[1]
|
S. De, S. Maity and M. Pal, Two decision makers's single decision over a back order eoq model with dense fuzzy demand rate, Finance and Market, 3, https://doi.org/10.18686/fm.v3.1061.
|
[2]
|
S. K. De and I. Beg, Triangular dense fuzzy sets and new defuzzification methods, Journal of Intelligent & Fuzzy systems, 31 (2016), 469-477.
doi: 10.3233/IFS-162160.
|
[3]
|
S. K. De and A. Goswami, An EOQ model with fuzzy inflation rate and fuzzy deterioration rate when a delay in payment is permissible, International Journal of Systems Science, 37 (2006), 323-335.
doi: 10.1080/00207720600681112.
|
[4]
|
S. K. De and G. C. Mahata, Decision of a fuzzy inventory with fuzzy backorder model under cloudy fuzzy demand rate, International Journal of Applied and Computational Mathematics, 3 (2017), 2593-2609.
doi: 10.1007/s40819-016-0258-4.
|
[5]
|
S. K. De and G. C. Mahata, A cloudy fuzzy economic order quantity model for imperfect-quality items with allowable proportionate discounts, Journal of Industrial Engineering International, 15 (2019), 571-583.
doi: 10.1007/s40092-019-0310-1.
|
[6]
|
S. K. De, P. K. Kundu and A. Goswami, An economic production quantity inventory model involving fuzzy demand rate and fuzzy deterioration rate, Journal of Applied Mathematics and Computing, 12 (2003), 251-260.
doi: 10.1007/BF02936197.
|
[7]
|
D. Dutta and P. Kumar, Fuzzy inventory model for deteriorating items with shortages under fully backlogged condition, International Journal of Soft Computing and Engineering (IJSCE), 3 (2013), 393-398.
|
[8]
|
T. Garai and H. Garg, Multi-objective linear fractional inventory model with possibility and necessity constraints under generalised intuitionistic fuzzy set environment, CAAI Transactions on Intelligence Technology, 4 (2019), 175-181.
doi: 10.1049/trit.2019.0030.
|
[9]
|
H. Garg, Fuzzy inventory models for deteriorating items under different types of lead-time distributions, Intelligent Techniques in Engineering Management, Springer, (2015), 247–274.
doi: 10.1007/978-3-319-17906-3_11.
|
[10]
|
P. Gautam and A. Khanna, An imperfect production inventory model with setup cost reduction and carbon emission for an integrated supply chain, Uncertain Supply Chain Management, 6 (2018), 271-286.
doi: 10.5267/j.uscm.2017.11.003.
|
[11]
|
P. Gautam, A. Kishore, A. Khanna and C. K. Jaggi, Strategic defect management for a sustainable green supply chain, Journal of Cleaner Production, 233 (2019), 226-241.
doi: 10.1016/j.jclepro.2019.06.005.
|
[12]
|
N. Ghasemi and B. Afshar Nadjafi, EOQ models with varying holding cost, Journal of Industrial Mathematics, 2013 (2013), 743921, 1–7.
doi: 10.1155/2013/743921.
|
[13]
|
P. Guchhait, M. K. Maiti and M. Maiti, Production-inventory models for a damageable item with variable demands and inventory costs in an imperfect production process, International Journal of Production Economics, 144 (2013), 180-188.
doi: 10.1016/j.ijpe.2013.02.002.
|
[14]
|
K.-C. Hung, An inventory model with generalized type demand, deterioration and backorder rates, European Journal of Operational Research, 208 (2011), 239-242.
doi: 10.1016/j.ejor.2010.08.026.
|
[15]
|
S. Indrajitsingha, P. Samanta and U. Misra, Fuzzy inventory model with shortages under fully backlogged using signed distance method, International Journal for Research in Applied Science & Engineering Technology, 4 (2016), 197-203.
|
[16]
|
C. K. Jaggi, S. Pareek, A. Sharma and Ni dhi, Fuzzy inventory model for deteriorating items with time-varying demand and shortages, American Journal of Operational Research, 2 (2012), 81-92.
