• Previous Article
    Adaptive large neighborhood search Algorithm for route planning of freight buses with pickup and delivery
  • JIMO Home
  • This Issue
  • Next Article
    A lattice method for option evaluation with regime-switching asset correlation structure
July  2021, 17(4): 1753-1769. doi: 10.3934/jimo.2020044

Genetic algorithm for obstacle location-allocation problems with customer priorities

1. 

Department of Industrial Management, School of Management and Accounting, Shahid Beheshti University, G.C., Tehran, Iran

2. 

Mario J. Gabelli School of Business, Roger Williams University, 1 Old Ferry Road, Bristol, RI 02809, USA

3. 

Kar Higher Education Institute, Tehran, Iran

Corresponding author: Mostafa Zandieh

Received  August 2018 Revised  June 2019 Published  July 2021 Early access  March 2020

In this paper we propose a metaheuristic approach to solve a customer priority based location-allocation problem in presence of obstacles and location-dependent supplier capacities. In many network optimization problems presence of obstacles prohibits feasibility of a regular network design. This includes a wide range of applications including disaster relief and pandemic disease containment problems in healthcare management. We focus on this application since fast and efficient allocation of suppliers to demand nodes is a critical process that impacts the results of the containment strategy. In this study, we propose an integrated mixed-integer program with location-based capacity decisions that considers customer priorities in the network design. We propose an efficient multi-stage genetic algorithm that solves the problem in continuous space. The computational findings show the best allocation strategies derived from proposed algorithms.

Citation: Ashkan Ayough, Farbod Farhadi, Mostafa Zandieh, Parisa Rastkhadiv. Genetic algorithm for obstacle location-allocation problems with customer priorities. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1753-1769. doi: 10.3934/jimo.2020044
References:
[1]

A. Ahmadi-JavidP. Seyedi and S. S. Syam, A survey of healthcare facility location, Computers and Operations Research, 79 (2017), 223-263.  doi: 10.1016/j.cor.2016.05.018.

[2]

H. Alt and E. Welzl, Visibility graphs and obstacle-avoiding shortest paths, Mathematical Methods of Operations Research, 32 (1988), 145-164.  doi: 10.1007/BF01928918.

[3]

Y. P. Aneja and M. Parlar, Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel, Transportation Science, 28 (1994), 70-76.  doi: 10.1287/trsc.28.1.70.

[4]

A. B. Arabani and R. Z. Farahani, Facility location dynamics: An overview of classifications and applications, Computers and Industrial Engineering, 62 (2012), 408-420. 

[5]

J. BrimbergP. HansenN. Mladenović and E. D. Taillard, Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem, Operations Research, 48 (2000), 444-460.  doi: 10.1287/opre.48.3.444.12431.

[6]

S. E. Butt and T. M. Cavalier, An efficient algorithm for facility location in the presence of forbidden regions, European Journal of Operational Research, 90 (1996), 56-70.  doi: 10.1016/0377-2217(94)00297-5.

[7]

E. DurmazN. Aras and İ. K. Altınel, Discrete approximation heuristics for the capacitated continuous locationallocation problem with probabilistic customer locations, Computers and Operations Research, 36 (2009), 2139-2148.  doi: 10.1016/j.cor.2008.08.003.

[8]

D. GongM. GenW. Xu and G. Yamazaki, Hybrid evolutionary method for obstacle location-allocation problem, Computers and Industrial Engineering, 29 (1995), 525-530. 

[9]

D. J. GongM. GenG. Yamazaki and W. X. Xu, Hybrid evolutionary method for capacitated location-allocation problem, Computers and Industrial Engineering, 33 (1997), 577-580.  doi: 10.1016/S0360-8352(97)00197-6.

[10]

S. C. Ho, An iterated tabu search heuristic for the single source capacitated facility location problem, Applied Soft Computing, 27 (2015), 169-178.  doi: 10.1016/j.asoc.2014.11.004.

