• Previous Article
    A stochastic model and social optimization of a blockchain system based on a general limited batch service queue
  • JIMO Home
  • This Issue
  • Next Article
    A note on optimization modelling of piecewise linear delay costing in the airline industry
July  2021, 17(4): 1825-1843. doi: 10.3934/jimo.2020048

The viability of switched nonlinear systems with piecewise smooth Lyapunov functions

1. 

School of Management, University of Shanghai for Science and Technology Shanghai, 200093, China

2. 

School of Science, Inner Mongolia University of Science and Technology Baotou, 014010, China

* Corresponding author: Yan Gao

Received  May 2019 Revised  November 2019 Published  July 2021 Early access  March 2020

In this paper, we focus on the viability and attraction for switched nonlinear systems with nonsmooth Lyapunov functions. We determine the viable set and region of attraction for switched systems in which Lyapunov functions are piecewise smooth. The switching law is constructed by using the directional derivatives of a piecewise smooth Lyapunov function along the trajectories of the subsystems. Sufficient conditions are derived to guarantee the viability and attraction of switched nonlinear systems on the level set of a piecewise smooth Lyapunov function. We further extend the method to switched systems involving possible sliding motions. The approach in the paper provides a unified framework for studying viability and attraction with a systematic consideration of sliding motions. Finally, considering two certain classes of piecewise smooth functions, the related conditions of the viability and attraction for the level set are developed.

Citation: Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048
References:
[1]

J. P. Aubin, Viability Theory, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-0-8176-4910-4.

[2]

J. P. Aubin, Dynamic Economic Theory: A Viability Approach, Studies in Economic Theory, 5. Springer-Verlag, Berlin, 1997. doi: 10.1007/978-3-642-60756-1.

[3]

J. P. AubinD. Pujal and P. Saint-Pierre, Dynamic management of portfolios with transaction costs under tychastic uncertainty, Numerical Methods in Finance, GERAD 25th Anniv. Ser., Springer, New York, 9 (2005), 59-89.  doi: 10.1007/0-387-25118-9_3.

[4]

A. Bacciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions, ESAIM: Control, Optimization and Calculus of Variations, 4 (1999), 361-376.  doi: 10.1051/cocv:1999113.

[5]

A. Bacciotti and L. Mazzi, From Artstein-Sontag theorem to the min-projection strategy, Transactions of the Institute of Measurement and Control, 32 (2010), 571-581.  doi: 10.1177/0142331208095427.

[6]

F. Blanchini, Set invariance in control, Automatica J. IFAC, 35 (1999), 1747-1767.  doi: 10.1016/S0005-1098(99)00113-2.

[7]

M. S. Branicky, Multiple Lyapunov function and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic and Control, 43 (1998), 475-482.  doi: 10.1109/9.664150.

[8]

Z. Chen and Y. Gao, Determining the viable unbounded polyhedron under linear control systems, Asian Journal of Control, 16 (2014), 1561-1567.  doi: 10.1002/asjc.849.

[9]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998. doi: 10.1007/b97650.

[10]

J. DaafouzP. Riedinger and C. Iung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Transactions on Automatic and Control, 47 (2002), 1883-1887.  doi: 10.1109/TAC.2002.804474.

[11]

Y. Gao, Viability criteria for differential inclusions, Journal of Systems Science and Complexity, 24 (2011), 825-834.  doi: 10.1007/s11424-011-9056-6.

[12]

Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system, Journal of Convex Analysis, 19 (2012), 1009-1015. 

[13]

Z. H. GongC. Y. Liu and Y. J. Wang, Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.  doi: 10.3934/jimo.2017042.

[14]

J. F. HeW. XuZ. G. Feng and X. S. Yang, On the global optimal solution for linear quadratic problems of switched system, Journal of Industrial and Management Optimization, 15 (2019), 817-832.  doi: 10.3934/jimo.2018072.

[15]

T. S. HuL. Q. Ma and Z. L. Lin, Stabilization of switched systems via composite quadratic functions, IEEE Transactions on Automatic and Control, 53 (2008), 2571-2585.  doi: 10.1109/TAC.2008.2006933.

[16]

D. Liberzon, Switching in Systems and Control, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0017-8.

[17]

L. LiuY. Gao and F. C. Wang, Road safety analysis for high-speed vehicle in complex environments based on the viability kernel, IET Intelligent Transport Systems, 12 (2018), 495-503.  doi: 10.1049/iet-its.2017.0168.

