
-
Previous Article
A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure
- JIMO Home
- This Issue
-
Next Article
A multi-objective decision-making model for supplier selection considering transport discounts and supplier capacity constraints
Worst-case analysis of Gini mean difference safety measure
Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India |
The paper introduces the worst-case portfolio optimization models within the robust optimization framework for maximizing return through either the mean or median metrics. The risk in the portfolio is quantified by Gini mean difference. We put forward the worst-case models under the mixed and interval+polyhedral uncertainty sets. The proposed models turn out to be linear and mixed integer linear programs under the mixed uncertainty set, and semidefinite program under interval+polyhedral uncertainty set. The performance comparison of the proposed models on the listed stocks of Euro Stoxx 50, Dow Jones Global Titans 50, S & P Asia 50, consistently exhibit advantage over their conventional non-robust counterpart models on various risk parameters including the standard deviation, worst return, value at risk, conditional value at risk and maximum drawdown of the portfolio.
References:
[1] |
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath,
Coherent measures of risk, Math. Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068. |
[2] |
A. Ben-Tal, D. Den Hertog and J.-P. Vial,
Deriving robust counterparts of nonlinear uncertain inequalities, Math. Program., 149 (2015), 265-299.
doi: 10.1007/s10107-014-0750-8. |
[3] |
S. Benati,
Using medians in portfolio optimization, J. Oper. Res. Soc., 66 (2015), 720-731.
doi: 10.1057/jors.2014.57. |
[4] |
M. Berkhouch, G. Lakhnati and M. B. Righi,
Extended gini-type measures of risk and variability, Appl. Math. Finance, 25 (2018), 295-314.
doi: 10.1080/1350486X.2018.1538806. |
[5] |
D. Bertsimas and M. Sim,
The price of robustness, Oper. Res., 52 (2004), 35-53.
doi: 10.1287/opre.1030.0065. |
[6] |
M. J. Best and R. R. Grauer,
On the sensitivity of mean-variance-efficient portfolios to changes in asset means: Some analytical and computational results, Rev. Financial Studies, 4 (1991), 315-342.
doi: 10.1093/rfs/4.2.315. |
[7] |
F. Black and R. Litterman,
Global portfolio optimization, Financial Analysts Journal, 48 (1992), 28-43.
doi: 10.2469/faj.v48.n5.28. |
[8] |
B. Bower and P. Wentz, Portfolio optimization: MAD vs. Markowitz, Rose-Hulman Undergraduate Mathematics Journal, 6 (2005), 3. Google Scholar |
[9] |
C. Chen and R. H. Kwon,
Robust portfolio selection for index tracking, Comput. Oper. Res., 39 (2012), 829-837.
doi: 10.1016/j.cor.2010.08.019. |
[10] |
W. Chen and S. Tan,
Robust portfolio selection based on asymmetric measures of variability of stock returns, J. Comput. Appl. Math., 232 (2009), 295-304.
doi: 10.1016/j.cam.2009.06.010. |
[11] |
L. El Ghaoui, M. Oks and F. Oustry,
Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Oper. Res., 51 (2003), 543-556.
doi: 10.1287/opre.51.4.543.16101. |
[12] |
M. Feng, A. Wächter and J. Staum,
Practical algorithms for value-at-risk portfolio optimization problems, Quantitative Finance Lett., 3 (2015), 1-9.
doi: 10.1080/21649502.2014.995214. |
[13] |
E. Furman, R. Wang and R. Zitikis,
Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks, J. Banking Finance, 83 (2017), 70-84.
doi: 10.2139/ssrn.2836281. |
[14] |
C. Gerstenberger and D. Vogel,
On the efficiency of Gini's mean difference, Stat. Methods Appl., 24 (2015), 569-596.
doi: 10.1007/s10260-015-0315-x. |
[15] |
M. Gharakhani, F. Zarea Fazlelahi and S. Sadjadi,
A robust optimization approach for index tracking problem, J. Computer Sci., 10 (2014), 2450-2463.
doi: 10.3844/jcssp.2014.2450.2463. |
[16] |
D. Goldfarb and G. Iyengar,
Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1-38.
doi: 10.1287/moor.28.1.1.14260. |
[17] |
J.-Y. Gotoh, K. Shinozaki and A. Takeda,
Robust portfolio techniques for mitigating the fragility of CVaR minimization and generalization to coherent risk measures, Quant. Finance, 13 (2013), 1621-1635.
doi: 10.1080/14697688.2012.738930. |
[18] |
J. A. Hall, B. W. Brorsen and S. H. Irwin,
The distribution of futures prices: A test of the stable paretian and mixture of normals hypotheses, J. Financial Quantitative Anal., 24 (1989), 105-116.
doi: 10.2307/2330751. |
[19] |
R. Ji, M. A. Lejeune and S. Y. Prasad,
Properties, formulations, and algorithms for portfolio optimization using mean-Gini criteria, Ann. Oper. Res., 248 (2017), 305-343.
doi: 10.1007/s10479-016-2230-4. |
[20] |
M. Kapsos, N. Christofides and B. Rustem,
Worst-case robust Omega ratio, European J. Oper. Res., 234 (2014), 499-507.
doi: 10.1016/j.ejor.2013.04.025. |
[21] |
G. Kara, A. Özmen and G.-W. Weber,
Stability advances in robust portfolio optimization under parallelepiped uncertainty, CEJOR Cent. Eur. J. Oper. Res., 27 (2019), 241-261.
doi: 10.1007/s10100-017-0508-5. |
[22] |
C. Keating and W. F. Shadwick, A universal performance measure, J. Performance Measurement, 6 (2002), 59-84. Google Scholar |
[23] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Sci., 37 (1991), 519-531.
doi: 10.1287/mnsc.37.5.519. |
[24] |
R. H. Kwon and D. Wu,
Factor-based robust index tracking, Optim. Eng., 18 (2017), 443-466.
doi: 10.1007/s11081-016-9314-5. |
[25] |
P. Li, Y. Han and Y. Xia,
Portfolio optimization using asymmetry robust mean absolute deviation model, Finance Res. Lett., 18 (2016), 353-362.