[11]

C. R. HouckJ. A. Joines and M. G. Kay, Comparison of genetic algorithms, random restart and two-opt switching for solving large location-allocation problems, Computers and Operations Research, 23 (1996), 587-596.  doi: 10.1016/0305-0548(95)00063-1.

[12]

J. H. JaramilloJ. Bhadury and R. Batta, On the use of genetic algorithms to solve location problems, Computers and Operations Research, 29 (2002), 761-779.  doi: 10.1016/S0305-0548(01)00021-1.

[13]

J. KalcsicsS. NickelM. A. PozoJ. Puerto and A. M. Rodríguez-Chía, The multicriteria $p$-facility median location problem on networks, European Journal of Operational Research, 235 (2014), 484-493.  doi: 10.1016/j.ejor.2014.01.003.

[14]

I. N. Katz and L. Cooper, Facility location in the presence of forbidden regions. I: Formulation and the case of Euclidean distance with one forbidden circle, European Journal of Operational Research, 6 (1981), 166-173.  doi: 10.1016/0377-2217(81)90203-4.

[15]

K. Klamroth, A reduction result for location problems with polyhedral barriers, European Journal of Operational Research, 130 (2001), 486-497.  doi: 10.1016/S0377-2217(99)00399-9.

[16]

J. Krarup and P. M. Pruzan, The simple plant location problem: Survey and synthesis, European Journal of Operational Research, 12 (1983), 36-81.  doi: 10.1016/0377-2217(83)90181-9.

[17]

R. E. Kuenne and R. M. Soland, Exact and approximate solutions to the multisource Weber problem, Mathematical Programming, 3 (1972), 193-209.  doi: 10.1007/BF01584989.

[18]

G. LaporteF. V. Louveaux and L. van Hamme, Exact solution to a location problem with stochastic demands, Transportation Science, 28 (1994), 95-103.  doi: 10.1287/trsc.28.2.95.

[19]

G. Laporte, S. Nickel and F. S. da Gama, Location Science, Springer, Berlin, 2015. doi: 978-3-319-13111-5.

[20]

R. C. Larson and G. Sadiq, Facility locations with the Manhattan metric in the presence of barriers to travel, Operations Research, 31 (1983), 652-669.  doi: 10.1287/opre.31.4.652.

[21]

B. LiI. HernandezA. B. Milburn and J. E. Ramirez-Marquez, Integrating uncertain user-generated demand data when locating facilities for disaster response commodity distribution, Socio-Economic Planning Sciences, 62 (2018), 84-103.  doi: 10.1016/j.seps.2017.09.003.

[22]

R. Logendran and M. P. Terrell, Uncapacitated plant location-allocation problems with price sensitive stochastic demands, Computers and Operations Research, 15 (1988), 189-198.  doi: 10.1016/0305-0548(88)90011-1.

[23]

R. G. McGarvey and T. M. Cavalier, A global optimal approach to facility location in the presence of forbidden regions, Computers and Industrial Engineering, 45 (2003), 1-15.  doi: 10.1016/S0360-8352(03)00028-7.

[24]

M. T. MeloS. Nickel and F. Saldanha-da-Gama, Facility location and supply chain management - a review, European journal of operational research, 196 (2009), 401-412.  doi: 10.1016/j.ejor.2008.05.007.

[25]

S. M. MousaviS. T. A. NiakiE. Mehdizadeh and M. R. Tavarroth, The capacitated multi-facility locationallocation problem with probabilistic customer location and demand: Two hybrid metaheuristics algorithms, International Journal of Systems Science, 44 (2013), 1897-1912.  doi: 10.1080/00207721.2012.670301.

[26]

J. A. Paul and R. Batta, Models for hospital location and capacity allocation for an area prone to natural disasters, International Journal of Operational Research, 3 (2008), 473-496.  doi: 10.1504/IJOR.2008.019170.

