• Previous Article
    A note on optimization modelling of piecewise linear delay costing in the airline industry
  • JIMO Home
  • This Issue
  • Next Article
    Adaptive large neighborhood search Algorithm for route planning of freight buses with pickup and delivery
July  2021, 17(4): 1795-1807. doi: 10.3934/jimo.2020046

Network data envelopment analysis with fuzzy non-discretionary factors

1. 

Department of International Business, Kao Yuan University, Kaohsiung, 82151, Taiwan

2. 

Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung, 84001, Taiwan

3. 

Department of Applied Mathematics, Tunghai University, Taichung 40704, Taiwan

4. 

Department of Applied Mathematics, National Chiayi University, Chiayi, 60004, Taiwan

* Corresponding author: C.-F. Hu

Received  January 2019 Revised  September 2019 Published  March 2020

Network data envelopment analysis (DEA) concerns using the DEA technique to measure the relative efficiency of a system, taking into account its internal structure. The results are more meaningful and informative than those obtained from the conventional DEA models. This work proposed a new network DEA model based on the fuzzy concept even though the inputs and outputs data are crisp numbers. The model is then extended to investigate the network DEA with fuzzy non-discretionary variables. An illustrative application assessing the impact of information technology (IT) on firm performance is included. The results reveal that modeling the IT budget as a fuzzy non-discretionary factor improves the system performance of firms in a banking industry.

Citation: Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046
References:
[1]

R. D. Banker and R. Morey, Efficiency analysis for exogenously fixed inputs and outputs, Oper. Res., 34 (1986), 501-653.  doi: 10.1287/opre.34.4.513.  Google Scholar

[2]

M. BaratG. Tohidi and M. Sanei, DEA for nonhomogeneous mixed networks, Asia Pac. Manag. Rev., 24 (2018), 161-166.  doi: 10.1016/j.apmrv.2018.02.003.  Google Scholar

[3]

R. E. Bellman and L. A. Zadeh, Decision making in a fuzzy environment, Manag. Sci., 17 (1970), B141–B164. doi: 10.1287/mnsc.17.4.B141.  Google Scholar

[4]

L. CastelliR. Pesenti and W. Ukovich, DEA-like models for the efficiency evaluation of hierarchically structured units, Eur. J. Oper. Res., 154 (2004), 465-476.  doi: 10.1016/S0377-2217(03)00182-6.  Google Scholar

[5]

J. Zhu, Data Envelopment Analysis: A Handbook of Modeling Internal Structures and Networks, International Series in Operations Research & Management Science, 238. Springer, New York, 2016. doi: 10.1007/978-1-4899-7684-0.  Google Scholar

[6]

J. M. Cordero-FerreraF. Pedraja-Chaparro and D. Santín-González, Enhancing the inclusion of non-discretionary inputs in DEA, J. Oper. Res. Soc., 61 (2010), 574-584.  doi: 10.1057/jors.2008.189.  Google Scholar

[7]

R. Färe and S. Grosskopf, Intertemporal Production Frontiers: With Dynamic DEA, Boston: Kluwer Academic Publishers, 1996. Google Scholar

[8]

R. Färe and S. Grosskopf, Network DEA, Socio. Econ. Plann. Sci., 4 (2000), 35-49.   Google Scholar

[9]

D. U. A. Galagedera, Modelling social responsibility in mutual fund performance appraisal: A two-stage data envelopment analysis model with non-discretionary first stage output, Eur. J. Oper. Res., 273 (2019), 376-389.  doi: 10.1016/j.ejor.2018.08.011.  Google Scholar

[10]

B. Golany and Y. Roll, Some extensions of techniques to handle non-discretionary factors in data envelopment analysis, J. Prod. Anal., 4 (1993), 419-432.  doi: 10.1007/BF01073549.  Google Scholar

[11]

C. Kao, Network data envelopment analysis: A review, Eur. J. Oper. Res., 239 (2014), 1-16.  doi: 10.1016/j.ejor.2014.02.039.  Google Scholar

[12]

