and Z. Pei, Retail services and firm profit in a dual-channel market, J. Retailing Consumer Services, 16 (2009), 306-314.  doi: 10.1016/j.jretconser.2009.02.006.

[40]

D. Q. Yao and J. J. Liu, Competitive pricing of mixed retail and e-tail distribution channels, Omega, 33 (2005), 235-247.  doi: 10.1016/j.omega.2004.04.007.

[41]

R. ZhangB. Liu and W. L. Wang, Pricing decisions in a dual channels system with different power structures, Economic Modelling, 29 (2012), 523-533.  doi: 10.1016/j.econmod.2011.08.024.

show all references

References:
[1]

A. BalakrishnanS. Sundaresan and B. Zhang, Browse-and-Switch: Retail-online competition under value uncertainty, Prod. Oper. Management, 23 (2014), 1129-1145.  doi: 10.1111/poms.12165.

[2]

M. Banciu and F. Degaard, Optimal product bundling with dependent valuations: The price of independence, European J. Oper. Res., 255 (2016), 481-495.  doi: 10.1016/j.ejor.2016.05.022.

[3]

H. K. Bhargava, Retailer-driven product bundling in a distribution channel, Marketing Sci., 31 (2012), 1014-1021.  doi: 10.1287/mksc.1120.0725.

[4]

Q. N. CaoX. J. Geng and J. Zhang, Strategic role of retailer bundling in a distribution channel, J. Retailing, 91 (2015), 50-67.  doi: 10.1016/j.jretai.2014.10.005.

[5]

Q. N. CaoK. E. Stecke and J. Zhang, The impact of limited supply on a firm's bundling strategy, Prod. Oper. Management, 24 (2015), 1931-1944.  doi: 10.1111/poms.12388.

[6]

W. CaoB. Jiang and D. M. Zhou, The effects of demand uncertainty on channel structure, European J. Oper. Res., 207 (2010), 1471-1488.  doi: 10.1016/j.ejor.2010.06.001.

[7]

A. ChakravartyA. Mild and A. Taudes, Bundling decisions in supply chains, European J. Oper. Res., 231 (2013), 617-630.  doi: 10.1016/j.ejor.2013.06.026.

[8]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583.  doi: 10.1016/j.omega.2011.11.005.

[9]

Y. C. ChenS. C. Fang and U. P. Wen, Pricing policies for substitutable products in a supply chain with Internet and traditional channels, European J. Oper. Res., 224 (2013), 542-551.  doi: 10.1016/j.ejor.2012.09.003.

[10]

W. Y. K. ChiangD. Chhajed and J. D. Hess, Direct marketing, indirect profits: A strategic analysis of dual-channel supply-chain design, Management Sci., 49 (2003), 1-20.  doi: 10.1287/mnsc.49.1.1.12749.

[11]

P. K. ChintaguntaJ. H. Chu and J. Cebollada, Quantifying transaction costs in online/off-line grocery channel choice, Marketing Sci., 31 (2012), 96-114.  doi: 10.1287/mksc.1110.0678.

[12]

S. C. Choi, Price competition in a channel structure with a common retailer, Marketing Sci., 10 (1991), 271-296.  doi: 10.1287/mksc.10.4.271.

[13]

B. DanG. Y. Xu and C. Liu, Pricing policies in a dual-channel supply chain with retail services, Internat. J. Prod. Econ., 139 (2012), 312-320.  doi: 10.1016/j.ijpe.2012.05.014.

[14]

F. Gao and X. M. Su, Omnichannel retail operations with buy-online-and-pick-up-in-store, Management Sci., 63 (2016), 1-15.  doi: 10.1287/mnsc.2016.2473.

[15]

M. GirjuA. Prasad and B. T. Ratchford, Pure components versus pure bundling in a marketing channel, J. Retailing, 89 (2013), 423-437.  doi: 10.1016/j.jretai.2013.06.001.

[16]

U. GurlerS. Oztop and A. Sen, Optimal bundle formation and pricing of two products with limited stock, Internat. J. Prod. Econ., 118 (2009), 442-462.  doi: 10.1016/j.ijpe.2008.11.012.