doi: 10.1016/j.frl.2016.05.014. |
[26] |
B. G. Lindsay, Mixture models: Theory, geometry and applications, in NSF-CBMS Regional Conference Series in Probability and Statistics, (1995), 1–163. Google Scholar |
[27] |
S.-T. Liu,
The mean-absolute deviation portfolio selection problem with interval-valued returns, J. Comput. Appl. Math., 235 (2011), 4149-4157.
doi: 10.1016/j.cam.2011.03.008. |
[28] |
R. Mansini, W. Ogryczak and M. G. Speranza,
Conditional value at risk and related linear programming models for portfolio optimization, Ann. Oper. Res., 152 (2007), 227-256.
doi: 10.1007/s10479-006-0142-4. |
[29] |
R. Mansini, W. Ogryczak and M. G. Speranza, Tail Gini's risk measures and related linear programming models for portfolio optimization, in HERCMA Conference Proceedings, CD, LEA Publishers, Athens, 2007. Google Scholar |
[30] |
H. Markowitz,
Portfolio selection, J. Finance, 7 (1952), 77-91.
doi: 10.1111/j.1540-6261.1952.tb01525.x. |
[31] |
Y. Moon and T. Yao,
A robust mean absolute deviation model for portfolio optimization, Comput. Oper. Res., 38 (2011), 1251-1258.
doi: 10.1016/j.cor.2010.10.020. |
[32] |
K. Natarajan, D. Pachamanova and M. Sim,
Constructing risk measures from uncertainty sets, Oper. Res., 57 (2009), 1129-1141.
doi: 10.1287/opre.1080.0683. |
[33] |
W. Ogryczak, Risk measurement: Mean absolute deviation versus Gini's mean difference, in Decision Theory and Optimization in Theory and Practice–Proc. 9th Workshop GOR WG Chemnitz, 1999, 33–51. Google Scholar |
[34] |
D. Peel and G. J. McLachlan, Robust mixture modelling using the t distribution, Statistics Comput., 10 (2000), 339-348. Google Scholar |
[35] |
K. Postek, D. den Hertog and B. Melenberg,
Computationally tractable counterparts of distributionally robust constraints on risk measures, SIAM Rev., 58 (2016), 603-650.
doi: 10.1137/151005221. |
[36] |
R. T. Rockafellar and S. Uryasev,
Optimization of conditional value-at-risk, J. Risk, 2 (2000), 21-42.
doi: 10.1007/978-1-4757-6594-6_17. |
[37] |
M. Rudolf, H.-J. Wolter and H. Zimmermann,
A linear model for tracking error minimization, J. Banking Finance, 23 (1999), 85-103.
doi: 10.1016/S0378-4266(98)00076-4. |
[38] |
R. Sehgal and A. Mehra, Robust reward–risk ratio portfolio optimization, Internat. Transactions Oper. Res., (2019).
doi: 10.1111/itor.12652. |
[39] |
R. N. Sengupta and R. Kumar,
Robust and reliable portfolio optimization formulation of a chance constrained problem, Foundations Comput. Decision Sci., 42 (2017), 83-117.
doi: 10.1515/fcds-2017-0004. |
[40] |
H. Shalit and S. Yitzhaki,
Mean-Gini, portfolio theory, and the pricing of risky assets, J. Finance, 39 (1984), 1449-1468.
doi: 10.1111/j.1540-6261.1984.tb04917.x. |
[41] |
H. Shalit and S. Yitzhaki,
The mean-Gini efficient portfolio frontier, J. Financial Res., 28 (2005), 59-75.
doi: 10.1111/j.1475-6803.2005.00114.x. |
[42] |
A. Sharma, S. Agrawal and A. Mehra,
Enhanced indexing for risk averse investors using relaxed second order stochastic dominance, Optim. Eng., 18 (2017), 407-442.
doi: 10.1007/s11081-016-9329-y. |
[43] |
A. Sharma, S. Utz and A. Mehra,
Omega-CVaR portfolio optimization and its worst case analysis, OR Spectrum, 39 (2017), 505-539.
doi: 10.1007/s00291-016-0462-y. |
[44] |
W. F. Sharpe, Mean-absolute-deviation characteristic lines for securities and portfolios, Management Sci., 18 (1971), B–1.
doi: 10.1287/mnsc.18.2.B1. |
[45] |
S. Yitzhaki, Stochastic dominance, mean variance, and Gini's mean difference, American Economic Review, 72 (1982), 178-185. Google Scholar |
[46] |
M. R. Young,
A minimax portfolio selection rule with linear programming solution, Management Sci., 44 (1998), 673-683.
doi: 10.1287/mnsc.44.5.673. |
[47] |
X. Zheng, X. Sun, D. Li and Y. Xu,
On zero duality gap in nonconvex quadratic programming problems, J. Global Optim., 52 (2012), 229-242.
doi: 10.1007/s10898-011-9660-y. |
[48] |
S. Zhu and M. Fukushima,
Worst-case conditional value-at-risk with application to robust portfolio management, Oper. Res., 57 (2009), 1155-1168.
doi: 10.1287/opre.1080.0684. |
[49] |
S. Zhu, D. Li and S. Wang,
Robust portfolio selection under downside risk measures, Quant. Finance, 9 (2009), 869-885.
doi: 10.1080/14697680902852746. |
show all references
References:
[1] |
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath,
Coherent measures of risk, Math. Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068. |
[2] |
A. Ben-Tal, D. Den Hertog and J.-P. Vial,
Deriving robust counterparts of nonlinear uncertain inequalities, Math. Program., 149 (2015), 265-299.
doi: 10.1007/s10107-014-0750-8. |
[3] |
S. Benati,
Using medians in portfolio optimization, J. Oper. Res. Soc., 66 (2015), 720-731.
doi: 10.1057/jors.2014.57. |
[4] |
M. Berkhouch, G. Lakhnati and M. B. Righi,
Extended gini-type measures of risk and variability, Appl. Math. Finance, 25 (2018), 295-314.
