
-
Previous Article
Genetic algorithm for obstacle location-allocation problems with customer priorities
- JIMO Home
- This Issue
-
Next Article
Optimal control and stabilization of building maintenance units based on minimum principle
A lattice method for option evaluation with regime-switching asset correlation structure
Adam Smith Business School, University of Glasow, Glasgow G12 8QQ, UK |
This paper develops a lattice method for option evaluation in the presence of regime shifts in the correlation structure of assets, aiming at investigating whether the option prices reflect such shifts. We try to investigate whether option prices reflect switches in the correlation between the underlying asset of an option and risk-free rates.We develop and test two models.In the first model we allow all the parameters to follow a regime-switching process while in the second model, in order to isolate the regime-switching correlation effect on the option prices, we allow only the correlation to follow a regime-switching process. We use pentanomial lattices to represent the evolution of the regime-switching underlying assets. This is then applied in our empirical analysis, which focuses on crude oil. We use grid- and patternsearch based techniques to fit our models. Our findings suggest that prices of market traded options reflect the regime-switches and that a model which considers these switches produces significantly more accurate results than a single-regime model. We demonstrate that there is an asymmetry between parameter values obtained from historical data (backward looking) and those that are implied by traded options (for- ward looking) by employing the Kim filter to estimate our model.
References:
[1] |
N. P. B. Bollen, Valuing options in regime-switching models, Journal of Derivatives, 6 (1998), 38-49. Google Scholar |
[2] |
N. P. B. Bollen, S. F. Gray and R. E. Whaley, Regime switching in foreign exchange rates: Evidence from currency option prices, Journal of Econometrics, 94 (2000), 239-276. Google Scholar |
[3] |
P. P. Boyle, A Lattice Framework for Option Pricing with Two State variables, Journal of Financial and Quantitative Analysis, 1988. Google Scholar |
[4] |
J. C. Cox, S. A. Ross and M. Rubinstein,
Option pricing: A Simplified approach, Journal of Financial Economics, 7 (1979), 229-263.
|
[5] |
J. C. Duan,
A GARCH option pricing model, Mathematical Finance, 5 (1995), 13-32.
doi: 10.1111/j.1467-9965.1995.tb00099.x. |
[6] |
J. C. Duan, I. Popova and P. Ritchken,
Option pricing under regime switching, Quantitative Finance, 2 (2002), 116-132.
doi: 10.1088/1469-7688/2/2/303. |
[7] |
S. F. Gray, Modeling the conditional distribution of interest rates as a regime-switching process, Journal of Financial Economics, 42 (1996), 27-62. Google Scholar |
[8] |
J. D. Hamilton,
Rational expectations econometric analysis of changes in regime: An investigation of the term structure of interest rates,, Journal og Econometric Dynamics and Control, 12 (1988), 385-423.
doi: 10.1016/0165-1889(88)90047-4. |
[9] |
J. Hull and A. White, The pricing of options assets with stochastic volatilities, The Journal of Finance, 42 (1987), 281-300. Google Scholar |
[10] |
C. J. Kim,
Dynamic linear models with Markov-switching,, Journal of Econometrics, 60 (1994), 1-22.
doi: 10.1016/0304-4076(94)90036-1. |
[11] |
C. J. Kim, Charles R.Nelson State-Space Models with Regime Switching. Classical and Gibbs-Sampling Approaches with Applications, Massachusetts Institution of Technology, United States of America, 1999. Google Scholar |
[12] |
V. Naik, Option valuation and hedging strategies with jumps in the volatility of asset returns, The Journal of Finance, 47 (1993), 1969-1984. Google Scholar |
[13] |
G. W. Swhwert, Business cycles, financial crises, and risky asset volatility, Carnegie-Rochester Conference Series on Public Policy, 31 (1989), 83-126. Google Scholar |
[14] |
C. M. Turner, R. Startz and C. R. Nelson, A markov model of heteroscedasticity, riskm and learning in the risky asset market, Journal of Financial Economics, 25 (1989), 3-22. Google Scholar |
[15] |
D. D. Yao, Q. Zhang and X. Y. Zhou, A regime-switching model for european option pricing,, Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, Springer US, 94 (2006), 281–300.