[18]

Y. Y. Lu and W. Zhang, A piecewise smooth control-Lyapunov function framework for switching stabilization, Automatica J. IFAC, 76 (2017), 258-265.  doi: 10.1016/j.automatica.2016.09.029.

[19]

J. F. LvY. Gao and N. Zhao, Viability criteria for a switched system on bounded polyhedron, Asian Journal of Control, 20 (2018), 2380-2387.  doi: 10.1002/asjc.1719.

[20]

E. Moulay and R. Bourdais, Stabilization of nonlinear switched systems using control Lyapunov functions, Nonlinear Analysis Hybrid Systems, 1 (2007), 482-490.  doi: 10.1016/j.nahs.2005.12.001.

[21]

A. Oubraham and G. Zaccour, A survey of applications of viability theory to the sustainable exploitation of renewable resources, Ecological Economics, 145 (2018), 346-367.  doi: 10.1016/j.ecolecon.2017.11.008.

[22]

D. Panagou and K. J. Kyriakopoulos, Viability control for a class of underactuated systems, Automatica J. IFAC, 49 (2013), 17-29.  doi: 10.1016/j.automatica.2012.09.002.

[23]

A. RapaportJ. P. Terreaux and L. Doyen, Viability analysis for the sustainable management of renewable resources, Mathematical and Computer Modelling, 43 (2006), 466-484.  doi: 10.1016/j.mcm.2005.12.014.

[24]

C. RougéJ. D. Mathias and G. Deffuant, Extending the viability theory framework of resilience to uncertain dynamics and application to lake eutrophication, Ecological Indicators, 29 (2013), 420-433.  doi: 10.1016/j.ecolind.2012.12.032.

[25]

R. SabatierF. Joly and B. Hubert, Assessing both ecological and engineering resilience of a steppe agroecosystem using the viability theory, Agricultural Systems, 157 (2017), 146-156.  doi: 10.1016/j.agsy.2017.07.009.

[26]

A. I. Subbotin, Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-0847-1.

[27]

W. Tan and A. Packard, Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of squares programming, IEEE Transactions on Automatic and Control, 53 (2008), 565-571.  doi: 10.1109/TAC.2007.914221.

[28]

V. I. Utkin, Variable structure systems with sliding modes, IEEE Transactions on Automatic and Control, 22 (1977), 212-222.  doi: 10.1109/TAC.1977.1101446.

[29]

M. C. Valentino, F. A. Faria, V. A. Oliveira and L. F. C. Alberto, Ultimate boundedness sufficient conditions for nonlinear systems using TS fuzzy modelling, Fuzzy Sets and Systems, 361 (2018), 88–100, Available from: http://hdl.handle.net/11449/170819. doi: 10.1016/j.fss.2018.03.010.

[30]

M. C. ValentinoV. A. OliveiraL. F. C. Alberto and D. A. Sant'Anna, An extension of the invariance principle for dwell-time switched nonlinear systems, Systems and Control Letters, 61 (2012), 580-586.  doi: 10.1016/j.sysconle.2012.02.007.

[31]

M. Wang and J. Feng, Stabilization of switched nonlinear systems using multiple Lyapunov function method, American Control Conference, St. Louis-Missouri, (2009), 1778–1782.

[32]

X. ZhangY. Gao and Z.-Q. Xia, Stabilization of switched systems with polytopic uncertainties via composite quadratic functions, Nonlinear Analysis Hybrid Systems, 11 (2014), 71-83.  doi: 10.1016/j.nahs.2013.06.002.

[33]

L. X. ZhangS. L. Zhuang and R. D. Braatz, Switched model predictive control of switched linear systems: Feasibility, stability and robustness, Automatica J. IFAC, 67 (2016), 8-21.  doi: 10.1016/j.automatica.2016.01.010.

show all references

References:
[1]

J. P. Aubin, Viability Theory, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-0-8176-4910-4.

[2]

J. P. Aubin, Dynamic Economic Theory: A Viability Approach, Studies in Economic Theory, 5. Springer-Verlag, Berlin, 1997. doi: 10.1007/978-3-642-60756-1.