doi: 10.1080/1350486X.2018.1538806. |
[5] |
D. Bertsimas and M. Sim,
The price of robustness, Oper. Res., 52 (2004), 35-53.
doi: 10.1287/opre.1030.0065. |
[6] |
M. J. Best and R. R. Grauer,
On the sensitivity of mean-variance-efficient portfolios to changes in asset means: Some analytical and computational results, Rev. Financial Studies, 4 (1991), 315-342.
doi: 10.1093/rfs/4.2.315. |
[7] |
F. Black and R. Litterman,
Global portfolio optimization, Financial Analysts Journal, 48 (1992), 28-43.
doi: 10.2469/faj.v48.n5.28. |
[8] |
B. Bower and P. Wentz, Portfolio optimization: MAD vs. Markowitz, Rose-Hulman Undergraduate Mathematics Journal, 6 (2005), 3. Google Scholar |
[9] |
C. Chen and R. H. Kwon,
Robust portfolio selection for index tracking, Comput. Oper. Res., 39 (2012), 829-837.
doi: 10.1016/j.cor.2010.08.019. |
[10] |
W. Chen and S. Tan,
Robust portfolio selection based on asymmetric measures of variability of stock returns, J. Comput. Appl. Math., 232 (2009), 295-304.
doi: 10.1016/j.cam.2009.06.010. |
[11] |
L. El Ghaoui, M. Oks and F. Oustry,
Worst-case value-at-risk and robust portfolio optimization: A conic programming approach, Oper. Res., 51 (2003), 543-556.
doi: 10.1287/opre.51.4.543.16101. |
[12] |
M. Feng, A. Wächter and J. Staum,
Practical algorithms for value-at-risk portfolio optimization problems, Quantitative Finance Lett., 3 (2015), 1-9.
doi: 10.1080/21649502.2014.995214. |
[13] |
E. Furman, R. Wang and R. Zitikis,
Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks, J. Banking Finance, 83 (2017), 70-84.
doi: 10.2139/ssrn.2836281. |
[14] |
C. Gerstenberger and D. Vogel,
On the efficiency of Gini's mean difference, Stat. Methods Appl., 24 (2015), 569-596.
doi: 10.1007/s10260-015-0315-x. |
[15] |
M. Gharakhani, F. Zarea Fazlelahi and S. Sadjadi,
A robust optimization approach for index tracking problem, J. Computer Sci., 10 (2014), 2450-2463.
doi: 10.3844/jcssp.2014.2450.2463. |
[16] |
D. Goldfarb and G. Iyengar,
Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1-38.
doi: 10.1287/moor.28.1.1.14260. |
[17] |
J.-Y. Gotoh, K. Shinozaki and A. Takeda,
Robust portfolio techniques for mitigating the fragility of CVaR minimization and generalization to coherent risk measures, Quant. Finance, 13 (2013), 1621-1635.
doi: 10.1080/14697688.2012.738930. |
[18] |
J. A. Hall, B. W. Brorsen and S. H. Irwin,
The distribution of futures prices: A test of the stable paretian and mixture of normals hypotheses, J. Financial Quantitative Anal., 24 (1989), 105-116.
doi: 10.2307/2330751. |
[19] |
R. Ji, M. A. Lejeune and S. Y. Prasad,
Properties, formulations, and algorithms for portfolio optimization using mean-Gini criteria, Ann. Oper. Res., 248 (2017), 305-343.
doi: 10.1007/s10479-016-2230-4. |
[20] |
M. Kapsos, N. Christofides and B. Rustem,
Worst-case robust Omega ratio, European J. Oper. Res., 234 (2014), 499-507.
doi: 10.1016/j.ejor.2013.04.025. |
[21] |
G. Kara, A. Özmen and G.-W. Weber,
Stability advances in robust portfolio optimization under parallelepiped uncertainty, CEJOR Cent. Eur. J. Oper. Res., 27 (2019), 241-261.
doi: 10.1007/s10100-017-0508-5. |
[22] |
C. Keating and W. F. Shadwick, A universal performance measure, J. Performance Measurement, 6 (2002), 59-84. Google Scholar |
[23] |
H. Konno and H. Yamazaki,
Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Sci., 37 (1991), 519-531.
doi: 10.1287/mnsc.37.5.519. |
[24] |
R. H. Kwon and D. Wu,
Factor-based robust index tracking, Optim. Eng., 18 (2017), 443-466.
doi: 10.1007/s11081-016-9314-5. |
[25] |
P. Li, Y. Han and Y. Xia,
Portfolio optimization using asymmetry robust mean absolute deviation model, Finance Res. Lett., 18 (2016), 353-362.
doi: 10.1016/j.frl.2016.05.014. |
[26] |
B. G. Lindsay, Mixture models: Theory, geometry and applications, in NSF-CBMS Regional Conference Series in Probability and Statistics, (1995), 1–163. Google Scholar |
[27] |
S.-T. Liu,
The mean-absolute deviation portfolio selection problem with interval-valued returns, J. Comput. Appl. Math., 235 (2011), 4149-4157.
doi: 10.1016/j.cam.2011.03.008. |
[28] |
R. Mansini, W. Ogryczak and M. G. Speranza,
Conditional value at risk and related linear programming models for portfolio optimization, Ann. Oper. Res., 152 (2007), 227-256.
doi: 10.1007/s10479-006-0142-4. |
[29] |
R. Mansini, W. Ogryczak and M. G. Speranza, Tail Gini's risk measures and related linear programming models for portfolio optimization, in HERCMA Conference Proceedings, CD, LEA Publishers, Athens, 2007. Google Scholar |
[30] |
H. Markowitz,
Portfolio selection, J. Finance, 7 (1952), 77-91.
doi: 10.1111/j.1540-6261.1952.tb01525.x. |
[31] |
Y. Moon and T. Yao,
A robust mean absolute deviation model for portfolio optimization, Comput. Oper. Res., 38 (2011), 1251-1258.
doi: 10.1016/j.cor.2010.10.020. |
[32] |
K. Natarajan, D. Pachamanova and M. Sim,
Constructing risk measures from uncertainty sets, Oper. Res., 57 (2009), 1129-1141.