doi: 10.1007/0-387-33815-2_14. |
show all references
References:
[1] |
N. P. B. Bollen, Valuing options in regime-switching models, Journal of Derivatives, 6 (1998), 38-49. Google Scholar |
[2] |
N. P. B. Bollen, S. F. Gray and R. E. Whaley, Regime switching in foreign exchange rates: Evidence from currency option prices, Journal of Econometrics, 94 (2000), 239-276. Google Scholar |
[3] |
P. P. Boyle, A Lattice Framework for Option Pricing with Two State variables, Journal of Financial and Quantitative Analysis, 1988. Google Scholar |
[4] |
J. C. Cox, S. A. Ross and M. Rubinstein,
Option pricing: A Simplified approach, Journal of Financial Economics, 7 (1979), 229-263.
|
[5] |
J. C. Duan,
A GARCH option pricing model, Mathematical Finance, 5 (1995), 13-32.
doi: 10.1111/j.1467-9965.1995.tb00099.x. |
[6] |
J. C. Duan, I. Popova and P. Ritchken,
Option pricing under regime switching, Quantitative Finance, 2 (2002), 116-132.
doi: 10.1088/1469-7688/2/2/303. |
[7] |
S. F. Gray, Modeling the conditional distribution of interest rates as a regime-switching process, Journal of Financial Economics, 42 (1996), 27-62. Google Scholar |
[8] |
J. D. Hamilton,
Rational expectations econometric analysis of changes in regime: An investigation of the term structure of interest rates,, Journal og Econometric Dynamics and Control, 12 (1988), 385-423.
doi: 10.1016/0165-1889(88)90047-4. |
[9] |
J. Hull and A. White, The pricing of options assets with stochastic volatilities, The Journal of Finance, 42 (1987), 281-300. Google Scholar |
[10] |
C. J. Kim,
Dynamic linear models with Markov-switching,, Journal of Econometrics, 60 (1994), 1-22.
doi: 10.1016/0304-4076(94)90036-1. |
[11] |
C. J. Kim, Charles R.Nelson State-Space Models with Regime Switching. Classical and Gibbs-Sampling Approaches with Applications, Massachusetts Institution of Technology, United States of America, 1999. Google Scholar |
[12] |
V. Naik, Option valuation and hedging strategies with jumps in the volatility of asset returns, The Journal of Finance, 47 (1993), 1969-1984. Google Scholar |
[13] |
G. W. Swhwert, Business cycles, financial crises, and risky asset volatility, Carnegie-Rochester Conference Series on Public Policy, 31 (1989), 83-126. Google Scholar |
[14] |
C. M. Turner, R. Startz and C. R. Nelson, A markov model of heteroscedasticity, riskm and learning in the risky asset market, Journal of Financial Economics, 25 (1989), 3-22. Google Scholar |
[15] |
D. D. Yao, Q. Zhang and X. Y. Zhou, A regime-switching model for european option pricing,, Stochastic Processes, Optimization, and Control Theory: Applications in Financial Engineering, Queueing Networks, and Manufacturing Systems, Springer US, 94 (2006), 281–300.