[3]

J. P. AubinD. Pujal and P. Saint-Pierre, Dynamic management of portfolios with transaction costs under tychastic uncertainty, Numerical Methods in Finance, GERAD 25th Anniv. Ser., Springer, New York, 9 (2005), 59-89.  doi: 10.1007/0-387-25118-9_3.

[4]

A. Bacciotti and F. Ceragioli, Stability and stabilization of discontinuous systems and nonsmooth Lyapunov functions, ESAIM: Control, Optimization and Calculus of Variations, 4 (1999), 361-376.  doi: 10.1051/cocv:1999113.

[5]

A. Bacciotti and L. Mazzi, From Artstein-Sontag theorem to the min-projection strategy, Transactions of the Institute of Measurement and Control, 32 (2010), 571-581.  doi: 10.1177/0142331208095427.

[6]

F. Blanchini, Set invariance in control, Automatica J. IFAC, 35 (1999), 1747-1767.  doi: 10.1016/S0005-1098(99)00113-2.

[7]

M. S. Branicky, Multiple Lyapunov function and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic and Control, 43 (1998), 475-482.  doi: 10.1109/9.664150.

[8]

Z. Chen and Y. Gao, Determining the viable unbounded polyhedron under linear control systems, Asian Journal of Control, 16 (2014), 1561-1567.  doi: 10.1002/asjc.849.

[9]

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998. doi: 10.1007/b97650.

[10]

J. DaafouzP. Riedinger and C. Iung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Transactions on Automatic and Control, 47 (2002), 1883-1887.  doi: 10.1109/TAC.2002.804474.

[11]

Y. Gao, Viability criteria for differential inclusions, Journal of Systems Science and Complexity, 24 (2011), 825-834.  doi: 10.1007/s11424-011-9056-6.

[12]

Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system, Journal of Convex Analysis, 19 (2012), 1009-1015. 

[13]

Z. H. GongC. Y. Liu and Y. J. Wang, Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.  doi: 10.3934/jimo.2017042.

[14]

J. F. HeW. XuZ. G. Feng and X. S. Yang, On the global optimal solution for linear quadratic problems of switched system, Journal of Industrial and Management Optimization, 15 (2019), 817-832.  doi: 10.3934/jimo.2018072.

[15]

T. S. HuL. Q. Ma and Z. L. Lin, Stabilization of switched systems via composite quadratic functions, IEEE Transactions on Automatic and Control, 53 (2008), 2571-2585.  doi: 10.1109/TAC.2008.2006933.

[16]

D. Liberzon, Switching in Systems and Control, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-1-4612-0017-8.

[17]

L. LiuY. Gao and F. C. Wang, Road safety analysis for high-speed vehicle in complex environments based on the viability kernel, IET Intelligent Transport Systems, 12 (2018), 495-503.  doi: 10.1049/iet-its.2017.0168.

[18]

Y. Y. Lu and W. Zhang, A piecewise smooth control-Lyapunov function framework for switching stabilization, Automatica J. IFAC, 76 (2017), 258-265.  doi: 10.1016/j.automatica.2016.09.029.

[19]

J. F. LvY. Gao and N. Zhao, Viability criteria for a switched system on bounded polyhedron, Asian Journal of Control, 20 (2018), 2380-2387.  doi: 10.1002/asjc.1719.

[20]

E. Moulay and R. Bourdais, Stabilization of nonlinear switched systems using control Lyapunov functions, Nonlinear Analysis Hybrid Systems, 1 (2007), 482-490.  doi: 10.1016/j.nahs.2005.12.001.

[21]

A. Oubraham and G. Zaccour, A survey of applications of viability theory to the sustainable exploitation of renewable resources, Ecological Economics, 145 (2018), 346-367.  doi: 10.1016/j.ecolecon.2017.11.008.

[22]

D. Panagou and K. J. Kyriakopoulos, Viability control for a class of underactuated systems, Automatica J. IFAC, 49 (2013), 17-29.  doi: 10.1016/j.automatica.2012.09.002.

[23]

A. RapaportJ. P. Terreaux and L. Doyen, Viability analysis for the sustainable management of renewable resources, Mathematical and Computer Modelling, 43 (2006), 466-484.  doi: 10.1016/j.mcm.2005.12.014.

[24]

C. RougéJ. D. Mathias and G. Deffuant, Extending the viability theory framework of resilience to uncertain dynamics and application to lake eutrophication, Ecological Indicators, 29 (2013), 420-433.  doi: 10.1016/j.ecolind.2012.12.032.