C. Kao, Efficiency decomposition and aggregation in network data envelopment analysis, Eur. J. Oper. Res., 255 (2016), 778-786.  doi: 10.1016/j.ejor.2016.05.019.  Google Scholar

[13]

C. Kao and S.-N. Hwang, Efficiency measurement for network systems: IT impact on firm performance, Decis. Support Syst., 48 (2010), 437-446.  doi: 10.1016/j.dss.2009.06.002.  Google Scholar

[14]

R. J. Kauffman and P. Weill, An evaluative framework for research on the performance effects of information technology investment, Proceedings of the 10th International Conference on Information Systems, (1989), 377–388. doi: 10.1145/75034.75066.  Google Scholar

[15]

M. A. MunizJ. ParadiJ. Ruggiero and Z. Yang, Evaluating alternative DEA models used to control for non-discretionary inputs, Comput. Oper. Res., 33 (2006), 1173-1183.   Google Scholar

[16]

L. Simar and P. W. Wilson, Estimation and inference in two-stage, semi-parametric models of production processes, J. Econom., 136 (1997), 31-64.  doi: 10.1016/j.jeconom.2005.07.009.  Google Scholar

[17]

M. TalebR. Ramli and R. Khalid, Developing a two-stage approach of super efficiency slack-based measure in the presence of non-discretionary factors and mixed integer-valued data envelopment analysis, Expert. Syst. Appl., 103 (2018), 14-24.  doi: 10.1016/j.eswa.2018.02.037.  Google Scholar

[18]

C. H. WangR. Gopal and S. Zionts, Use of data envelopment analysis in assessing information technology impact on firm performance, Ann. Oper. Res., 73 (1997), 191-213.   Google Scholar

[19]

M. Zerafat Angiz L and A. Mustafa, Fuzzy interpretation of efficiency in data envelopment analysis and its application in a non-discretionary model, Knowl.-Based Syst., 49 (2013), 145-151.   Google Scholar

show all references

References:
[1]

R. D. Banker and R. Morey, Efficiency analysis for exogenously fixed inputs and outputs, Oper. Res., 34 (1986), 501-653.  doi: 10.1287/opre.34.4.513.  Google Scholar

[2]

M. BaratG. Tohidi and M. Sanei, DEA for nonhomogeneous mixed networks, Asia Pac. Manag. Rev., 24 (2018), 161-166.  doi: 10.1016/j.apmrv.2018.02.003.  Google Scholar

[3]

R. E. Bellman and L. A. Zadeh, Decision making in a fuzzy environment, Manag. Sci., 17 (1970), B141–B164. doi: 10.1287/mnsc.17.4.B141.  Google Scholar

[4]

L. CastelliR. Pesenti and W. Ukovich, DEA-like models for the efficiency evaluation of hierarchically structured units, Eur. J. Oper. Res., 154 (2004), 465-476.  doi: 10.1016/S0377-2217(03)00182-6.  Google Scholar

[5]

J. Zhu, Data Envelopment Analysis: A Handbook of Modeling Internal Structures and Networks, International Series in Operations Research & Management Science, 238. Springer, New York, 2016. doi: 10.1007/978-1-4899-7684-0.  Google Scholar

[6]

J. M. Cordero-FerreraF. Pedraja-Chaparro and D. Santín-González, Enhancing the inclusion of non-discretionary inputs in DEA, J. Oper. Res. Soc., 61 (2010), 574-584.  doi: 10.1057/jors.2008.189.  Google Scholar

[7]

R. Färe and S. Grosskopf, Intertemporal Production Frontiers: With Dynamic DEA, Boston: Kluwer Academic Publishers, 1996. Google Scholar

[8]

R. Färe and S. Grosskopf, Network DEA, Socio. Econ. Plann. Sci., 4 (2000), 35-49.   Google Scholar

[9]

D. U. A. Galagedera, Modelling social responsibility in mutual fund performance appraisal: A two-stage data envelopment analysis model with non-discretionary first stage output, Eur. J. Oper. Res., 273 (2019), 376-389.  doi: 10.1016/j.ejor.2018.08.011.  Google Scholar

[10]

