[1]
|
K. P. Anagnostopoulos and G. Mamanis, The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms, Expert Systems with Appl., 38 (2011), 14208-14217.
doi: 10.1016/j.eswa.2011.04.233.
|
[2]
|
S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, Rev. Financial Studies, 23 (2010), 2970-3016.
doi: 10.1093/rfs/hhq028.
|
[3]
|
A. Bensoussan, K. C. Wong, S. C. P. Yam and S. P. Yung, Time-consistent portfolio selection under short-selling prohibition: From discrete to continuous setting, SIAM J. Financial Math., 5 (2014), 153-190.
doi: 10.1137/130914139.
|
[4]
|
D. Bertsimas and R. Shioda, Algorithms for cardinality-constrained quadratic optimization, Comput. Optim. Appl., 43 (2009), 1-22.
doi: 10.1007/s10589-007-9126-9.
|
[5]
|
D. Bienstock, Computational study of a family of mixed-integer quadratic programming problems, Math. Programming, 74 (1996), 121-140.
doi: 10.1007/BF02592208.
|
[6]
|
T. Björk, M. H. A. Davis and C. Landén, Optimal investment under partial information, Math. Methods Oper. Res., 71 (2010), 371-399.
doi: 10.1007/s00186-010-0301-x.
|
[7]
|
T. Björk, A. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Math. Finance, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x.
|
[8]
|
F. Cesarone, A. Scozzari and F. Tardella, A new method for mean-variance portfolio optimization with cardinality constraints, Ann. Oper. Res., 205 (2013), 213-234.
doi: 10.1007/s10479-012-1165-7.
|
[9]
|
Z. Chen, G. Li and Y. Zhao, Time-consistent investment policies in Markovian markets: A case of mean-variance analysis, J. Econom. Dynam. Control, 40 (2014), 293-316.
doi: 10.1016/j.jedc.2014.01.011.
|
[10]
|
F. Cong and C. W. Oosterlee, Multi-period mean-variance portfolio optimization based on Monte-Carlo simulation, J. Econom. Dynam. Control, 64 (2016), 23-38.
doi: 10.1016/j.jedc.2016.01.001.
|
[11]
|
X. Cui, D. Li and X. Li, Mean variance policy for discrete time cone-constrained markets: time consistency in efficiency and the minimum-variance signed supermartingale measure, Math. Finance, 27 (2017), 471-504.
doi: 10.1111/mafi.12093.
|
[12]
|
X. T. Cui, X. J. Zheng, S. S. Zhu and X. L. Sun, Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems, J. Global Optim., 56 (2013), 1409-1423.
doi: 10.1007/s10898-012-9842-2.
|
[13]
|
X. Y. Cui, D. Li, S. Y. Wang and S. S. Zhu, Better than dynamic mean-variance: Time inconsistency and free cash flow stream, Math. Finance, 22 (2012), 346-378.
doi: 10.1111/j.1467-9965.2010.00461.x.
|
[14]
|
X. Y. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Trans. Automat. Control, 59 (2014), 1833-1844.
doi: 10.1109/TAC.2014.2311875.
|
[15]
|
C. Czichowsky, Time-consistent mean-variance portfolio selection in discrete and continuous time, Finance Stoch., 17 (2013), 227-271.
doi: 10.1007/s00780-012-0189-9.
|
[16]
|
G. F. Deng, W. T. Lin and C. C. Lo, Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization, Expert Systems with Appl., 39 (2012), 4558-4566.
doi: 10.1016/j.eswa.2011.09.129.
|
[17]
|
A. Fernández and S. Gómez, Portfolio selection using neural networks, Comput. Oper. Res., 34 (2005), 1177-1191.
doi: 10.1016/j.cor.2005.06.017.
|
[18]
|
J. J. Gao, D. Li, X. Y. Cui and S. Y. Wang, Time cardinality constrained mean-variance dynamic portfolio selection and market timing: A stochastic control approach, Automatica J., 54 (2015), 91-99.
doi: 10.1016/j.automatica.2015.01.040.
|
[19]
|
B. Heidergott, G. J. Olsder and J. V. Woude, Max Plus at Work. Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and its Applications, Princeton Series in Applied Mathematics, 48, Princeton University Press, Princeton, NJ, 2006.
doi: 10.1515/9781400865239.
|
[20]
|
H. A. Le Thi and M. Moeini, Long-short portfolio optimization under cardinality constraints by difference of convex functions algorithm, J. Optim. Theory Appl., 161 (2014), 199-224.
doi: 10.1007/s10957-012-0197-0.
|
[21]
|
H. A. Le Thi, M. Moeini and T. P. Dinh, Portfolio selection under downside risk measures and cardinality constraints based on DC programming and DCA, Comput. Manag. Sci., 6 (2009), 459-475.
doi: 10.1007/s10287-009-0098-3.
|
[22]
|
D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Math. Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100.
|
[23]
|
D. Li, X. Sun and J. Wang, Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection, Math. Finance, 16 (2006), 83-101.
doi: 10.1111/j.1467-9965.2006.00262.x.
|
[24]
|
A. Lioui, Time consistent vs. time inconsistent dynamic asset allocation: Some utility cost calculations for mean variance preferences, J. Econom. Dynam. Control, 37 (2013), 1066-1096.