[25]

R. SabatierF. Joly and B. Hubert, Assessing both ecological and engineering resilience of a steppe agroecosystem using the viability theory, Agricultural Systems, 157 (2017), 146-156.  doi: 10.1016/j.agsy.2017.07.009.

[26]

A. I. Subbotin, Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-1-4612-0847-1.

[27]

W. Tan and A. Packard, Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of squares programming, IEEE Transactions on Automatic and Control, 53 (2008), 565-571.  doi: 10.1109/TAC.2007.914221.

[28]

V. I. Utkin, Variable structure systems with sliding modes, IEEE Transactions on Automatic and Control, 22 (1977), 212-222.  doi: 10.1109/TAC.1977.1101446.

[29]

M. C. Valentino, F. A. Faria, V. A. Oliveira and L. F. C. Alberto, Ultimate boundedness sufficient conditions for nonlinear systems using TS fuzzy modelling, Fuzzy Sets and Systems, 361 (2018), 88–100, Available from: http://hdl.handle.net/11449/170819. doi: 10.1016/j.fss.2018.03.010.

[30]

M. C. ValentinoV. A. OliveiraL. F. C. Alberto and D. A. Sant'Anna, An extension of the invariance principle for dwell-time switched nonlinear systems, Systems and Control Letters, 61 (2012), 580-586.  doi: 10.1016/j.sysconle.2012.02.007.

[31]

M. Wang and J. Feng, Stabilization of switched nonlinear systems using multiple Lyapunov function method, American Control Conference, St. Louis-Missouri, (2009), 1778–1782.

[32]

X. ZhangY. Gao and Z.-Q. Xia, Stabilization of switched systems with polytopic uncertainties via composite quadratic functions, Nonlinear Analysis Hybrid Systems, 11 (2014), 71-83.  doi: 10.1016/j.nahs.2013.06.002.

[33]

L. X. ZhangS. L. Zhuang and R. D. Braatz, Switched model predictive control of switched linear systems: Feasibility, stability and robustness, Automatica J. IFAC, 67 (2016), 8-21.  doi: 10.1016/j.automatica.2016.01.010.

Figure 1.  Trajectories of switched systems excluding sliding motions
Figure 2.  Trajectories of switched systems including sliding motions
Figure 3.  The phase portraits of subsystems 1 and 2
Figure 4.  State responses under the switching law
[1]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[2]

D. J. W. Simpson, R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2889-2913. doi: 10.3934/dcdsb.2014.19.2889

[3]

Alessandro Colombo, Nicoletta Del Buono, Luciano Lopez, Alessandro Pugliese. Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2911-2934. doi: 10.3934/dcdsb.2018166

[4]

Hjörtur Björnsson, Sigurdur Hafstein, Peter Giesl, Enrico Scalas, Skuli Gudmundsson. Computation of the stochastic basin of attraction by rigorous construction of a Lyapunov function. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4247-4269. doi: 10.3934/dcdsb.2019080

[5]

Sigurdur F. Hafstein, Christopher M. Kellett, Huijuan Li. Computing continuous and piecewise affine lyapunov functions for nonlinear systems. Journal of Computational Dynamics, 2015, 2 (2) : 227-246. doi: 10.3934/jcd.2015004

[6]

Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211

[7]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[8]

Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150

[9]

Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189

[10]

Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133

[11]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure and Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[12]

N. Chernov. Statistical properties of piecewise smooth hyperbolic systems in high dimensions. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 425-448. doi: 10.3934/dcds.1999.5.425

[13]

Hang Zheng, Yonghui Xia. Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021319

[14]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[15]

Laura Levaggi. Existence of sliding motions for nonlinear evolution equations in Banach spaces. Conference Publications, 2013, 2013 (special) : 477-487. doi: 10.3934/proc.2013.2013.477

[16]

Peter Giesl. Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 355-373. doi: 10.3934/dcds.2007.18.355

[17]

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415

[18]

Luca Dieci, Cinzia Elia. Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1039-1068. doi: 10.3934/dcdss.2016041

[19]

Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6025-6052. doi: 10.3934/dcdsb.2019119

[20]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (267)
  • HTML views (680)
  • Cited by (0)

Other articles
by authors

[Back to Top]