doi: 10.1287/opre.1080.0683. |
[33] |
W. Ogryczak, Risk measurement: Mean absolute deviation versus Gini's mean difference, in Decision Theory and Optimization in Theory and Practice–Proc. 9th Workshop GOR WG Chemnitz, 1999, 33–51. Google Scholar |
[34] |
D. Peel and G. J. McLachlan, Robust mixture modelling using the t distribution, Statistics Comput., 10 (2000), 339-348. Google Scholar |
[35] |
K. Postek, D. den Hertog and B. Melenberg,
Computationally tractable counterparts of distributionally robust constraints on risk measures, SIAM Rev., 58 (2016), 603-650.
doi: 10.1137/151005221. |
[36] |
R. T. Rockafellar and S. Uryasev,
Optimization of conditional value-at-risk, J. Risk, 2 (2000), 21-42.
doi: 10.1007/978-1-4757-6594-6_17. |
[37] |
M. Rudolf, H.-J. Wolter and H. Zimmermann,
A linear model for tracking error minimization, J. Banking Finance, 23 (1999), 85-103.
doi: 10.1016/S0378-4266(98)00076-4. |
[38] |
R. Sehgal and A. Mehra, Robust reward–risk ratio portfolio optimization, Internat. Transactions Oper. Res., (2019).
doi: 10.1111/itor.12652. |
[39] |
R. N. Sengupta and R. Kumar,
Robust and reliable portfolio optimization formulation of a chance constrained problem, Foundations Comput. Decision Sci., 42 (2017), 83-117.
doi: 10.1515/fcds-2017-0004. |
[40] |
H. Shalit and S. Yitzhaki,
Mean-Gini, portfolio theory, and the pricing of risky assets, J. Finance, 39 (1984), 1449-1468.
doi: 10.1111/j.1540-6261.1984.tb04917.x. |
[41] |
H. Shalit and S. Yitzhaki,
The mean-Gini efficient portfolio frontier, J. Financial Res., 28 (2005), 59-75.
doi: 10.1111/j.1475-6803.2005.00114.x. |
[42] |
A. Sharma, S. Agrawal and A. Mehra,
Enhanced indexing for risk averse investors using relaxed second order stochastic dominance, Optim. Eng., 18 (2017), 407-442.
doi: 10.1007/s11081-016-9329-y. |
[43] |
A. Sharma, S. Utz and A. Mehra,
Omega-CVaR portfolio optimization and its worst case analysis, OR Spectrum, 39 (2017), 505-539.
doi: 10.1007/s00291-016-0462-y. |
[44] |
W. F. Sharpe, Mean-absolute-deviation characteristic lines for securities and portfolios, Management Sci., 18 (1971), B–1.
doi: 10.1287/mnsc.18.2.B1. |
[45] |
S. Yitzhaki, Stochastic dominance, mean variance, and Gini's mean difference, American Economic Review, 72 (1982), 178-185. Google Scholar |
[46] |
M. R. Young,
A minimax portfolio selection rule with linear programming solution, Management Sci., 44 (1998), 673-683.
doi: 10.1287/mnsc.44.5.673. |
[47] |
X. Zheng, X. Sun, D. Li and Y. Xu,
On zero duality gap in nonconvex quadratic programming problems, J. Global Optim., 52 (2012), 229-242.
doi: 10.1007/s10898-011-9660-y. |
[48] |
S. Zhu and M. Fukushima,
Worst-case conditional value-at-risk with application to robust portfolio management, Oper. Res., 57 (2009), 1155-1168.
doi: 10.1287/opre.1080.0684. |
[49] |
S. Zhu, D. Li and S. Wang,
Robust portfolio selection under downside risk measures, Quant. Finance, 9 (2009), 869-885.
doi: 10.1080/14697680902852746. |





period | weekly average |
weakly sd |
1-9 weeks | 3.606 | 19.559 |
10-18 weeks | 7.111 | 42.395 |
19-27 weeks | -2.078 | 23.281 |
period | weekly average |
weakly sd |
1-9 weeks | 3.606 | 19.559 |
10-18 weeks | 7.111 | 42.395 |
19-27 weeks | -2.078 | 23.281 |
average | 0.458 | 1.541 | -0.143 | 0.127 | |
sd | 21.973 | 22.432 | 21.183 | 22.164 | |
median | -0.404 | 3.035 | 1.032 | -0.717 | |
min | -59.257 | -67.184 | -57.742 | -51.915 | |
(DI) | max | 55.669 | 63.717 | 57.2492 | 65.108 |
neg returns | 80 | 72 | 77 | 82 | |
53.369 | 55.862 | 50.934 | 49.827 | ||
50.236 | 48.982 | 46.816 | 47.84 | ||
49.945 | 44.695 | 43.091 | 46.16 | ||
40.909 | 35.241 | 38.74 | 43.921 | ||
MD | 213.407 | 156.96 | 173.27 | 224.3 | |
average | 5.348 | 5.315 | 3.652 | 3.934 | |
sd | 24.384 | 23.277 | 19.905 | 21.320 | |
median | 7.812 | 5.212 | 5.081 | 5.634 | |
min | -69.647 | -82.617 | -71.400 | -52.323 | |
(DII) | max | 145.054 | 104.310 | 63.899 | 81.426 |
neg returns | 56 | 57 | 55 | 61 | |
57.914 | 53.802 | 57.633 | 47.689 | ||