[17]

W. Hanson and R. K. Martin, Optimal bundle pricing, Management Sci., 36 (1990), 155-174.  doi: 10.1287/mnsc.36.2.155.

[18]

Y. Y. HeJ. ZhangQ. L. Gou and G. B. Bi, Supply chain decisions with reference quality effect under the O2O environment, Ann. Oper. Res., 268 (2018), 273-292.  doi: 10.1007/s10479-016-2224-2.

[19]

D. Honhon and X. J. A. Pan, Improving profits by bundling vertically differentiated products, Prod. Oper. Management, 26 (2017), 1481-1497.  doi: 10.1111/poms.12686.

[20]

W. Hu and Y. J. Li, Retail service for mixed retail and e-tail channels, Ann. Oper. Res., 192 (2012), 151-171.  doi: 10.1007/s10479-010-0818-7.

[21]

G. W. HuaS. Y. Wang and T. C. E. Cheng, Price and lead time decisions in dual-channel supply chains, European Internat. J. Prod. Econ., 205 (2010), 113-126.  doi: 10.1016/j.ejor.2009.12.012.

[22]

J. N. JiZ. Y. Zhang and L. Yang, Comparisons of initial carbon allowance allocation rules in an O2O retail supply chain with the cap-and-trade regulation, Internat. J. Prod. Econ., 187 (2017), 68-84.  doi: 10.1016/j.ijpe.2017.02.011.

[23]

Y. C. JiangY. Z. LiuH. WangJ. Shang and S. Ding, Online pricing with bundling and coupon discounts, Internat. J. Prod. Res., 56 (2018), 1773-1788.  doi: 10.1080/00207543.2015.1112443.

[24]

Q. H. Lu and N. Liu, Pricing games of mixed conventional and e-commerce distribution channels, Comput. Industrial Engineering, 64 (2013), 122-132.  doi: 10.1016/j.cie.2012.09.018.

[25]

Z. LuoX. ChenJ. Chen and X. J. Wang, Optimal pricing policies for differentiated brands under different supply chain power structures, European J. Oper. Res., 259 (2017), 437-451.  doi: 10.1016/j.ejor.2016.10.046.

[26]

Z. LuoX. Chen and M. Kai, The effect of customer value and power structure on retail supply chain product choice and pricing decisions, Omega, 77 (2018), 115-126.  doi: 10.1016/j.omega.2017.06.003.

[27]

S. MayerR. Klein and S. Seiermann, A simulation-based approach to price optimisation of the mixed bundling problem with capacity constraints, Internat. J. Prod. Econ., 145 (2013), 584-598.  doi: 10.1016/j.ijpe.2013.05.014.

[28]

A. MehraS. Kumar and J. S. Raju, Competitive strategies for brick-and-mortar stores to counter "showrooming", Management Sci., 64 (2018), 3076-3090.  doi: 10.1287/mnsc.2017.2764.

[29]

A. PrasadR. Venkatesh and V. Mahajan, Optimal bundling of technological products with network externality, Management Sci., 56 (2010), 2224-2236.  doi: 10.1287/mnsc.1100.1259.

[30]

A. PrasadR. Venkatesh and V. Mahajan, Product bundling or reserved product pricing? Price discrimination with myopic and strategic consumers, Internat. J. Res. Marketing, 32 (2015), 1-8.  doi: 10.1016/j.ijresmar.2014.06.004.

[31]

A. PrasadR. Venkatesh and V. Mahajan, Temporal product bundling with myopic and strategic consumers: Manifestations and relative effectiveness, Quantitative Marketing Economics, 15 (2017), 341-368.  doi: 10.1007/s11129-017-9189-6.

[32]

J. K. RyanD. Sun and X. Y. Zhao, Coordinating a supply chain with a manufacturer-owned online channel: A dual channel model under price competition, IEEE Transac. Engineering Manag., 60 (2013), 247-259.  doi: 10.1109/TEM.2012.2207903.

[33]

M. Sarkar and Y. H. Lee, Optimum pricing strategy for complementary products with reservation price in a supply chain model, J. Ind. Manag. Optim., 13 (2017), 1579-1612.  doi: 10.3934/jimo.2017007.

[34]

M. Sheikhzadeh and E. Elahi, Product bundling: Impacts of product heterogeneity and risk considerations, Internat. J. Prod. Econ., 144 (2013), 209-222.  doi: 10.1016/j.ijpe.2013.02.006.