B. Golany and Y. Roll, Some extensions of techniques to handle non-discretionary factors in data envelopment analysis, J. Prod. Anal., 4 (1993), 419-432.  doi: 10.1007/BF01073549.  Google Scholar

[11]

C. Kao, Network data envelopment analysis: A review, Eur. J. Oper. Res., 239 (2014), 1-16.  doi: 10.1016/j.ejor.2014.02.039.  Google Scholar

[12]

C. Kao, Efficiency decomposition and aggregation in network data envelopment analysis, Eur. J. Oper. Res., 255 (2016), 778-786.  doi: 10.1016/j.ejor.2016.05.019.  Google Scholar

[13]

C. Kao and S.-N. Hwang, Efficiency measurement for network systems: IT impact on firm performance, Decis. Support Syst., 48 (2010), 437-446.  doi: 10.1016/j.dss.2009.06.002.  Google Scholar

[14]

R. J. Kauffman and P. Weill, An evaluative framework for research on the performance effects of information technology investment, Proceedings of the 10th International Conference on Information Systems, (1989), 377–388. doi: 10.1145/75034.75066.  Google Scholar

[15]

M. A. MunizJ. ParadiJ. Ruggiero and Z. Yang, Evaluating alternative DEA models used to control for non-discretionary inputs, Comput. Oper. Res., 33 (2006), 1173-1183.   Google Scholar

[16]

L. Simar and P. W. Wilson, Estimation and inference in two-stage, semi-parametric models of production processes, J. Econom., 136 (1997), 31-64.  doi: 10.1016/j.jeconom.2005.07.009.  Google Scholar

[17]

M. TalebR. Ramli and R. Khalid, Developing a two-stage approach of super efficiency slack-based measure in the presence of non-discretionary factors and mixed integer-valued data envelopment analysis, Expert. Syst. Appl., 103 (2018), 14-24.  doi: 10.1016/j.eswa.2018.02.037.  Google Scholar

[18]

C. H. WangR. Gopal and S. Zionts, Use of data envelopment analysis in assessing information technology impact on firm performance, Ann. Oper. Res., 73 (1997), 191-213.   Google Scholar

[19]

M. Zerafat Angiz L and A. Mustafa, Fuzzy interpretation of efficiency in data envelopment analysis and its application in a non-discretionary model, Knowl.-Based Syst., 49 (2013), 145-151.   Google Scholar