49.836 | 47.188 | 48.391 | 43.867 | ||
43.523 | 38.888 | 37.368 | 41.209 | ||
33.153 | 34.584 | 31.053 | 37.39 | ||
MD | 118.11 | 146.64 | 111.057 | 149.49 | |
average | 4.188 | 5.561 | 3.968 | 2.365 | |
sd | 23.907 | 30.314 | 19.597 | 24.278 | |
median | 2.817 | 3.380 | 4.128 | 2.592 | |
min | -93.670 | -108.797 | -82.422 | -88.448 | |
(DIII) | max | 87.815 | 79.020 | 62.667 | 74.162 |
neg returns | 68 | 72 | 62 | 70 | |
61.937 | 73.741 | 52.024 | 63.487 | ||
51.816 | 61.994 | 40.559 | 52.514 | ||
46.458 | 47.761 | 28.247 | 51.358 | ||
28.933 | 41.034 | 22.291 | 32.79 | ||
MD | 157.024 | 106.34 | 190.67 | 188.84 | |
average | 1.926 | 1.852 | 1.120 | 0.232 | |
sd | 23.337 | 25.528 | 21.178 | 23.817 | |
median | 3.853 | 2.276 | 1.655 | 1.307 | |
min | -65.330 | -80.298 | -67.686 | -68.472 | |
(DIV) | max | 54.355 | 72.800 | 50.498 | 60.039 |
neg returns | 71 | 70 | 73 | 76 | |
57.727 | 61.945 | 58.193 | 58.013 | ||
50.202 | 56.738 | 50.081 | 52.9 | ||
52.377 | 52.549 | 48.15 | 48.715 | ||
36.036 | 48.283 | 31.815 | 43.657 | ||
MD | 180.98 | 233.87 | 170.43 | 191.327 |
average | 0.458 | 1.541 | -0.143 | 0.127 | |
sd | 21.973 | 22.432 | 21.183 | 22.164 | |
median | -0.404 | 3.035 | 1.032 | -0.717 | |
min | -59.257 | -67.184 | -57.742 | -51.915 | |
(DI) | max | 55.669 | 63.717 | 57.2492 | 65.108 |
neg returns | 80 | 72 | 77 | 82 | |
53.369 | 55.862 | 50.934 | 49.827 | ||
50.236 | 48.982 | 46.816 | 47.84 | ||
49.945 | 44.695 | 43.091 | 46.16 | ||
40.909 | 35.241 | 38.74 | 43.921 | ||
MD | 213.407 | 156.96 | 173.27 | 224.3 | |
average | 5.348 | 5.315 | 3.652 | 3.934 | |
sd | 24.384 | 23.277 | 19.905 | 21.320 | |
median | 7.812 | 5.212 | 5.081 | 5.634 | |
min | -69.647 | -82.617 | -71.400 | -52.323 | |
(DII) | max | 145.054 | 104.310 | 63.899 | 81.426 |
neg returns | 56 | 57 | 55 | 61 | |
57.914 | 53.802 | 57.633 | 47.689 | ||
49.836 | 47.188 | 48.391 | 43.867 | ||
43.523 | 38.888 | 37.368 | 41.209 | ||
33.153 | 34.584 | 31.053 | 37.39 | ||
MD | 118.11 | 146.64 | 111.057 | 149.49 | |
average | 4.188 | 5.561 | 3.968 | 2.365 | |
sd | 23.907 | 30.314 | 19.597 | 24.278 | |
median | 2.817 | 3.380 | 4.128 | 2.592 | |
min | -93.670 | -108.797 | -82.422 | -88.448 | |
(DIII) | max | 87.815 | 79.020 | 62.667 | 74.162 |
neg returns | 68 | 72 | 62 | 70 | |
61.937 | 73.741 | 52.024 | 63.487 | ||
51.816 | 61.994 | 40.559 | 52.514 | ||
46.458 | 47.761 | 28.247 | 51.358 | ||
28.933 | 41.034 | 22.291 | 32.79 | ||
MD | 157.024 | 106.34 | 190.67 | 188.84 | |
average | 1.926 | 1.852 | 1.120 | 0.232 | |
sd | 23.337 | 25.528 | 21.178 | 23.817 | |
median | 3.853 | 2.276 | 1.655 | 1.307 | |
min | -65.330 | -80.298 | -67.686 | -68.472 | |
(DIV) | max | 54.355 | 72.800 | 50.498 | 60.039 |
neg returns | 71 | 70 | 73 | 76 | |
57.727 | 61.945 | 58.193 | 58.013 | ||
50.202 | 56.738 | 50.081 | 52.9 | ||
52.377 | 52.549 | 48.15 | 48.715 | ||
36.036 | 48.283 | 31.815 | 43.657 | ||
MD | 180.98 | 233.87 | 170.43 | 191.327 |
(DI) | |||||
average | -6.039 | -6.859 | 1.1184 | -4.035 | |
sd | 43.196 | 52.886 | 24.373 | 40.885 | |
median | -19.16 | -18.64 | -2.775 | -10.72 | |
UP-DOWN | min | -80.7 | -87.88 | -41.22 | -64.31 |
max | 112.33 | 139.21 | 67.997 | 109.74 | |
neg returns | 12 | 13 | 11 | 12 | |
MD | 151.538 | 151.107 | 52.69 | 95.87 | |
average | -3.582 | -1.58 | -3.62 | -2.333 | |
sd | 39.36 | 44.553 | 38.817 | 39.861 | |
median | -8.466 | -3.124 | -7.898 | -7.301 | |
DOWN-DOWN | min | -76.31 | -122.3 | -77.25 | -93.32 |
max | 116.87 | 73.054 | 113.99 | 80.892 | |
neg returns | 12 | 12 | 12 | 11 | |
MD | 209.357 | 241.872 | 206.61 | 240.81 | |
average | 4.5948 | 6.5533 | 6.3614 | 9.0281 | |
sd | 17.897 | 24.9 | 18.545 | 21.693 | |
median | 0.7725 | 4.0728 | 6.5631 | 11.843 | |
DOWN-UP | min | -26.7 | -32.28 | -17.9 | -29.67 |
max | 42.982 | 60.549 | 50.299 | 37.346 | |
neg returns | 9 | 7 | 9 | 7 | |
MD | 36.5 | 41.1155 | 31.584 | 29.673 | |
average | 4.5768 | 4.0462 | 5.1412 | 5.5771 | |
sd | 19.647 | 28.427 | 18.428 | 16.52 | |