[27]

F. Pérez-Galarce, L. J. Canales, C. Vergara and A. Candia-Véjar, An optimization model for the location of disaster refuges, Socio-Economic Planning Sciences, 59 (2017), 56-66.

[28]

C. S. ReVelle and H. A. Eiselt, Location analysis: A synthesis and survey, European Journal of Operational Research, 165 (2005), 1-19.  doi: 10.1016/j.ejor.2003.11.032.

[29]

C. S. ReVelleH. A. Eiselt and M. S. Daskin, A bibliography for some fundamental problem categories in discrete location science, European Journal of Operational Research, 184 (2008), 817-848.  doi: 10.1016/j.ejor.2006.12.044.

[30]

S. Salhi and M. D. H. Gamal, A genetic algorithm based approach for the uncapacitated continuous locationallocation problem, Annals of Operations Research, 123 (2003), 203-222.  doi: 10.1023/A:1026131531250.

[31]

T. SantosoS. AhmedM. Goetschalckx and A. Shapiro, A stochastic programming approach for supply chain network design under uncertainty, European Journal of Operational Research, 167 (2005), 96-115.  doi: 10.1016/j.ejor.2004.01.046.

[32]

A. Schöbel, Location of Dimensional Facilities in a Continuous Space, in: Laporte G., Nickel S., Saldanha da Gama F. (eds), Location Science, Berlin: Springer, 2015.

[33]

S. R. ShariffN. H. Moin and M. Omar, Location allocation modeling for healthcare facility planning in Malaysia, Computers and Industrial Engineering, 62 (2012), 1000-1010.  doi: 10.1016/j.cie.2011.12.026.

[34]

H. D. SheraliT. B. Carter and A. G. Hobeika, A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions, Transportation Research Part B: Methodological, 25 (1991), 439-452.  doi: 10.1016/0191-2615(91)90037-J.

[35]

Z. Stanimirović, A genetic algorithm approach for the capacitated single allocation p-hub median problem, Computing and Informatics, 29 (2012), 117-132. 

[36]

J. TaniguchiX. WangM. Gen and T. Yokota, Hybrid genetic algorithm with fuzzy logic controller for obstacle location-allocation problem, IEEJ Transactions on Electronics, Information and Systems, 124 (2004), 2027-2033. 

[37]

A. Verma and G. M. Gaukler, Pre-positioning disaster response facilities at safe locations: An evaluation of deterministic and stochastic modeling approaches, Computers and Operations Research, 62 (2015), 197-209.  doi: 10.1016/j.cor.2014.10.006.

[38]

N. Vidyarthi and S. Jayaswal, Efficient solution of a class of locationallocation problems with stochastic demand and congestion, Computers and Operations Research, 48 (2014), 20-30.  doi: 10.1016/j.cor.2014.02.014.

[39]

J. Zhou and B. D. Liu, New stochastic models for capacitated location-allocation problem, Computers and Industrial Engineering, 45 (2003), 111-125.  doi: 10.1016/S0360-8352(03)00021-4.

show all references

References:
[1]

A. Ahmadi-JavidP. Seyedi and S. S. Syam, A survey of healthcare facility location, Computers and Operations Research, 79 (2017), 223-263.  doi: 10.1016/j.cor.2016.05.018.

[2]

H. Alt and E. Welzl, Visibility graphs and obstacle-avoiding shortest paths, Mathematical Methods of Operations Research, 32 (1988), 145-164.  doi: 10.1007/BF01928918.

[3]

Y. P. Aneja and M. Parlar, Algorithms for Weber facility location in the presence of forbidden regions and/or barriers to travel, Transportation Science, 28 (1994), 70-76.  doi: 10.1287/trsc.28.1.70.

[4]

A. B. Arabani and R. Z. Farahani, Facility location dynamics: An overview of classifications and applications, Computers and Industrial Engineering, 62 (2012), 408-420. 