[35]

W. WangG. Li and T. C. E. Cheng, Channel selection in a supply chain with a multi-channel retailer: The role of channel operating costs, Internat. J. Prod. Econ., 173 (2016), 54-65.  doi: 10.1016/j.ijpe.2015.12.004.

[36]

J. P. XieL. LiangL. H. Liu and P. Ieromonachou, Coordination contracts of dual-channel with cooperation advertising in closed-loop supply chains, Internat. J. Prod. Econ., 183 (2017), 528-538.  doi: 10.1016/j.ijpe.2016.07.026.

[37]

R. L. Yan and S. Bandyopadhyay, The profit benefits of bundle pricing of complementary products, J. Retailing Consumer Services, 18 (2011), 355-361.  doi: 10.1016/j.jretconser.2011.04.001.

[38]

R. L. YanC. MyersJ. Wang and S. Ghose, Bundling products to success: The influence of complementarity and advertising, J. Retailing Consumer Services, 21 (2014), 48-53.  doi: 10.1016/j.jretconser.2013.07.007.

[39]

R. L. Yan and Z. Pei, Retail services and firm profit in a dual-channel market, J. Retailing Consumer Services, 16 (2009), 306-314.  doi: 10.1016/j.jretconser.2009.02.006.

[40]

D. Q. Yao and J. J. Liu, Competitive pricing of mixed retail and e-tail distribution channels, Omega, 33 (2005), 235-247.  doi: 10.1016/j.omega.2004.04.007.

[41]

R. ZhangB. Liu and W. L. Wang, Pricing decisions in a dual channels system with different power structures, Economic Modelling, 29 (2012), 523-533.  doi: 10.1016/j.econmod.2011.08.024.

Figure 1.  Different sales strategies
Figure 2.  Game order dominated by supplier in independent sales
Figure 3.  Game order dominated by the e-retailer in independent sales
Figure 4.  Effect of $ \beta $ in a supplier-dominated market
Figure 5.  Effect of $ \beta $ in an e-retailer-dominated market
Figure 6.  Effect of $ \gamma $ in a supplier-dominated market
Figure 7.  Effect of $ \gamma $ in an e-retailer-dominated market
Table 1.  Recently published works on bundling
Literature Selling price Strategy Situation
Gurler et al. [7] Independent and bundled sales price Bundle pricing and inventory levels Inventory constraints and stochastic model
Prasad et al. [9] Mixed bundling Different bundling and network externality Technological products and network externality
Sheikhzadeh et al. [17] Bundled sales price Pure bundling and independent policy Product heterogeneity and risk considerations
Jiang et al. [19] Online pricing with bundling Online pricing strategy Coupon discounts Customer’s purchase preference and coupon
Prasad et al. [29] Inter-temporal pricing Pure components, pure bundling, and mixed bundling Myopic and strategic consumers
This study Independent and bundled sales price Channel selection, Online and offline sales E-commerce and differentmarket-dominant powers
Literature Selling price Strategy Situation
Gurler et al. [7] Independent and bundled sales price Bundle pricing and inventory levels Inventory constraints and stochastic model
Prasad et al. [9] Mixed bundling Different bundling and network externality Technological products and network externality
Sheikhzadeh et al. [17] Bundled sales price Pure bundling and independent policy Product heterogeneity and risk considerations
Jiang et al. [19] Online pricing with bundling Online pricing strategy Coupon discounts Customer’s purchase preference and coupon
Prasad et al. [29] Inter-temporal pricing Pure components, pure bundling, and mixed bundling Myopic and strategic consumers
This study Independent and bundled sales price Channel selection, Online and offline sales E-commerce and differentmarket-dominant powers
Table 2.  Notation and explanation
Notation Explanation
$ w_i $ The supplier's unit wholesale price, where $ i=1,2 $
$ p_1 $ Unit sale price through e-retailer's offline channel
$ p_2 $ Unit sale price through e-retailer's online channel
$ c_1 $ Unit sale cost through e-retailer's offline channel
$ c_2 $ Unit sale cost through e-retailer's online channel
$ a $ Maximum market size
$ \mu $ The proportion of offline demand
$ \beta $ The self-price sensitivity coefficient
$ \gamma $ The cross-price sensitivity coefficient
$ w_{12} $ The wholesale price of two bundled products
$ p_{12} $ The sale price of two bundled products
$ c_{12} $ The sale cost of two bundled products
Notation Explanation
$ w_i $ The supplier's unit wholesale price, where $ i=1,2 $
$ p_1 $ Unit sale price through e-retailer's offline channel
$ p_2 $ Unit sale price through e-retailer's online channel
$ c_1 $ Unit sale cost through e-retailer's offline channel
$ c_2 $ Unit sale cost through e-retailer's online channel
$ a $ Maximum market size
$ \mu $ The proportion of offline demand
$ \beta $ The self-price sensitivity coefficient
$ \gamma $ The cross-price sensitivity coefficient
$ w_{12} $ The wholesale price of two bundled products
$ p_{12} $ The sale price of two bundled products
$ c_{12} $ The sale cost of two bundled products
[1]

