doi: 10.3934/jimo.2020049

A stochastic model and social optimization of a blockchain system based on a general limited batch service queue

1. 

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

2. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan

* Corresponding author: Shunfu Jin

Received  May 2019 Revised  October 2019 Published  March 2020

Blockchain is well known as a database technology supporting digital currencies such as Bitcoin, Ether and Ripple. For the purpose of maximizing the overall revenue of the blockchain system, we propose a pricing policy to impose on transactions. Regarding the mining process as a vacation, and the block-verification process as a service, we establish a type of non-exhaustive queueing model with a limited batch service and a possible zero-transaction service. By selecting the beginning instant of a block-verification process as a Markov point and using the method of a generating function, we obtain the stationary probability distribution for the number of transactions in the system at the Markov points and analyze the elapsed time for the mining cycle. Based on the model analysis results, we derive the average latency of transactions and demonstrate how the average latency of transactions changes in relation to the arrival rate of transactions. With a reward-cost structure, we construct an individual benefit function and a social benefit function. By improving the Grasshopper Optimization Algorithm (GOA), we search for the Nash equilibrium and the socially optimal arrival rates of transactions. Numerical results show that the Nash equilibrium arrival rate of transactions is always higher than the socially optimal arrival rate of transactions for a given mining parameter and a specific block capacity. For this, we propose a pricing policy that forces the transactions to accept the socially optimal arrival rate and maximize the overall revenue of the blockchain system, including all transactions and miners.

Citation: Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020049
References:
[1]

M. Aguiar and A. Lauve, Lagrange's theorem for Hopf monoids in species, Canadian Journal of Mathematics, 65 (2013), 241-265.  doi: 10.4153/CJM-2011-098-9.  Google Scholar

[2]

A. Antonopoulos and O. Media, Mastering Bitcoin: Unlocking Digital Crypto-Currencies, O'Reilly Media, 2014. Google Scholar

[3]

R. Howell and E. Schrohe, Unpacking Rouché's Theorem,, PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 27 (2017), 801-813.  doi: 10.1080/10511970.2016.1235646.  Google Scholar

[4]

S. Kasahara and J. Kawahara, Effect on transaction-confirmation process, J. Ind. Manag. Optim., 15 (2019), 365-386.   Google Scholar

[5]

Y. Kawase and S. Kasahara, Transaction-confirmation time for bitcoin: A queueing analytical approach to blockchain mechanism, 12th International Conference of Queueing Theory and Network Applications, LNCS, (2017), 75–88. doi: 10.1007/978-3-319-68520-5_5.  Google Scholar

[6]

Q. Li, J. Ma and Y. Chang, Blockchain queueing theory, (2018). Available from: https://arXiv.org/abs/1808.01795. Google Scholar

[7]

R. MemonJ. Li and J. Ahmed, Simulation model for blockchain systems using queuing theory, Electronics, 8 (2019), 234-252.  doi: 10.3390/electronics8020234.  Google Scholar

[8]

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, (2008). Available from: https://www.coindesk.com/bitcoin-peer-to-peer-electronic-cash-system. Google Scholar

[9]

O. Novo, Blockchain meets IoT: An architecture for scalable access management in IoT, IEEE Internet of Things Journal, 5 (2018), 1184-1195.  doi: 10.1109/JIOT.2018.2812239.  Google Scholar

[10]

W. QianQ. ShaoY. ZhuC. Jin and A. Zhou, Research problems and methods in blockchain and trusted data management, Journal of Software, 29 (2018), 150-159.   Google Scholar

[11]

S. Ross, Stochastic Processes, Second edition, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1996.  Google Scholar

[12]

S. SaremiS. Mirjalili and A. Lewis, Grasshopper optimisation algorithm: Theory and application,, Advances in Engineering Software, 105 (2017), 30-47.  doi: 10.1016/j.advengsoft.2017.01.004.  Google Scholar

[13]

M. TurkanovićM. HolblK. KosicM. Hericko and A. Kamisalic, Eductx: A blockchain-based higher education credit platform, IEEE Access, 6 (2018), 5112-5127.   Google Scholar

[14]

M. Vlasiou, A non-increasing Lindley-type equation, Queueing Systems, 56 (2007), 41-52.  doi: 10.1007/s11134-007-9029-6.  Google Scholar

[15]

L. WangX. ShenJ. LiJ. Shao and Y. Yang, Cryptographic primitives in blockchains, Journal of Network and Computer Applications, 127 (2019), 43-58.  doi: 10.1016/j.jnca.2018.11.003.  Google Scholar

[16]

R. Wolff and Y. Yao, Little's law when the average waiting time is infinite, Queueing Systems, 76 (2014), 267-281.  doi: 10.1007/s11134-013-9364-8.  Google Scholar

[17]

H. ZhaoP. BaiY. Peng and R. Xu, Efficient key management scheme for health blockchain, CAAI Transactions on Intelligence Technology, 3 (2018), 114-118.  doi: 10.1049/trit.2018.0014.  Google Scholar

[18]

W. Zhao, S. Jin and W. Yue, Analysis of the average confirmation time of transactions in a blockchain system, 14th International Conference of Queueing Theory and Network Applications, LNCS, (2019), 379–388. doi: 10.1007/978-3-030-27181-7_23.  Google Scholar

show all references

References:
[1]

M. Aguiar and A. Lauve, Lagrange's theorem for Hopf monoids in species, Canadian Journal of Mathematics, 65 (2013), 241-265.  doi: 10.4153/CJM-2011-098-9.  Google Scholar