[5]

J. BrimbergP. HansenN. Mladenović and E. D. Taillard, Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem, Operations Research, 48 (2000), 444-460.  doi: 10.1287/opre.48.3.444.12431.

[6]

S. E. Butt and T. M. Cavalier, An efficient algorithm for facility location in the presence of forbidden regions, European Journal of Operational Research, 90 (1996), 56-70.  doi: 10.1016/0377-2217(94)00297-5.

[7]

E. DurmazN. Aras and İ. K. Altınel, Discrete approximation heuristics for the capacitated continuous locationallocation problem with probabilistic customer locations, Computers and Operations Research, 36 (2009), 2139-2148.  doi: 10.1016/j.cor.2008.08.003.

[8]

D. GongM. GenW. Xu and G. Yamazaki, Hybrid evolutionary method for obstacle location-allocation problem, Computers and Industrial Engineering, 29 (1995), 525-530. 

[9]

D. J. GongM. GenG. Yamazaki and W. X. Xu, Hybrid evolutionary method for capacitated location-allocation problem, Computers and Industrial Engineering, 33 (1997), 577-580.  doi: 10.1016/S0360-8352(97)00197-6.

[10]

S. C. Ho, An iterated tabu search heuristic for the single source capacitated facility location problem, Applied Soft Computing, 27 (2015), 169-178.  doi: 10.1016/j.asoc.2014.11.004.

[11]

C. R. HouckJ. A. Joines and M. G. Kay, Comparison of genetic algorithms, random restart and two-opt switching for solving large location-allocation problems, Computers and Operations Research, 23 (1996), 587-596.  doi: 10.1016/0305-0548(95)00063-1.

[12]

J. H. JaramilloJ. Bhadury and R. Batta, On the use of genetic algorithms to solve location problems, Computers and Operations Research, 29 (2002), 761-779.  doi: 10.1016/S0305-0548(01)00021-1.

[13]

J. KalcsicsS. NickelM. A. PozoJ. Puerto and A. M. Rodríguez-Chía, The multicriteria $p$-facility median location problem on networks, European Journal of Operational Research, 235 (2014), 484-493.  doi: 10.1016/j.ejor.2014.01.003.

[14]

I. N. Katz and L. Cooper, Facility location in the presence of forbidden regions. I: Formulation and the case of Euclidean distance with one forbidden circle, European Journal of Operational Research, 6 (1981), 166-173.  doi: 10.1016/0377-2217(81)90203-4.

[15]

K. Klamroth, A reduction result for location problems with polyhedral barriers, European Journal of Operational Research, 130 (2001), 486-497.  doi: 10.1016/S0377-2217(99)00399-9.

[16]

J. Krarup and P. M. Pruzan, The simple plant location problem: Survey and synthesis, European Journal of Operational Research, 12 (1983), 36-81.  doi: 10.1016/0377-2217(83)90181-9.

[17]

R. E. Kuenne and R. M. Soland, Exact and approximate solutions to the multisource Weber problem, Mathematical Programming, 3 (1972), 193-209.  doi: 10.1007/BF01584989.

[18]

G. LaporteF. V. Louveaux and L. van Hamme, Exact solution to a location problem with stochastic demands, Transportation Science, 28 (1994), 95-103.  doi: 10.1287/trsc.28.2.95.

[19]

G. Laporte, S. Nickel and F. S. da Gama, Location Science, Springer, Berlin, 2015. doi: 978-3-319-13111-5.

[20]

R. C. Larson and G. Sadiq, Facility locations with the Manhattan metric in the presence of barriers to travel, Operations Research, 31 (1983), 652-669.  doi: 10.1287/opre.31.4.652.

[21]

B. LiI. HernandezA. B. Milburn and J. E. Ramirez-Marquez, Integrating uncertain user-generated demand data when locating facilities for disaster response commodity distribution, Socio-Economic Planning Sciences, 62 (2018), 84-103.  doi: 10.1016/j.seps.2017.09.003.