doi: 10.1016/j.jedc.2013.01.007.
|
[25]
|
J. Liu and Z. Chen, Time consistent multi-period robust risk measures and portfolio selection models with regime-switching, European J. Oper. Res., 268 (2018), 373-385.
doi: 10.1016/j.ejor.2018.01.009.
|
[26]
|
F. M. Longin, From value at risk to stress testing: The extreme value approach, J. Banking Finance, 24 (2000), 1097-1130.
doi: 10.1016/S0378-4266(99)00077-1.
|
[27]
|
H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Monograph, 16, John Wiley & Sons, Inc., New York, 1959.
|
[28]
|
H. M. Markowitz, Portfolio selection analysis, J. Finance, 7 (1952), 77-91.
|
[29]
|
W. Murray and H. Shek, A local relaxation method for the cardinality constrained portfolio optimization problem, Comput. Optim. Appl., 53 (2012), 681-709.
doi: 10.1007/s10589-012-9471-1.
|
[30]
|
M. Ç. Pınar, Robust scenario optimization based on downside-risk measure for multi-period portfolio selection, OR Spectrum, 29 (2007), 295-309.
doi: 10.1007/s00291-005-0023-2.
|
[31]
|
B. Rudloff, A. Street and D. M. Valladō, Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences, European J. Oper. Res., 234 (2014), 743-750.
doi: 10.1016/j.ejor.2013.11.037.
|
[32]
|
R. Ruiz-Torrubiano and A. Suarez, Hybrid approaches and dimensionality reduction for portfolio selection with cardinality constrains, IEEE Comput. Intell. Magazine, 5 (2010), 92-107.
doi: 10.1109/MCI.2010.936308.
|
[33]
|
D. X. Shaw, S. Liu and L. Kopman, Lagrangian relaxation procedure for cardinality-constrained portfolio optimization, Optim. Methods Softw., 23 (2008), 411-420.
doi: 10.1080/10556780701722542.
|
[34]
|
M. Simkowitz and W. Beedles, Diversification in a three moment world, J. Financial Quantitative Anal., 13 (1978), 927-941.
doi: 10.2307/2330635.
|
[35]
|
H. Soleimani, H. R. Golmakani and M. H. Salimi, Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm, Expert Systems with Appl., 36 (2009), 5058-5063.
doi: 10.1016/j.eswa.2008.06.007.
|
[36]
|
X. L. Sun, X. J. Zheng and D. Li, Recent advances in mathematical programming with semi-continuous variables and cardinality constraint, J. Oper. Res. Soc. of China, 1 (2013), 55-77.
doi: 10.1007/s40305-013-0004-0.
|
[37]
|
E. Vercher and J. D. Bermúdez, A possibilistic mean-downside risk-skewness model for efficient portfolio selection, IEEE Transactions on Fuzzy Systems, 3 (2013), 585-595.
doi: 10.1109/TFUZZ.2012.2227487.
|
[38]
|
J. Wang and P. A. Forsyth, Continuous time mean variance asset allocation: A time-consistent strategy, European J. Oper. Res., 209 (2011), 184-201.
doi: 10.1016/j.ejor.2010.09.038.
|
[39]
|
J. Wei, K. C. Wong, S. C. P. Yam and S. P. Yung, Markowitz's mean-variance asset-liability management with regime switching: A time-consistent approach, Insurance Math. Econom., 53 (2013), 281-291.
doi: 10.1016/j.insmatheco.2013.05.008.
|
[40]
|
M. Woodside-Oriakhi, C. Lucas and J. E. Beasley, Heuristic algorithms for the cardinality constrained efficient frontier, European J. Oper. Res., 213 (2011), 538-550.
doi: 10.1016/j.ejor.2011.03.030.
|
[41]
|
H. Wu and H. Chen, Nash equilibrium strategy for a multi-period mean-variance portfolio selection problem with regime switching, Economic Modell., 46 (2015), 79-90.
doi: 10.1016/j.econmod.2014.12.024.
|
[42]
|
H. Wu and Y. Zeng, Equilibrium investment strategy for defined-contribution pension schemes with generalized mean-variance criterion and mortality risk, Insurance Math. Econom., 64 (2015), 396-408.
doi: 10.1016/j.insmatheco.2015.07.007.
|
[43]
|
W. Yan and S.R. Li, A class of multi-period semi-variance portfolio selection with a four-factor futures price model, J. Appl. Math. Comput., 29 (2009), 19-34.
doi: 10.1007/s12190-008-0086-8.
|
[44]
|
P. Zhang and W.-G. Zhang, Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints, Fuzzy Sets and Systems, 255 (2014), 74-91.
doi: 10.1016/j.fss.2014.07.018.
|
[45]
|
Z. Zhou, H. Xiao, J. Yin, X. Zeng and L. Lin, Pre-commitment vs. time-consistent strategies for the generalized multi-period portfolio optimization with stochastic cash flows, Insurance Math. Econom., 68 (2016), 187-202.
doi: 10.1016/j.insmatheco.2016.03.002.
|
[46]
|
S. S. Zhu, D. Li and S. Y. Wang, Risk control over bankruptcy in dynamic portfolio selection: A generalized mean-variance formulation, IEEE Trans. Automat. Control, 49 (2004), 447-457.
doi: 10.1109/TAC.2004.824474.
|