|
[17]
|
C. K. Jaggi, S. Pareek, A. Khanna and N. Nidhi, Optimal replenishment policy for fuzzy inventory model with deteriorating items and allowable shortages under inflationary conditions, Yugoslav Journal of Operations Research, 26 (2016), 507-526.
doi: 10.2298/YJOR150202002Y.
|
[18]
|
S. Jain, S. Tiwari, L. E. Cárdenas-Barrón, A. A. Shaikh and S. R. Singh, A fuzzy imperfect production and repair inventory model with time dependent demand, production and repair rates under inflationary conditions, RAIRO-Operations Research, 52 (2018), 217-239.
doi: 10.1051/ro/2017070.
|
[19]
|
A. Karbassi Yazdi, M. A. Kaviani, A. H. Sarfaraz, L. E. Cárdenas-Barrón, H.-M. Wee and S. Tiwari, A comparative study on economic production quantity (epq) model under space constraint with different kinds of data, Grey Systems: Theory and Application, 9 (2019), 86-100.
|
[20]
|
N. Kazemi, E. Shekarian, L. E. Cárdenas-Barrón and E. U. Olugu, Incorporating human learning into a fuzzy eoq inventory model with backorders, Computers & Industrial Engineering, 87 (2015), 540-542.
doi: 10.1016/j.cie.2015.05.014.
|
[21]
|
A. Khanna, M. Mittal, P. Gautam and C. Jaggi, Credit financing for deteriorating imperfect quality items with allowable shortages, Decision Science Letters, 5 (2016), 45-60.
doi: 10.5267/j.dsl.2015.9.001.
|
[22]
|
A. Khanna, P. Gautam and C. K. Jaggi, Inventory modeling for deteriorating imperfect quality items with selling price dependent demand and shortage backordering under credit financing, International Journal of Mathematical, Engineering and Management Sciences, 2 (2017), 110-124.
doi: 10.33889/IJMEMS.2017.2.2-010.
|
[23]
|
N. Kumar and S. Kumar, An inventory model for deteriorating items with partial backlogging using linear demand in fuzzy environment, Cogent Business & Management, 4 (2017), 1-16.
doi: 10.1080/23311975.2017.1307687.
|
[24]
|
S. Kumar and U. S. Rajput, Fuzzy inventory model for deteriorating items with time dependent demand and partial backlogging, Applied Mathematics, 6 (2015), 496-509.
doi: 10.4236/am.2015.63047.
|
[25]
|
A. Moradi, J. Razmi, R. Babazadeh and A. Sabbaghnia, An integrated principal component analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty, J. Ind. Manag. Optim., 15 (2019), 855-879.
|
[26]
|
P. Muniappan, R. Uthayakumar and S. Ganesh, An EOQ model for deteriorating items with inflation and time value of money considering time-dependent deteriorating rate and delay payments, Systems Science & Control Engineering, 3 (2015), 427-434.
doi: 10.1080/21642583.2015.1073638.
|
[27]
|
M. Pervin, G. C. Mahata and S. Kumar Roy, An inventory model with declining demand market for deteriorating items under a trade credit policy, International Journal of Management Science and Engineering Management, 11 (2016), 243-251.
|
[28]
|
M. Pervin, S. K. Roy and G. W. Weber, A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numer. Algebra Control Optim., 7 (2017), 21-50.
doi: 10.3934/naco.2017002.
|
[29]
|
M. Pervin, S. K. Roy and G. W. Weber, Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Annals of Operations Research, 260 (2018), 437-460.
doi: 10.1007/s10479-016-2355-5.
|
[30]
|
M. Pervin, S. K. Roy and G. W. Weber, An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numer. Algebra Control Optim., 8 (2018), 169-191.
doi: 10.3934/naco.2018010.
|
[31]
|
M. Pervin, S. K. Roy and G. W. Weber, Deteriorating inventory with preservation technology under price-and stock-sensitive demand, Journal of Industrial & Management Optimization, (2019), 275–284, https://doi.org/10.3934/jimo.2019019.