[22]

R. Logendran and M. P. Terrell, Uncapacitated plant location-allocation problems with price sensitive stochastic demands, Computers and Operations Research, 15 (1988), 189-198.  doi: 10.1016/0305-0548(88)90011-1.

[23]

R. G. McGarvey and T. M. Cavalier, A global optimal approach to facility location in the presence of forbidden regions, Computers and Industrial Engineering, 45 (2003), 1-15.  doi: 10.1016/S0360-8352(03)00028-7.

[24]

M. T. MeloS. Nickel and F. Saldanha-da-Gama, Facility location and supply chain management - a review, European journal of operational research, 196 (2009), 401-412.  doi: 10.1016/j.ejor.2008.05.007.

[25]

S. M. MousaviS. T. A. NiakiE. Mehdizadeh and M. R. Tavarroth, The capacitated multi-facility locationallocation problem with probabilistic customer location and demand: Two hybrid metaheuristics algorithms, International Journal of Systems Science, 44 (2013), 1897-1912.  doi: 10.1080/00207721.2012.670301.

[26]

J. A. Paul and R. Batta, Models for hospital location and capacity allocation for an area prone to natural disasters, International Journal of Operational Research, 3 (2008), 473-496.  doi: 10.1504/IJOR.2008.019170.

[27]

F. Pérez-Galarce, L. J. Canales, C. Vergara and A. Candia-Véjar, An optimization model for the location of disaster refuges, Socio-Economic Planning Sciences, 59 (2017), 56-66.

[28]

C. S. ReVelle and H. A. Eiselt, Location analysis: A synthesis and survey, European Journal of Operational Research, 165 (2005), 1-19.  doi: 10.1016/j.ejor.2003.11.032.

[29]

C. S. ReVelleH. A. Eiselt and M. S. Daskin, A bibliography for some fundamental problem categories in discrete location science, European Journal of Operational Research, 184 (2008), 817-848.  doi: 10.1016/j.ejor.2006.12.044.

[30]

S. Salhi and M. D. H. Gamal, A genetic algorithm based approach for the uncapacitated continuous locationallocation problem, Annals of Operations Research, 123 (2003), 203-222.  doi: 10.1023/A:1026131531250.

[31]

T. SantosoS. AhmedM. Goetschalckx and A. Shapiro, A stochastic programming approach for supply chain network design under uncertainty, European Journal of Operational Research, 167 (2005), 96-115.  doi: 10.1016/j.ejor.2004.01.046.

[32]

A. Schöbel, Location of Dimensional Facilities in a Continuous Space, in: Laporte G., Nickel S., Saldanha da Gama F. (eds), Location Science, Berlin: Springer, 2015.

[33]

S. R. ShariffN. H. Moin and M. Omar, Location allocation modeling for healthcare facility planning in Malaysia, Computers and Industrial Engineering, 62 (2012), 1000-1010.  doi: 10.1016/j.cie.2011.12.026.

[34]

H. D. SheraliT. B. Carter and A. G. Hobeika, A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions, Transportation Research Part B: Methodological, 25 (1991), 439-452.  doi: 10.1016/0191-2615(91)90037-J.

[35]

Z. Stanimirović, A genetic algorithm approach for the capacitated single allocation p-hub median problem, Computing and Informatics, 29 (2012), 117-132. 

[36]

J. TaniguchiX. WangM. Gen and T. Yokota, Hybrid genetic algorithm with fuzzy logic controller for obstacle location-allocation problem, IEEJ Transactions on Electronics, Information and Systems, 124 (2004), 2027-2033. 

[37]

A. Verma and G. M. Gaukler, Pre-positioning disaster response facilities at safe locations: An evaluation of deterministic and stochastic modeling approaches, Computers and Operations Research, 62 (2015), 197-209.  doi: 10.1016/j.cor.2014.10.006.