median | 2.6147 | 5.4864 | 0.6005 | 6.9434 | |
UP-UP | min | -28.86 | -39.84 | -25.75 | -35.76 |
max | 36.136 | 50.381 | 37.729 | 29.958 | |
neg returns | 10 | 8 | 10 | 6 | |
MD | 48.181 | 87.913 | 35.078 | 40.38 | |
(DII) | |||||
average | -5.029 | -3.828 | -5.007 | 1.4072 | |
sd | 66.172 | 72.696 | 61.369 | 58.82 | |
median | -5.895 | -0.19 | 8.9474 | 3.7326 | |
UP-DOWN | min | -179.4 | -193.8 | -154.4 | -150.6 |
max | 129.46 | 146.11 | 126.09 | 140.28 | |
neg returns | 10 | 10 | 9 | 9 | |
MD | 235.221 | 236.219 | 222.13 | 150.582 | |
average | -1.545 | 0.006 | -2.109 | -2.249 | |
sd | 34.09 | 30.876 | 35.189 | 33.007 | |
median | -4.819 | -3.358 | -4.806 | -4.546 | |
DOWN-DOWN | min | -67.06 | -48.79 | -61.39 | -90.7 |
max | 115.75 | 72.059 | 122.57 | 76.009 | |
neg returns | 11 | 11 | 12 | 13 | |
MD | 162.256 | 113.9822 | 173.88 | 159.283 | |
average | -6.301 | -6.031 | -2.023 | -4.701 | |
sd | 17.096 | 24.228 | 15.888 | 19.831 | |
median | -4.875 | -9.129 | -3.986 | -6.138 | |
DOWN-UP | min | -37.04 | -47 | -33.08 | -39.68 |
max | 28.022 | 53.495 | 38.54 | 58.312 | |
neg returns | 15 | 12 | 13 | 14 | |
MD | 132.87 | 142.629 | 92.60 | 119.743 | |
average | 2.7559 | 2.8771 | 5.6723 | 7.6174 | |
sd | 21.022 | 28.97 | 12.812 | 18.045 | |
median | 5.1358 | 2.4316 | 4.687 | 4.2454 | |
UP-UP | min | -38.74 | -46.22 | -18.15 | -31.4 |
max | 51.007 | 65.855 | 36.726 | 48.432 | |
neg returns | 9 | 8 | 6 | 6 | |
MD | 47.811 | 109.512 | 18.517 | 36.649 |
(DI) | |||||
average | -6.039 | -6.859 | 1.1184 | -4.035 | |
sd | 43.196 | 52.886 | 24.373 | 40.885 | |
median | -19.16 | -18.64 | -2.775 | -10.72 | |
UP-DOWN | min | -80.7 | -87.88 | -41.22 | -64.31 |
max | 112.33 | 139.21 | 67.997 | 109.74 | |
neg returns | 12 | 13 | 11 | 12 | |
MD | 151.538 | 151.107 | 52.69 | 95.87 | |
average | -3.582 | -1.58 | -3.62 | -2.333 | |
sd | 39.36 | 44.553 | 38.817 | 39.861 | |
median | -8.466 | -3.124 | -7.898 | -7.301 | |
DOWN-DOWN | min | -76.31 | -122.3 | -77.25 | -93.32 |
max | 116.87 | 73.054 | 113.99 | 80.892 | |
neg returns | 12 | 12 | 12 | 11 | |
MD | 209.357 | 241.872 | 206.61 | 240.81 | |
average | 4.5948 | 6.5533 | 6.3614 | 9.0281 | |
sd | 17.897 | 24.9 | 18.545 | 21.693 | |
median | 0.7725 | 4.0728 | 6.5631 | 11.843 | |
DOWN-UP | min | -26.7 | -32.28 | -17.9 | -29.67 |
max | 42.982 | 60.549 | 50.299 | 37.346 | |
neg returns | 9 | 7 | 9 | 7 | |
MD | 36.5 | 41.1155 | 31.584 | 29.673 | |
average | 4.5768 | 4.0462 | 5.1412 | 5.5771 | |
sd | 19.647 | 28.427 | 18.428 | 16.52 | |
median | 2.6147 | 5.4864 | 0.6005 | 6.9434 | |
UP-UP | min | -28.86 | -39.84 | -25.75 | -35.76 |
max | 36.136 | 50.381 | 37.729 | 29.958 | |
neg returns | 10 | 8 | 10 | 6 | |
MD | 48.181 | 87.913 | 35.078 | 40.38 | |
(DII) | |||||
average | -5.029 | -3.828 | -5.007 | 1.4072 | |
sd | 66.172 | 72.696 | 61.369 | 58.82 | |
median | -5.895 | -0.19 | 8.9474 | 3.7326 | |
UP-DOWN | min | -179.4 | -193.8 | -154.4 | -150.6 |
max | 129.46 | 146.11 | 126.09 | 140.28 | |
neg returns | 10 | 10 | 9 | 9 | |
MD | 235.221 | 236.219 | 222.13 | 150.582 | |
average | -1.545 | 0.006 | -2.109 | -2.249 | |
sd | 34.09 | 30.876 | 35.189 | 33.007 | |
median | -4.819 | -3.358 | -4.806 | -4.546 | |
DOWN-DOWN | min | -67.06 | -48.79 | -61.39 | -90.7 |
max | 115.75 | 72.059 | 122.57 | 76.009 | |
neg returns | 11 | 11 | 12 | 13 | |
MD | 162.256 | 113.9822 | 173.88 | 159.283 | |
average | -6.301 | -6.031 | -2.023 | -4.701 | |
sd | 17.096 | 24.228 | 15.888 | 19.831 | |
median | -4.875 | -9.129 | -3.986 | -6.138 | |
DOWN-UP | min | -37.04 | -47 | -33.08 | -39.68 |
max | 28.022 | 53.495 | 38.54 | 58.312 | |
neg returns | 15 | 12 | 13 | 14 | |
MD | 132.87 | 142.629 | 92.60 | 119.743 | |
average | 2.7559 | 2.8771 | 5.6723 | 7.6174 | |
sd | 21.022 | 28.97 | 12.812 | 18.045 | |
median | 5.1358 | 2.4316 | 4.687 | 4.2454 | |
UP-UP | min | -38.74 | -46.22 | -18.15 | -31.4 |
max | 51.007 | 65.855 | 36.726 | 48.432 | |
neg returns | 9 | 8 | 6 | 6 | |
MD | 47.811 | 109.512 | 18.517 | 36.649 |
(DIII) | |||||