Fatemeh Kangi, Seyed Hamid Reza Pasandideh, Esmaeil Mehdizadeh, Hamed Soleimani. The optimization of a multi-period multi-product closed-loop supply chain network with cross-docking delivery strategy. Journal of Industrial and Management Optimization, 2022, 18 (5) : 3393-3431. doi: 10.3934/jimo.2021118

[2]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

[3]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[4]

Yadong Shu, Ying Dai, Zujun Ma. Evolutionary game theory analysis of supply chain with fairness concerns of retailers. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022098

[5]

Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial and Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769

[6]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial and Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[7]

Solaleh Sadat Kalantari, Maryam Esmaeili, Ata Allah Taleizadeh. Selling by clicks or leasing by bricks? A dynamic game for pricing durable products in a dual-channel supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021221

[8]

Haijiao Li, Kuan Yang, Guoqing Zhang. Optimal pricing strategy in a dual-channel supply chain: A two-period game analysis. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022072

[9]

Sandeep Dulluri, N. R. Srinivasa Raghavan. Revenue management via multi-product available to promise. Journal of Industrial and Management Optimization, 2007, 3 (3) : 457-479. doi: 10.3934/jimo.2007.3.457

[10]

Mark Jones. The bifurcation of interfacial capillary-gravity waves under O(2) symmetry. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1183-1204. doi: 10.3934/cpaa.2011.10.1183

[11]

Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061

[12]

Majid Khalilzadeh, Hossein Neghabi, Ramin Ahadi. An application of approximate dynamic programming in multi-period multi-product advertising budgeting. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021202

[13]

Ata Allah Taleizadeh, Leopoldo Eduardo Cárdenas-Barrón, Roya Sohani. Coordinating the supplier-retailer supply chain under noise effect with bundling and inventory strategies. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1701-1727. doi: 10.3934/jimo.2018118

[14]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial and Management Optimization, 2022, 18 (2) : 897-932. doi: 10.3934/jimo.2021002

[15]

Kwangseok Choe, Jongmin Han, Chang-Shou Lin. Bubbling solutions for the Chern-Simons gauged $O(3)$ sigma model in $\mathbb{R}^2$. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2703-2728. doi: 10.3934/dcds.2014.34.2703

[16]

Ilyas Khan, Muhammad Saqib, Aisha M. Alqahtani. Channel flow of fractionalized H2O-based CNTs nanofluids with Newtonian heating. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 769-779. doi: 10.3934/dcdss.2020043

[17]

A. Palacios. Identification of modulated rotating waves in pattern-forming systems with O(2) symmetry. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 129-147. doi: 10.3934/dcdsb.2002.2.129

[18]

Shoya Kawakami. Two notes on the O'Hara energies. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 953-970. doi: 10.3934/dcdss.2020384

[19]

Nina Yan, Baowen Sun. Comparative analysis of supply chain financing strategies between different financing modes. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1073-1087. doi: 10.3934/jimo.2015.11.1073

[20]

Hong Dingjun, Fu Hong, Fan Jianchang. Research on corporate social responsibility and product quality in an outsourcing supply chain. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022052

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (661)
  • HTML views (785)
  • Cited by (0)

Other articles
by authors

[Back to Top]