12]">Figure 1.  General network systems [12]
18]">Figure 2.  Network system discussed in [18]
Table 1.  Data set for assessing IT impact on firm performance
DMU
j
IT Fixed No. of Deposits Profit Fraction
$ \rm {budget}$ $ {\mbox{assets}} $ $ {\mbox{employees }}$ of loans
$({$ \ \mbox{billions})}$ $({$ \ \mbox{billions})} $ $ ({$ \ \mbox{billions})} $ $({$ \ \mbox{billions})} $ $ ({$ \ \mbox{billions})} $ ${\mbox{recovered}}$
$ X_1 $ $ X_2 $ $ X_3 $ $ Z $ $ Y_1$ $ Y_2 $
1 $ 0.150 $ $ 0.713 $ $ 13.3 $ $ 14.478 $ $ 0.232 $ $ 0.986 $
2 $ 0.170 $ $ 1.071 $ $ 16.9 $ $ 19.502 $ $ 0.340 $ $ 0.986 $
3 $ 0.235 $ $ 1.224 $ $ 24.0 $ $ 20.952 $ $ 0.363 $ $ 0.986 $
4 $ 0.211 $ $ 0.363 $ $ 15.6 $ $ 13.902 $ $ 0.211 $ $ 0.982 $
5 $ 0.133 $ $ 0.409 $ $ 18.485 $ $ 15.206 $ $ 0.237 $ $ 0.984 $
6 $ 0.497 $ $ 5.846 $ $ 56.42 $ $ 81.186 $ $ 1.103 $ $ 0.955 $
7 $ 0.060 $ $ 0.918 $ $ 56.42 $ $ 81.186 $ $ 1.103 $ $ 0.986 $
8 $ 0.071 $ $ 1.235 $ $ 12.0 $ $ 11.441 $ $ 0.199 $ $ 0.985 $
9 $ 1.500 $ $ 18.120 $ $ 89.51 $ $ 124.072 $ $ 1.858 $ $ 0.972 $
10 $ 0.120 $ $ 1.821 $ $ 19.8 $ $ 17.425 $ $ 0.274 $ $ 0.983 $
11 $ 0.120 $ $ 1.915 $ $ 19.8 $ $ 17.425 $ $ 0.274 $ $ 0.983 $
12 $ 0.050 $ $ 0.874 $ $ 13.1 $ $ 14.342 $ $ 0.177 $ $ 0.985 $
13 $ 0.370 $ $ 6.918 $ $ 12.5 $ $ 32.491 $ $ 0.648 $ $ 0.945 $
14 $ 0.440 $ $ 4.432 $ $ 41.9 $ $ 47.653 $ $ 0.639 $ $ 0.979 $
15 $ 0.431 $ $ 4.504 $ $ 41.1 $ $ 52.63 $ $ 0.741 $ $ 0.981 $
16 $ 0.110 $ $ 1.241 $ $ 14.4 $ $ 17.493 $ $ 0.243 $ $ 0.988 $
17 $ 0.053 $ $ 0.450 $ $ 7.6 $ $ 9.512 $ $ 0.067 $ $ 0.980 $
18 $ 0.345 $ $ 5.892 $ $ 15.5 $ $ 42.469 $ $ 1.002 $ $ 0.948 $
19 $ 0.128 $ $ 0.973 $ $ 12.6 $ $ 18.987 $ $ 0.243 $ $ 0.985 $
20 $ 0.055 $ $ 0.444 $ $ 5.9 $ $ 7.546 $ $ 0.153 $ $ 0.987 $
21 $ 0.057 $ $ 0.508 $ $ 5.7 $ $ 7.595 $ $ 0.123 $ $ 0.987 $
22 $ 0.098 $ $ 0.370 $ $ 14.1 $ $ 16.906 $ $ 0.233 $ $ 0.981 $
23 $ 0.104 $ $ 0.395 $ $ 14.6 $ $ 17.264 $ $ 0.263 $ $ 0.983 $
24 $ 0.206 $ $ 2.680 $ $ 19.6 $ $ 36.430 $ $ 0.601 $ $ 0.982 $
25 $ 0.067 $ $ 0.781 $ $ 10.5 $ $ 11.581 $ $ 0.120 $ $ 0.987 $
26 $ 0.100 $ $ 0.872 $ $ 12.1 $ $ 22.207 $ $ 0.248 $ $ 0.972 $
27 $ 0.0106 $ $ 1.757 $ $ 12.7 $ $ 20.670 $ $ 0.253 $ $ 0.988 $
DMU
j
IT Fixed No. of Deposits Profit Fraction
$ \rm {budget}$ $ {\mbox{assets}} $ $ {\mbox{employees }}$ of loans
$({$ \ \mbox{billions})}$ $({$ \ \mbox{billions})} $ $ ({$ \ \mbox{billions})} $ $({$ \ \mbox{billions})} $ $ ({$ \ \mbox{billions})} $ ${\mbox{recovered}}$
$ X_1 $ $ X_2 $ $ X_3 $ $ Z $ $ Y_1$ $ Y_2 $
1 $ 0.150 $ $ 0.713 $ $ 13.3 $ $ 14.478 $ $ 0.232 $ $ 0.986 $
2 $ 0.170 $ $ 1.071 $ $ 16.9 $ $ 19.502 $ $ 0.340 $ $ 0.986 $
3 $ 0.235 $ $ 1.224 $ $ 24.0 $ $ 20.952 $ $ 0.363 $ $ 0.986 $
4 $ 0.211 $ $ 0.363 $ $ 15.6 $ $ 13.902 $ $ 0.211 $ $ 0.982 $
