[1]
|
M. V. Afonso, J. M. Bioucas-Dias and and M. A. Figueiredo, Fast image recovery using variable splitting and constrained optimization, IEEE Trans. Image Process., 19 (2010), 2345-2356.
doi: 10.1109/TIP.2010.2047910.
|
[2]
|
N. Ahmed, T. Natarajan and and K. R. Rao, Discrete cosine transform, IEEE Trans. Comput., C-23 (1974), 90-93.
doi: 10.1109/T-C.1974.223784.
|
[3]
|
J. B. Baillon and G. Haddad, Quelques propriétés des opérateurs angle-bornés etn-cycliquement monotones, Israel J. Math., 26 (1977), 137-150.
doi: 10.1007/BF03007664.
|
[4]
|
H. H. Bauschke and P. L. Combettes, et al., Convex Analysis and Monotone Operator Theory in Hilbert Spaces, CMS Books in Mathematics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-48311-5.
|
[5]
|
A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Trans. Image Process., 18 (2009), 2419-2434.
doi: 10.1109/TIP.2009.2028250.
|
[6]
|
A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183-202.
doi: 10.1137/080716542.
|
[7]
|
A. Beck and M. Teboulle, A fast dual proximal gradient algorithm for convex minimization and applications, Oper. Res. Lett., 42 (2014), 1-6.
doi: 10.1016/j.orl.2013.10.007.
|
[8]
|
D. P. Bertsekas, Nonlinear Programming, Athena Scientific Optimization and Computation Series, Athena Scientific, Belmont, MA, 1999.
|
[9]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein and et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), 1-122.
doi: 10.1561/2200000016.
|
[10]
|
P. L. Combettes, Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, 53 (2004), 475-504.
doi: 10.1080/02331930412331327157.
|
[11]
|
P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168-1200.
doi: 10.1137/050626090.
|
[12]
|
J. Douglas and H. H. Rachford Jr., On the numerical solution of heat conduction problems in two and three space variables, Trans. Amer. Math. Soc., 82 (1956), 421-439.
doi: 10.1090/S0002-9947-1956-0084194-4.
|
[13]
|
J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204.
|
[14]
|
J. Eckstein and W. Yao, Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results, RUTCOR Research Reports, 32 (2012).
|
[15]
|
R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical Analysis, Lecture Notes in Math., 506, Springer, Berlin, 1976, 73–89.
doi: 10.1007/BFb0080116.
|
[16]
|
J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim., 2 (1992), 21-42.
doi: 10.1137/0802003.
|
[17]
|
R. Glowinski, Splitting methods for the numerical solution of the incompressible Navier-Stokes equations, in Vistas in Applied Mathematics, Optimization Software, New York, 1986, 57–95.
|
[18]
|
R. Glowinski, Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems, CBMS-NSF Regional Conference Series in Applied Mathematics, 86, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2015.
doi: 10.1137/1.9781611973785.ch1.
|
[19]
|
R. Glowinski, P. G. Ciarlet and J.-L. Lions, Numerical Methods for Fluids: Finite Element Methods for Incompressible Viscous Flow, North Holland, 2003.
|
[20]
|
R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
doi: 10.1137/1.9781611970838.
|
[21]
|
R. Glowinski, S. Leung and J. L. Qian, Operator-splitting based fast sweeping methods for isotropic wave propagation in a moving fluid, SIAM J. Sci. Comput., 38 (2016), A1195–A1223.
doi: 10.1137/15M1043868.
|
[22]
|
R. Glowinski and A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et larésolution, par pénalisation-dualité d'une classe de problèmes de dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975), 41–76.
doi: 10.1051/m2an/197509R200411.
|
[23]
|
R. Glowinski, S. J. Osher and W. T. Yin, Splitting Methods in Communication, Imaging, Science, and Engineering, Scientific Computation, Springer, Cham, 2016.
doi: 10.1007/978-3-319-41589-5.
|
[24]
|
T. Goldstein, B. O'Donoghue, S. Setzer and R. Baraniuk, Fast alternating direction optimization methods, SIAM J. Imaging Sci., 7 (2014), 1588-1623.
doi: 10.1137/120896219.
|
[25]
|
S. Haubruge, V. H. Nguyen and J. J. Strodiot, Convergence analysis and applications of the Glowinski–Le Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl., 97 (1998), 645-673.
doi: 10.1023/A:1022646327085.
|
[26]
|
B. S. He and X. M. Yuan, On the $O(1/n)$ convergence rate of the Douglas–Rachford alternating direction method, SIAM J. Numer. Anal., 50 (2012), 700-709.
doi: 10.1137/110836936.
|
[27]
|
P. Le Tallec, Numerical Analysis of Viscoelastic Problems, Research in Applied Mathematics, 15, Masson, Paris, 1990.
|
[28]
|
P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964-979.
doi: 10.1137/0716071.
|
[29]
|
G. I. Marchuk, Splitting and alternating direction methods, in Handbook of Numerical Analysis, Vol. I, Handb. Numer. Anal., 1, North-Holland, Amsterdam, 1990, 197–462.
|
[30]
|
C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), 43-71.
doi: 10.1145/355984.355989.
|
[31]
|
D. W. Peaceman and H. H. Rachford Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Indust. Appl. Math., 3 (1955), 28-41.
doi: 10.1137/0103003.
|
[32]
|
K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications, Academic Press, Inc., Boston, MA, 1990.
doi: 10.1016/c2009-0-22279-3.
|
[33]
|
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970.
|
[34]
|
R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), 267-288.
doi: 10.1111/j.2517-6161.1996.tb02080.x.
|
[35]
|
P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control Optim., 29 (1991), 119-138.
doi: 10.1137/0329006.
|
[36]
|
P. T. Vuong and J. J. Strodiot, The Glowinski–Le Tallec splitting method revisited in the framework of equilibrium problems in Hilbert spaces, J. Global Optim., 70 (2018), 477-495.
doi: 10.1007/s10898-017-0575-0.
|
[37]
|
H. R. Yue, Q. Z. Yang, X. F. Wang and X. M. Yuan, Implementing the alternating direction method of multipliers for big datasets: A case study of least absolute shrinkage and selection operator, SIAM J. Sci. Comput., 40 (2018), A3121–A3156.
doi: 10.1137/17M1146567.
|
[38]
|
C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
doi: 10.1142/9789812777096.
|
[39]
|
E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory. Ⅰ: Projections on convex sets; Ⅱ: Spectral theory, in Contributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, 237-424.
|