average | -0.2681 | -3.322 | 0.499 | -0.047 | |
sd | 19.1129 | 35.824 | 18.919 | 18.732 | |
median | 2.61737 | 1.5277 | 2.3188 | -0.6 | |
UP-DOWN | min | -44.737 | -55.41 | -40.08 | -45.67 |
max | 34.6569 | 77.502 | 35.718 | 32.997 | |
neg returns | 9 | 10 | 9 | 11 | |
MD | 74.493 | 159.476 | 68.053 | 64.932 | |
average | -3.1162 | 0.4164 | -4.551 | -4.109 | |
sd | 21.5749 | 28.782 | 19.827 | 21.41 | |
median | 2.12342 | -0.945 | -2.471 | -2.008 | |
DOWN-DOWN | min | -48.014 | -48.23 | -63.18 | -66.7 |
max | 30.412 | 66.157 | 25.402 | 25.383 | |
neg returns | 9 | 10 | 11 | 10 | |
MD | 119.543 | 106.662 | 117.954 | 122.734 | |
average | 11.2417 | 30.789 | 4.1896 | 8.3275 | |
sd | 20.3046 | 48.878 | 16.079 | 19.256 | |
median | 11.6296 | 39.14 | 7.2174 | 8.4051 | |
DOWN-UP | min | -27.77 | -71 | -33.04 | -40.3 |
max | 41.2838 | 98.964 | 25.703 | 46.593 | |
neg returns | 4 | 6 | 7 | 5 | |
MD | 27.77 | 78.851 | 36.124 | 48.21 | |
average | 1.05369 | -3.017 | 0.2775 | -0.183 | |
sd | 38.8387 | 42.249 | 34.946 | 31.665 | |
median | 2.73823 | 3.0081 | 1.0448 | 3.6441 | |
UP-UP | min | -77.25 | -79.58 | -69.68 | -59.33 |
max | 66.1491 | 66.947 | 56.4 | 40.851 | |
neg returns | 9 | 10 | 10 | 9 | |
MD | 131.452 | 166.753 | 127.845 | 124.788 | |
(DIV) | |||||
average | -23.233 | -28.74 | -24.08 | -23.28 | |
sd | 94.011 | 107.97 | 87.816 | 88.499 | |
median | -27.104 | -37.74 | -26.68 | -29.55 | |
UP-DOWN | min | -197.61 | -222.9 | -192.2 | -170 |
max | 224.871 | 271.88 | 225.58 | 216.6 | |
neg returns | 13 | 13 | 13 | 14 | |
MD | 517.924 | 576.729 | 507.51 | 489.529 | |
average | 0.58685 | 1.1156 | -0.835 | 0.5133 | |
sd | 28.4234 | 58.191 | 29.021 | 33.774 | |
median | -3.4995 | -1.348 | -2.763 | -7.861 | |
DOWN-DOWN | min | -36.563 | -79.36 | -46.89 | -47.11 |
max | 65.827 | 152.43 | 70.592 | 96.089 | |
neg returns | 11 | 10 | 10 | 11 | |
MD | 137.989 | 285.251 | 160.875 | 164.657 | |
average | 7.63253 | 3.1941 | 6.4851 | 10.284 | |
sd | 16.2213 | 15.549 | 15.238 | 19.419 | |
median | 8.10496 | 2.7367 | 9.7434 | 10.025 | |
DOWN-UP | min | -27.858 | -24.52 | -24.91 | -30.12 |
max | 47.6872 | 28.554 | 34.307 | 39.199 | |
neg returns | 5 | 7 | 7 | 7 | |
MD | 42.35 | 40.646 | 35.51 | 53.741 | |
average | 34.0544 | 30.368 | 17.863 | 15.659 | |
sd | 56.3158 | 63.198 | 47.088 | 67.943 | |
median | 51.5261 | 43.3 | 20.626 | 19.016 | |
UP-UP | min | -124.52 | -136.7 | -97.17 | -109.3 |
max | 100.258 | 152.26 | 111.24 | 174.18 | |
neg returns | 4 | 7 | 6 | 7 | |
MD | 124.517 | 144.539 | 97.174 | 139.654 |
(DIII) | |||||
average | -0.2681 | -3.322 | 0.499 | -0.047 | |
sd | 19.1129 | 35.824 | 18.919 | 18.732 | |
median | 2.61737 | 1.5277 | 2.3188 | -0.6 | |
UP-DOWN | min | -44.737 | -55.41 | -40.08 | -45.67 |
max | 34.6569 | 77.502 | 35.718 | 32.997 | |
neg returns | 9 | 10 | 9 | 11 | |
MD | 74.493 | 159.476 | 68.053 | 64.932 | |
average | -3.1162 | 0.4164 | -4.551 | -4.109 | |
sd | 21.5749 | 28.782 | 19.827 | 21.41 | |
median | 2.12342 | -0.945 | -2.471 | -2.008 | |
DOWN-DOWN | min | -48.014 | -48.23 | -63.18 | -66.7 |
max | 30.412 | 66.157 | 25.402 | 25.383 | |
neg returns | 9 | 10 | 11 | 10 | |
MD | 119.543 | 106.662 | 117.954 | 122.734 | |
average | 11.2417 | 30.789 | 4.1896 | 8.3275 | |
sd | 20.3046 | 48.878 | 16.079 | 19.256 | |
median | 11.6296 | 39.14 | 7.2174 | 8.4051 | |
DOWN-UP | min | -27.77 | -71 | -33.04 | -40.3 |
max | 41.2838 | 98.964 | 25.703 | 46.593 | |
neg returns | 4 | 6 | 7 | 5 | |
MD | 27.77 | 78.851 | 36.124 | 48.21 | |
average | 1.05369 | -3.017 | 0.2775 | -0.183 | |
sd | 38.8387 | 42.249 | 34.946 | 31.665 | |
median | 2.73823 | 3.0081 | 1.0448 | 3.6441 | |
UP-UP | min | -77.25 | -79.58 | -69.68 | -59.33 |
max | 66.1491 | 66.947 | 56.4 | 40.851 | |
neg returns | 9 | 10 | 10 | 9 | |
MD | 131.452 | 166.753 | 127.845 | 124.788 | |
(DIV) | |||||
average | -23.233 | -28.74 | -24.08 | -23.28 | |
sd | 94.011 | 107.97 | 87.816 | 88.499 | |
median | -27.104 | -37.74 | -26.68 | -29.55 | |
UP-DOWN | min | -197.61 | -222.9 | -192.2 | -170 |