5 $ 0.133 $ $ 0.409 $ $ 18.485 $ $ 15.206 $ $ 0.237 $ $ 0.984 $
6 $ 0.497 $ $ 5.846 $ $ 56.42 $ $ 81.186 $ $ 1.103 $ $ 0.955 $
7 $ 0.060 $ $ 0.918 $ $ 56.42 $ $ 81.186 $ $ 1.103 $ $ 0.986 $
8 $ 0.071 $ $ 1.235 $ $ 12.0 $ $ 11.441 $ $ 0.199 $ $ 0.985 $
9 $ 1.500 $ $ 18.120 $ $ 89.51 $ $ 124.072 $ $ 1.858 $ $ 0.972 $
10 $ 0.120 $ $ 1.821 $ $ 19.8 $ $ 17.425 $ $ 0.274 $ $ 0.983 $
11 $ 0.120 $ $ 1.915 $ $ 19.8 $ $ 17.425 $ $ 0.274 $ $ 0.983 $
12 $ 0.050 $ $ 0.874 $ $ 13.1 $ $ 14.342 $ $ 0.177 $ $ 0.985 $
13 $ 0.370 $ $ 6.918 $ $ 12.5 $ $ 32.491 $ $ 0.648 $ $ 0.945 $
14 $ 0.440 $ $ 4.432 $ $ 41.9 $ $ 47.653 $ $ 0.639 $ $ 0.979 $
15 $ 0.431 $ $ 4.504 $ $ 41.1 $ $ 52.63 $ $ 0.741 $ $ 0.981 $
16 $ 0.110 $ $ 1.241 $ $ 14.4 $ $ 17.493 $ $ 0.243 $ $ 0.988 $
17 $ 0.053 $ $ 0.450 $ $ 7.6 $ $ 9.512 $ $ 0.067 $ $ 0.980 $
18 $ 0.345 $ $ 5.892 $ $ 15.5 $ $ 42.469 $ $ 1.002 $ $ 0.948 $
19 $ 0.128 $ $ 0.973 $ $ 12.6 $ $ 18.987 $ $ 0.243 $ $ 0.985 $
20 $ 0.055 $ $ 0.444 $ $ 5.9 $ $ 7.546 $ $ 0.153 $ $ 0.987 $
21 $ 0.057 $ $ 0.508 $ $ 5.7 $ $ 7.595 $ $ 0.123 $ $ 0.987 $
22 $ 0.098 $ $ 0.370 $ $ 14.1 $ $ 16.906 $ $ 0.233 $ $ 0.981 $
23 $ 0.104 $ $ 0.395 $ $ 14.6 $ $ 17.264 $ $ 0.263 $ $ 0.983 $
24 $ 0.206 $ $ 2.680 $ $ 19.6 $ $ 36.430 $ $ 0.601 $ $ 0.982 $
25 $ 0.067 $ $ 0.781 $ $ 10.5 $ $ 11.581 $ $ 0.120 $ $ 0.987 $
26 $ 0.100 $ $ 0.872 $ $ 12.1 $ $ 22.207 $ $ 0.248 $ $ 0.972 $
27 $ 0.0106 $ $ 1.757 $ $ 12.7 $ $ 20.670 $ $ 0.253 $ $ 0.988 $
Table 2.  The system efficiency, $ \theta_p^{\ast}, $ and the membership degree, $ \alpha_p, p = 1, 2, \cdots, 27. $
DMU
j
Model (2)
$ \theta^{\ast} $
${ \text{Model (6)}}$ DMU
j
Model (2)
$ \theta^{\ast} $
$ { \text{Model (6)}}$
$\alpha^{\ast}$ $ 1-\alpha^{\ast}$ $ \alpha^{\ast} $ $ 1-\alpha^{\ast} $
$ 1 $ $ 0.6388 $ $ 0.3612 $$ 0.6388 $ $ 15 $ $ 0.6582 $ $ 0.3418 $$ 0.6582 $
$ 2 $ $ 0.6507 $ $ 0.3493 $ $ 0.6507 $ $ 16 $ $ 0.6646 $ $ 0.3354 $$ 0.6646 $
$ 3 $ $ 0.5179 $ $ 0.4821 $$ 0.5179 $ $ 17 $ $ 0.7177 $ $ 0.2823 $$ 0.7177 $
$ 4 $ $ 0.5986 $ $ 0.4014 $ $ 0.5986 $ $ 18 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $
$ 5 $ $ 0.5556 $ $ 0.4444 $ $ 0.5556 $ $ 19 $ $ 0.8144 $ $ 0.1856 $$ 0.8144 $
$ 6 $ $ 0.7599 $ $ 0.2401 $$ 0.7599 $ $ 20 $ $ 0.6940 $ $ 0.3060 $$ 0.6940 $
$ 7 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $ $ 21 $ $ 0.7067 $ $ 0.2933 $$ 0.7067 $
$ 8 $ $ 0.5352 $ $ 0.4648 $$ 0.5352 $ $ 22 $ $ 0.7942 $ $ 0.2058 $$ 0.7942 $
$ 9 $ $ 0.6249 $ $ 0.3751 $ $ 0.6249 $ $ 23 $ $ 0.7802 $ $ 0.2198 $$ 0.7802 $
$ 10 $ $ 0.4961 $ $ 0.5039 $ $ 0.4961 $ $ 24 $ $ 0.9300 $ $ 0.0700 $$ 0.9300 $
$ 11 $ $ 0.4945 $ $ 0.5055 $ $ 0.4945 $ $ 25 $ $ 0.6270 $ $ 0.3730 $$ 0.6270 $
$ 12 $ $ 0.6685 $ $ 0.3315 $ $ 0.6685 $ $ 26 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $
$ 13 $ $ 0.9487 $ $ 0.0513 $ $ 0.9487 $ $ 27 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $
$ 14 $ $ 0.5880 $ $ 0.4120 $$ 0.5880 $
DMU
j
Model (2)
$ \theta^{\ast} $
${ \text{Model (6)}}$ DMU
j
Model (2)
$ \theta^{\ast} $
$ { \text{Model (6)}}$
$\alpha^{\ast}$ $ 1-\alpha^{\ast}$ $ \alpha^{\ast} $ $ 1-\alpha^{\ast} $
$ 1 $ $ 0.6388 $ $ 0.3612 $$ 0.6388 $ $ 15 $ $ 0.6582 $ $ 0.3418 $$ 0.6582 $
$ 2 $ $ 0.6507 $ $ 0.3493 $ $ 0.6507 $ $ 16 $ $ 0.6646 $ $ 0.3354 $$ 0.6646 $
$ 3 $ $ 0.5179 $ $ 0.4821 $$ 0.5179 $ $ 17 $ $ 0.7177 $ $ 0.2823 $$ 0.7177 $
$ 4 $ $ 0.5986 $ $ 0.4014 $ $ 0.5986 $ $ 18 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $
$ 5 $ $ 0.5556 $ $ 0.4444 $ $ 0.5556 $ $ 19 $ $ 0.8144 $ $ 0.1856 $$ 0.8144 $
$ 6 $ $ 0.7599 $ $ 0.2401 $$ 0.7599 $ $ 20 $ $ 0.6940 $ $ 0.3060 $$ 0.6940 $
$ 7 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $ $ 21 $ $ 0.7067 $ $ 0.2933 $$ 0.7067 $
$ 8 $ $ 0.5352 $ $ 0.4648 $$ 0.5352 $ $ 22 $ $ 0.7942 $ $ 0.2058 $$ 0.7942 $
$ 9 $ $ 0.6249 $ $ 0.3751 $ $ 0.6249 $ $ 23 $ $ 0.7802 $ $ 0.2198 $$ 0.7802 $
$ 10 $ $ 0.4961 $ $ 0.5039 $ $ 0.4961 $ $ 24 $ $ 0.9300 $ $ 0.0700 $$ 0.9300 $
$ 11 $ $ 0.4945 $ $ 0.5055 $ $ 0.4945 $ $ 25 $ $ 0.6270 $ $ 0.3730 $$ 0.6270 $
$ 12 $ $ 0.6685 $ $ 0.3315 $ $ 0.6685 $ $ 26 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $
$ 13 $ $ 0.9487 $ $ 0.0513 $ $ 0.9487 $ $ 27 $ $ 1.0000 $ $ 0.0000 $$ 1.0000 $
$ 14 $ $ 0.5880 $ $ 0.4120 $$ 0.5880 $
Table 3.  The results of solving the proposed fuzzy non-discretionary Model (14)
$ \begin{array}{c} \mbox{DMU}\\ j \end{array} $Fuzzy non-discretionary input
$ \bar{X}_{1j}^{\ast} $ $ \bar{X}_{2j}^{\ast} $ $ \bar{X}_{3j}^{\ast} $ $ \alpha^{\ast} $ $ 1-\alpha^{\ast} $Rank
10.11020.52369.63350.26540.734618
20.12600.772312.42590.25890.741117
30.15860.807916.13280.32530.674725
40.15060.256410.90130.28640.713621
50.09210.279311.21650.30770.692323
60.40084.634245.42890.19360.806410
70.06000.918056.42000.00001.00001
80.04850.76778.09880.31730.682724
91.090813.147164.85290.27280.727220
100.07981.071512.82950.33510.664926
110.07971.099712.74160.33580.664227
120.03760.65449.78830.24900.751014
130.35195.329111.89000.04880.95125
140.31163.104729.59290.29180.708222
150.32123.277230.49690.25470.745316
160.08240.894310.77290.25120.748815
170.04130.35095.88710.22020.779811
180.34505.892015.50000.00001.00001
190.10800.815410.61510.15650.84357
200.04210.33494.49480.23430.765713
210.04410.39044.36860.22680.773212
220.08130.304311.67750.17070.82938
230.08530.321611.95540.18020.81989
240.19252.412518.31760.06540.93466
250.04880.54487.53420.27170.728319
260.10000.872012.10000.00001.00001
270.01061.757012.70000.00001.00001
$ \begin{array}{c} \mbox{DMU}\\ j \end{array} $Fuzzy non-discretionary input