doi: 10.1007/0-387-33815-2_14. |






Jump | Probability | Underlying Asset Price |
Up | $ \pi_{u} $ | $ S_{u} $ |
Horizontal | $\pi_{0} $ | $ S $ |
Down | $ \pi_{d} $ | $ S_{d} $ |
Jump | Probability | Underlying Asset Price |
Up | $ \pi_{u} $ | $ S_{u} $ |
Horizontal | $\pi_{0} $ | $ S $ |
Down | $ \pi_{d} $ | $ S_{d} $ |
Event | Probability | Underlying Asset Price | |
Asset 1 | Asset 2 | ||
$ E_{1} $ | $ \pi_{1} $ | $ S_{p}u_{p} $ | $ S_{b}u_{b} $ |
$ E_{2} $ | $ \pi_{2} $ | $ S_{p}u_{p} $ | $ S_{b}d_{b} $ |
$ E_{3} $ | $ \pi_{3} $ | $ S_{p}d_{p} $ | $ S_{b}d_{b} $ |
$ E_{4} $ | $ \pi_{4} $ | $ S_{p}d_{p} $ | $ S_{b}u_{b} $ |
$ E_{5} $ | $ \pi_{5} $ | $ S_{p} $ | $ S_{b} $ |
Event | Probability | Underlying Asset Price | |
Asset 1 | Asset 2 | ||
$ E_{1} $ | $ \pi_{1} $ | $ S_{p}u_{p} $ | $ S_{b}u_{b} $ |
$ E_{2} $ | $ \pi_{2} $ | $ S_{p}u_{p} $ | $ S_{b}d_{b} $ |
$ E_{3} $ | $ \pi_{3} $ | $ S_{p}d_{p} $ | $ S_{b}d_{b} $ |
$ E_{4} $ | $ \pi_{4} $ | $ S_{p}d_{p} $ | $ S_{b}u_{b} $ |
$ E_{5} $ | $ \pi_{5} $ | $ S_{p} $ | $ S_{b} $ |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 4.9 | 3.881616 | 3.9936 |
17 | 2.85 | 3.127282 | 3.0613 |
18 | 2.35 | 2.373772 | 2.2162 |
19 | 1.65 | 1.629733 | 1.5029 |
20 | 0.95 | 0.949999 | 0.9500 |
21 | 0.4 | 0.399999 | 0.5587 |
22 | 0.2 | 0.200003 | 0.3059 |
23 | 0.2 | 0.136097 | 0.1565 |
24 | 0.1 | 0.105053 | 0.0750 |
25 | 0.15 | 0.088113 | 0.0339 |
Sum of absolute differences | 1.110163 | 2.573241 |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 4.9 | 3.881616 | 3.9936 |
17 | 2.85 | 3.127282 | 3.0613 |
18 | 2.35 | 2.373772 | 2.2162 |
19 | 1.65 | 1.629733 | 1.5029 |
20 | 0.95 | 0.949999 | 0.9500 |
21 | 0.4 | 0.399999 | 0.5587 |
22 | 0.2 | 0.200003 | 0.3059 |
23 | 0.2 | 0.136097 | 0.1565 |
24 | 0.1 | 0.105053 | 0.0750 |
25 | 0.15 | 0.088113 | 0.0339 |
Sum of absolute differences | 1.110163 | 2.573241 |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 5 | 4.4153631 | 4.3208036 |
17 | 3.8 | 3.7998973 | 3.5464351 |
18 | 2.45 | 2.3996588 | 2.8585724 |
19 | 2.25 | 1.9270998 | 2.2636265 |
20 | 1.6 | 1.5997621 | 1.7622281 |
21 | 1.35 | 1.3087541 | 1.3499542 |
22 | 0.95 | 1.0205032 | 1.0186664 |
23 | 1.05 | 1.1713058 | 0.7580323 |
24 | 0.6 | 0.6000609 | 0.5569055 |
25 | 0.5 | 0.4960518 | 0.4043912 |
Sum of absolute differences | 0.4890502 | 1.1145081 |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 5 | 4.4153631 | 4.3208036 |
17 | 3.8 | 3.7998973 | 3.5464351 |
18 | 2.45 | 2.3996588 | 2.8585724 |
19 | 2.25 | 1.9270998 | 2.2636265 |
20 | 1.6 | 1.5997621 | 1.7622281 |
21 | 1.35 | 1.3087541 | 1.3499542 |
22 | 0.95 | 1.0205032 | 1.0186664 |
23 | 1.05 | 1.1713058 | 0.7580323 |
24 | 0.6 | 0.6000609 | 0.5569055 |
25 | 0.5 | 0.4960518 | 0.4043912 |
Sum of absolute differences | 0.4890502 | 1.1145081 |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 5 | 4.4153631 | 4.3208036 |
17 | 3.8 | 3.7998973 | 3.5464351 |
18 | 2.45 | 2.3996588 | 2.8585724 |
19 | 2.25 | 1.9270998 | 2.2636265 |
20 | 1.6 | 1.5997621 | 1.7622281 |
21 | 1.35 | 1.3087541 | 1.3499542 |
22 | 0.95 | 1.0205032 | 1.0186664 |
23 | 1.05 | 1.1713058 | 0.7580323 |
24 | 0.6 | 0.6000609 | 0.5569055 |
25 | 0.5 | 0.4960518 | 0.4043912 |
Sum of absolute differences | 0.4890502 | 1.1145081 |