[2]

A. Antonopoulos and O. Media, Mastering Bitcoin: Unlocking Digital Crypto-Currencies, O'Reilly Media, 2014. Google Scholar

[3]

R. Howell and E. Schrohe, Unpacking Rouché's Theorem,, PRIMUS: Problems, Resources, and Issues in Mathematics Undergraduate Studies, 27 (2017), 801-813.  doi: 10.1080/10511970.2016.1235646.  Google Scholar

[4]

S. Kasahara and J. Kawahara, Effect on transaction-confirmation process, J. Ind. Manag. Optim., 15 (2019), 365-386.   Google Scholar

[5]

Y. Kawase and S. Kasahara, Transaction-confirmation time for bitcoin: A queueing analytical approach to blockchain mechanism, 12th International Conference of Queueing Theory and Network Applications, LNCS, (2017), 75–88. doi: 10.1007/978-3-319-68520-5_5.  Google Scholar

[6]

Q. Li, J. Ma and Y. Chang, Blockchain queueing theory, (2018). Available from: https://arXiv.org/abs/1808.01795. Google Scholar

[7]

R. MemonJ. Li and J. Ahmed, Simulation model for blockchain systems using queuing theory, Electronics, 8 (2019), 234-252.  doi: 10.3390/electronics8020234.  Google Scholar

[8]

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, (2008). Available from: https://www.coindesk.com/bitcoin-peer-to-peer-electronic-cash-system. Google Scholar

[9]

O. Novo, Blockchain meets IoT: An architecture for scalable access management in IoT, IEEE Internet of Things Journal, 5 (2018), 1184-1195.  doi: 10.1109/JIOT.2018.2812239.  Google Scholar

[10]

W. QianQ. ShaoY. ZhuC. Jin and A. Zhou, Research problems and methods in blockchain and trusted data management, Journal of Software, 29 (2018), 150-159.   Google Scholar

[11]

S. Ross, Stochastic Processes, Second edition, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1996.  Google Scholar

[12]

S. SaremiS. Mirjalili and A. Lewis, Grasshopper optimisation algorithm: Theory and application,, Advances in Engineering Software, 105 (2017), 30-47.  doi: 10.1016/j.advengsoft.2017.01.004.  Google Scholar

[13]

M. TurkanovićM. HolblK. KosicM. Hericko and A. Kamisalic, Eductx: A blockchain-based higher education credit platform, IEEE Access, 6 (2018), 5112-5127.   Google Scholar

[14]

M. Vlasiou, A non-increasing Lindley-type equation, Queueing Systems, 56 (2007), 41-52.  doi: 10.1007/s11134-007-9029-6.  Google Scholar

[15]

L. WangX. ShenJ. LiJ. Shao and Y. Yang, Cryptographic primitives in blockchains, Journal of Network and Computer Applications, 127 (2019), 43-58.  doi: 10.1016/j.jnca.2018.11.003.  Google Scholar

[16]

R. Wolff and Y. Yao, Little's law when the average waiting time is infinite, Queueing Systems, 76 (2014), 267-281.  doi: 10.1007/s11134-013-9364-8.  Google Scholar

[17]

H. ZhaoP. BaiY. Peng and R. Xu, Efficient key management scheme for health blockchain, CAAI Transactions on Intelligence Technology, 3 (2018), 114-118.  doi: 10.1049/trit.2018.0014.  Google Scholar

[18]

W. Zhao, S. Jin and W. Yue, Analysis of the average confirmation time of transactions in a blockchain system, 14th International Conference of Queueing Theory and Network Applications, LNCS, (2019), 379–388. doi: 10.1007/978-3-030-27181-7_23.  Google Scholar

Figure 1.  The working flow of a mining cycle
Figure 2.  Operation of the queueing model with general limited batch service
Figure 3.  Change trend of the individual benefit $ U_{I}(\lambda) $ of a transaction
Figure 4.  Change trend of social benefit $ U_{S}(\lambda) $ of transactions
Figure 5.  The working flow of the enhanced GOA
Figure 6.  Nash equilibrium and socially optimal arrival rates of transactions
Table 1.  Numerical results for the remittance fee
Mining parameter $ (\theta) $ Block capacity $ (b) $ Socially optimal arrival rate $ (\lambda^{*}) $ Maximum social benefit $ (U_{S}({\lambda^{*}})) $ Remittance fee $ (f) $
0.5 40 11.0493 101.0826 9.0397
0.5 80 22.0986 202.2892 9.0996
1.0 40 20.9083 225.1180 10.6713
1.0 80 41.8166 450.5689 10.7271
1.5 40 28.0302 318.0631 11.2554
1.5 80 56.2193 636.5389 11.2767
Mining parameter $ (\theta) $ Block capacity $ (b) $ Socially optimal arrival rate $ (\lambda^{*}) $ Maximum social benefit $ (U_{S}({\lambda^{*}})) $ Remittance fee $ (f) $
0.5 40 11.0493 101.0826 9.0397
0.5 80 22.0986 202.2892 9.0996
1.0 40 20.9083 225.1180 10.6713
1.0 80 41.8166 450.5689 10.7271
1.5 40 28.0302 318.0631 11.2554
1.5 80 56.2193 636.5389 11.2767
[1]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[2]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[3]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[4]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[5]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[6]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[7]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (57)
  • HTML views (286)
  • Cited by (0)

Other articles
by authors

[Back to Top]