$ \bar{X}_{1j}^{\ast} $ $ \bar{X}_{2j}^{\ast} $ $ \bar{X}_{3j}^{\ast} $ $ \alpha^{\ast} $ $ 1-\alpha^{\ast} $Rank
10.11020.52369.63350.26540.734618
20.12600.772312.42590.25890.741117
30.15860.807916.13280.32530.674725
40.15060.256410.90130.28640.713621
50.09210.279311.21650.30770.692323
60.40084.634245.42890.19360.806410
70.06000.918056.42000.00001.00001
80.04850.76778.09880.31730.682724
91.090813.147164.85290.27280.727220
100.07981.071512.82950.33510.664926
110.07971.099712.74160.33580.664227
120.03760.65449.78830.24900.751014
130.35195.329111.89000.04880.95125
140.31163.104729.59290.29180.708222
150.32123.277230.49690.25470.745316
160.08240.894310.77290.25120.748815
170.04130.35095.88710.22020.779811
180.34505.892015.50000.00001.00001
190.10800.815410.61510.15650.84357
200.04210.33494.49480.23430.765713
210.04410.39044.36860.22680.773212
220.08130.304311.67750.17070.82938
230.08530.321611.95540.18020.81989
240.19252.412518.31760.06540.93466
250.04880.54487.53420.27170.728319
260.10000.872012.10000.00001.00001
270.01061.757012.70000.00001.00001
[1]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[2]

Saeed Assani, Muhammad Salman Mansoor, Faisal Asghar, Yongjun Li, Feng Yang. Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021053

[3]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021010

[4]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[5]

Haripriya Barman, Magfura Pervin, Sankar Kumar Roy, Gerhard-Wilhelm Weber. Back-ordered inventory model with inflation in a cloudy-fuzzy environment. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1913-1941. doi: 10.3934/jimo.2020052

[6]

Xinfang Zhang, Jing Lu, Yan Peng. Decision framework for location and selection of container multimodal hubs: A case in china under the belt and road initiative. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021061

[7]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[8]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[9]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[10]

Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029

[11]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[12]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[13]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

[14]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[15]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[16]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[17]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[18]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[19]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[20]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2677-2698. doi: 10.3934/dcds.2020381

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]