[38]

N. Vidyarthi and S. Jayaswal, Efficient solution of a class of locationallocation problems with stochastic demand and congestion, Computers and Operations Research, 48 (2014), 20-30.  doi: 10.1016/j.cor.2014.02.014.

[39]

J. Zhou and B. D. Liu, New stochastic models for capacitated location-allocation problem, Computers and Industrial Engineering, 45 (2003), 111-125.  doi: 10.1016/S0360-8352(03)00021-4.

Figure 1.  Obstacle and the marginal area
Figure 2.  Alternative connecting paths around an obstacle
Figure 3.  Visibility graph method around the obstacles
Figure 4.  Type two chromosome crossover
Figure 5.  Supplier and demand network in the sample
Figure 6.  Convergence of GCOLAP1 and GCOLAP2 on the sample
Table 1.  Sample instance from randomly generated instances
Parameter Value
Number of customers 17
Number of distribution centers 3
Number of forbidden areas 1
The radius of margin 15
The coordinates of margin center (50, 30)
Number of corners of each of regions 5
Parameter Value
Number of customers 17
Number of distribution centers 3
Number of forbidden areas 1
The radius of margin 15
The coordinates of margin center (50, 30)
Number of corners of each of regions 5
Table 2.  Summary of computational results on randomly generated instances
Objective Function
Instance m n R-SCOLAP SCOLAP GCOLAP1 GCOLAP2 MIP gap GA gap
1 2 8 0.0435 19.41 25.44 26.96 0 0.31
2 2 10 0.0443 30.56 36.57 34.21 0 0.2
3 2 12 0.0424 33.26 39.18 47.41 0 0.18
4 2 15 0.0493 65.52 80.89 77.46 0 0.23
5 3 17 0.0443 65.5 87.34 105.68 0 0.33
6 3 20 0.0542 138.12 177.07 139.72 0.00009 0.28
7 3 25 0.0677 163.25 209.29 214.77 0.0001 0.28
8 3 30 0.0723 273.86 329.96 277.23 0.00254 0.2
9 4 35 0.0738 - 249.24 501.61 - -
10 4 40 0.0881 - 387.83 500.64 - -
11 4 44 0.0733 - 618.62 645.86 - -
12 5 47 0.077 - 721.32 941.63 - -
13 5 50 0.138 - 835.72 1122.76 - -
14 5 55 0.0971 - 854.85 1025.11 - -
15 6 60 0.1343 - 1542.82 1825.43 - -
16 6 65 0.1067 - 1382.88 1738.93 - -
17 7 70 0.1536 - 1699.78 2836.1 - -
18 7 74 0.1206 - 2021.15 2590.2 - -
19 8 78 0.1088 - 2145.16 3079.13 - -
20 8 82 0.1156 - 3210.13 3450.84 - -
Objective Function
Instance m n R-SCOLAP SCOLAP GCOLAP1 GCOLAP2 MIP gap GA gap
1 2 8 0.0435 19.41 25.44 26.96 0 0.31
2 2 10 0.0443 30.56 36.57 34.21 0 0.2
3 2 12 0.0424 33.26 39.18 47.41 0 0.18
4 2 15 0.0493 65.52 80.89 77.46 0 0.23
5 3 17 0.0443 65.5 87.34 105.68 0 0.33
6 3 20 0.0542 138.12 177.07 139.72 0.00009 0.28
7 3 25 0.0677 163.25 209.29 214.77 0.0001 0.28
8 3 30 0.0723 273.86 329.96 277.23 0.00254 0.2
9 4 35 0.0738 - 249.24 501.61 - -
10 4 40 0.0881 - 387.83 500.64 - -
11 4 44 0.0733 - 618.62 645.86 - -
12 5 47 0.077 - 721.32 941.63 - -
13 5 50 0.138 - 835.72 1122.76 - -
14 5 55 0.0971 - 854.85 1025.11 - -
15 6 60 0.1343 - 1542.82 1825.43 - -
16 6 65 0.1067 - 1382.88 1738.93 - -
17 7 70 0.1536 - 1699.78 2836.1 - -
18 7 74 0.1206 - 2021.15 2590.2 - -
19 8 78 0.1088 - 2145.16 3079.13 - -
20 8 82 0.1156 - 3210.13 3450.84 - -
[1]