max | 224.871 | 271.88 | 225.58 | 216.6 | |
neg returns | 13 | 13 | 13 | 14 | |
MD | 517.924 | 576.729 | 507.51 | 489.529 | |
average | 0.58685 | 1.1156 | -0.835 | 0.5133 | |
sd | 28.4234 | 58.191 | 29.021 | 33.774 | |
median | -3.4995 | -1.348 | -2.763 | -7.861 | |
DOWN-DOWN | min | -36.563 | -79.36 | -46.89 | -47.11 |
max | 65.827 | 152.43 | 70.592 | 96.089 | |
neg returns | 11 | 10 | 10 | 11 | |
MD | 137.989 | 285.251 | 160.875 | 164.657 | |
average | 7.63253 | 3.1941 | 6.4851 | 10.284 | |
sd | 16.2213 | 15.549 | 15.238 | 19.419 | |
median | 8.10496 | 2.7367 | 9.7434 | 10.025 | |
DOWN-UP | min | -27.858 | -24.52 | -24.91 | -30.12 |
max | 47.6872 | 28.554 | 34.307 | 39.199 | |
neg returns | 5 | 7 | 7 | 7 | |
MD | 42.35 | 40.646 | 35.51 | 53.741 | |
average | 34.0544 | 30.368 | 17.863 | 15.659 | |
sd | 56.3158 | 63.198 | 47.088 | 67.943 | |
median | 51.5261 | 43.3 | 20.626 | 19.016 | |
UP-UP | min | -124.52 | -136.7 | -97.17 | -109.3 |
max | 100.258 | 152.26 | 111.24 | 174.18 | |
neg returns | 4 | 7 | 6 | 7 | |
MD | 124.517 | 144.539 | 97.174 | 139.654 |
average | -9.9697 | -17.83 | -9.51 | -5.5184 | -8.024 | |
sd | 7.95041 | 12.595 | 5.629 | 19.863 | 12.937 | |
(DI) | med | -8.499 | -13.149 | -7.412 | -6.5741 | -6.643 |
min | -20.925 | -36.073 | -17.7 | -27.913 | -25.07 | |
max | -1.9555 | -8.9473 | -5.514 | 18.987 | 6.2582 | |
average | -1.505 | -0.2718 | -0.303 | -5.5184 | -1.547 | |
sd | 15.727 | 16.813 | 15.154 | 19.863 | 17.94 | |
(DII) | med | 4.52 | 0.3627 | 2.1474 | -6.5741 | 1.4017 |
min | -24.706 | -20.442 | -20.77 | -27.913 | -26.07 | |
max | 9.631 | 18.629 | 15.258 | 18.987 | 17.077 | |
average | 4.60903 | 4.288 | 0.1445 | 0.3184 | 5.2191 | |
sd | 23.0986 | 28.943 | 17.512 | 25.937 | 17.18 | |
(DIII) | med | 8.31506 | 9.593 | 3.2971 | 2.3598 | 9.9122 |
min | -24.436 | -33.33 | -21.39 | -33.356 | -18.75 | |
max | 26.2417 | 31.299 | 15.372 | 29.91 | 19.8 | |
average | -12.383 | -18.126 | -11.54 | -18.126 | -7.655 | |
sd | 14.3273 | 24.613 | 18.997 | 24.613 | 18.297 | |
(DIV) | med | -13.526 | -6.7408 | -9.971 | -6.7408 | -6.39 |
min | -28.661 | -54.996 | -35.76 | -54.996 | -30.83 | |
max | 6.17971 | -4.0262 | 9.5596 | -4.0262 | 12.992 |
average | -9.9697 | -17.83 | -9.51 | -5.5184 | -8.024 | |
sd | 7.95041 | 12.595 | 5.629 | 19.863 | 12.937 | |
(DI) | med | -8.499 | -13.149 | -7.412 | -6.5741 | -6.643 |
min | -20.925 | -36.073 | -17.7 | -27.913 | -25.07 | |
max | -1.9555 | -8.9473 | -5.514 | 18.987 | 6.2582 | |
average | -1.505 | -0.2718 | -0.303 | -5.5184 | -1.547 | |
sd | 15.727 | 16.813 | 15.154 | 19.863 | 17.94 | |
(DII) | med | 4.52 | 0.3627 | 2.1474 | -6.5741 | 1.4017 |
min | -24.706 | -20.442 | -20.77 | -27.913 | -26.07 | |
max | 9.631 | 18.629 | 15.258 | 18.987 | 17.077 | |
average | 4.60903 | 4.288 | 0.1445 | 0.3184 | 5.2191 | |
sd | 23.0986 | 28.943 | 17.512 | 25.937 | 17.18 | |
(DIII) | med | 8.31506 | 9.593 | 3.2971 | 2.3598 | 9.9122 |
min | -24.436 | -33.33 | -21.39 | -33.356 | -18.75 | |
max | 26.2417 | 31.299 | 15.372 | 29.91 | 19.8 | |
average | -12.383 | -18.126 | -11.54 | -18.126 | -7.655 | |
sd | 14.3273 | 24.613 | 18.997 | 24.613 | 18.297 | |
(DIV) | med | -13.526 | -6.7408 | -9.971 | -6.7408 | -6.39 |
min | -28.661 | -54.996 | -35.76 | -54.996 | -30.83 | |
max | 6.17971 | -4.0262 | 9.5596 | -4.0262 | 12.992 |
[1] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[2] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[3] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[4] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[5] |
Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781 |
[6] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[7] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[8] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[9] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[10] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[11] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[12] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]