Strike Price | Market Price | Predicted by Lattice | Predicted by BS |
16 | 5 | 4.4153631 | 4.3208036 |
17 | 3.8 | 3.7998973 | 3.5464351 |
18 | 2.45 | 2.3996588 | 2.8585724 |
19 | 2.25 | 1.9270998 | 2.2636265 |
20 | 1.6 | 1.5997621 | 1.7622281 |
21 | 1.35 | 1.3087541 | 1.3499542 |
22 | 0.95 | 1.0205032 | 1.0186664 |
23 | 1.05 | 1.1713058 | 0.7580323 |
24 | 0.6 | 0.6000609 | 0.5569055 |
25 | 0.5 | 0.4960518 | 0.4043912 |
Sum of absolute differences | 0.4890502 | 1.1145081 |
Strike | Price | Predicted |
16 | 4.9 | 1.625144372 |
17 | 2.85 | 1.269327353 |
18 | 2.35 | 0.940833993 |
19 | 1.65 | 0.626509398 |
20 | 0.95 | 0.420399871 |
21 | 0.4 | 0.245524212 |
22 | 0.2 | 0.158808617 |
23 | 0.2 | 0.079890983 |
24 | 0.1 | 0.045583587 |
25 | 0.15 | 0.023566284 |
Strike | Price | Predicted |
16 | 4.9 | 1.625144372 |
17 | 2.85 | 1.269327353 |
18 | 2.35 | 0.940833993 |
19 | 1.65 | 0.626509398 |
20 | 0.95 | 0.420399871 |
21 | 0.4 | 0.245524212 |
22 | 0.2 | 0.158808617 |
23 | 0.2 | 0.079890983 |
24 | 0.1 | 0.045583587 |
25 | 0.15 | 0.023566284 |
[1] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[2] |
Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021069 |
[3] |
Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021077 |
[4] |
Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021080 |
[5] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[6] |
Qing-Qing Yang, Wai-Ki Ching, Wan-Hua He, Na Song. Effect of institutional deleveraging on option valuation problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2097-2118. doi: 10.3934/jimo.2020060 |
[7] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021035 |
[8] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[9] |
Chong Wang, Xu Chen. Fresh produce price-setting newsvendor with bidirectional option contracts. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021052 |
[10] |
Liviana Palmisano, Bertuel Tangue Ndawa. A phase transition for circle maps with a flat spot and different critical exponents. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021067 |
[11] |
Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021008 |
[12] |
Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341 |
[13] |
Lu Li. On a coupled Cahn–Hilliard/Cahn–Hilliard model for the proliferative-to-invasive transition of hypoxic glioma cells. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021032 |
[14] |
Peng Tong, Xiaogang Ma. Design of differentiated warranty coverage that considers usage rate and service option of consumers under 2D warranty policy. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1577-1591. doi: 10.3934/jimo.2020035 |
[15] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402 |
[16] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[17] |
Lianbing She, Nan Liu, Xin Li, Renhai Wang. Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, , () : -. doi: 10.3934/era.2021028 |
[18] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[19] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[20] |
Jiahui Chen, Rundong Zhao, Yiying Tong, Guo-Wei Wei. Evolutionary de Rham-Hodge method. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3785-3821. doi: 10.3934/dcdsb.2020257 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]