Jean-Paul Arnaout, Georges Arnaout, John El Khoury. Simulation and optimization of ant colony optimization algorithm for the stochastic uncapacitated location-allocation problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1215-1225. doi: 10.3934/jimo.2016.12.1215

[2]

Gaidi Li, Zhen Wang, Dachuan Xu. An approximation algorithm for the $k$-level facility location problem with submodular penalties. Journal of Industrial and Management Optimization, 2012, 8 (3) : 521-529. doi: 10.3934/jimo.2012.8.521

[3]

Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2783-2804. doi: 10.3934/jimo.2020094

[4]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056

[5]

Guowei Hua, Shouyang Wang, Chi Kin Chan, S. H. Hou. A fractional programming model for international facility location. Journal of Industrial and Management Optimization, 2009, 5 (3) : 629-649. doi: 10.3934/jimo.2009.5.629

[6]

Liping Zhang, Soon-Yi Wu. Robust solutions to Euclidean facility location problems with uncertain data. Journal of Industrial and Management Optimization, 2010, 6 (4) : 751-760. doi: 10.3934/jimo.2010.6.751

[7]

Gbeminiyi John Oyewole, Olufemi Adetunji. Solving the facility location and fixed charge solid transportation problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1557-1575. doi: 10.3934/jimo.2020034

[8]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1247-1259. doi: 10.3934/jimo.2021017

[9]

Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391

[10]

Fan Zhang, Guifa Teng, Mengmeng Gao, Shuai Zhang, Jingjing Zhang. Multi-machine and multi-task emergency allocation algorithm based on precedence rules. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1501-1513. doi: 10.3934/dcdss.2019103

[11]

Saber Shiripour, Nezam Mahdavi-Amiri. Median location problem with two probabilistic line barriers: Extending the Hook and Jeeves algorithm. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021128

[12]

Giuseppe Buttazzo, Serena Guarino Lo Bianco, Fabrizio Oliviero. Optimal location problems with routing cost. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1301-1317. doi: 10.3934/dcds.2014.34.1301

[13]

Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517

[14]

Maryam Esmaeili, Samane Sedehzade. Designing a hub location and pricing network in a competitive environment. Journal of Industrial and Management Optimization, 2020, 16 (2) : 653-667. doi: 10.3934/jimo.2018172

[15]

Dandan Hu, Zhi-Wei Liu. Location and capacity design of congested intermediate facilities in networks. Journal of Industrial and Management Optimization, 2016, 12 (2) : 449-470. doi: 10.3934/jimo.2016.12.449

[16]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems and Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[17]

Sarah Ibri. An efficient distributed optimization and coordination protocol: Application to the emergency vehicle management. Journal of Industrial and Management Optimization, 2015, 11 (1) : 41-63. doi: 10.3934/jimo.2015.11.41

[18]

Xiang-Sheng Wang, Haiyan Wang, Jianhong Wu. Traveling waves of diffusive predator-prey systems: Disease outbreak propagation. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3303-3324. doi: 10.3934/dcds.2012.32.3303

[19]

Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261

[20]

Leonid Berlyand, Volodymyr Rybalko, Nung Kwan Yip. Renormalized Ginzburg-Landau energy and location of near boundary vortices. Networks and Heterogeneous Media, 2012, 7 (1) : 179-196. doi: 10.3934/nhm.2012.7.179

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (537)
  • HTML views (896)
  • Cited by (0)

[Back to Top]