doi: 10.3934/jimo.2019019.
|
[32]
|
M. Pervin, S. K. Roy and G. W. Weber, An integrated vendor-buyer model with quadratic demand under inspection policy and preservation technology, Hacettepe Journal of Mathematics and Statistics, (2019), 1–22, https://doi.org/10.15672/hujms.476056.
doi: 10.15672/hujms.476056.
|
[33]
|
M. Pervin, S. K. Roy and G. W. Weber, Multi-item deteriorating two-echelon inventory model with price-and stock-dependent demand: A trade-credit policy, J. Ind. Manag. Optim., 15 (2019), 1345-1373.
|
[34]
|
S. K. Roy, M. Pervin and G. W. Weber, A two-warehouse probabilistic model with price discount on backorders under two levels of trade-credit policy, Journal of Industrial & Management Optimization, (2018), 658–662, https://doi.org/10.3934/jimo.2018167.
|
[35]
|
S. K. Roy, M. Pervin and G. W. Weber, Imperfection with inspection policy and variable demand under trade-credit: A deteriorating inventory model, Numerical Algebra, Control & Optimization, (2019), 658–662, https://doi.org/10.3934/naco.2019032.
|
[36]
|
S. Saha and T. Chakrabarti, Fuzzy inventory model for deteriorating items in a supply chain system with price dependent demand and without backorder, American Journal of Engineering Research, 6 (2017), 183-187.
|
[37]
|
B. Sarkar and A. S. Mahapatra, Periodic review fuzzy inventory model with variable lead time and fuzzy demand, International Transactions in Operational Research, 24 (2017), 1197-1227.
doi: 10.1111/itor.12177.
|
[38]
|
S. Sarkar and T. Chakrabarti, An EPQ model having weibull distribution deterioration with exponential demand and production with shortages under permissible delay in payments, Mathematical Theory and Modelling, 3 (2013), 1-7.
|
[39]
|
S. Shabani, A. Mirzazadeh and E. Sharifi, An inventory model with fuzzy deterioration and fully backlogged shortage under inflation, SOP Transactions on Applied Mathematics, 1 (2014), 161-171.
doi: 10.15764/AM.2014.02015.
|
[40]
|
A. A. Shaikh, A. K. Bhunia, L. E. Cárdenas-Barrón, L. Sahoo and S. Tiwari, A fuzzy inventory model for a deteriorating item with variable demand, permissible delay in payments and partial backlogging with shortage follows inventory (SFI) policy, International Journal of Fuzzy Systems, 20 (2018), 1606-1623.
doi: 10.1007/s40815-018-0466-7.
|
[41]
|
A. A. Shaikh, L. E. Cárdenas-Barrón and S. Tiwari, A two-warehouse inventory model for non-instantaneous deteriorating items with interval-valued inventory costs and stock-dependent demand under inflationary conditions, Neural Computing and Applications, 31 (2019), 1931-1948.
|
[42]
|
E. Shekarian, M. Y. Jaber, N. Kazemi and E. Ehsani, A fuzzified version of the economic production quantity (EPQ) model with backorders and rework for a single-stage system, European Journal of Industrial Engineering, 8 (2014), 291-324.
doi: 10.1504/EJIE.2014.060998.
|
[43]
|
E. Shekarian, N. Kazemi, S. H. Abdul-Rashid and E. U. Olugu, Fuzzy inventory models: A comprehensive review, Applied Soft Computing, 55 (2017), 588-621.
doi: 10.1016/j.asoc.2017.01.013.
|
[44]
|
E. Shekarian, E. U. Olugu, S. H. Abdul-Rashid and N. Kazemi, An economic order quantity model considering different holding costs for imperfect quality items subject to fuzziness and learning, Journal of Intelligent & Fuzzy Systems, 30 (2016), 2985-2997.
doi: 10.3233/IFS-151907.
|
[45]
|
S. Tiwari, L. E. Cárdenas-Barrón, A. Khanna and C. K. Jaggi, Impact of trade credit and inflation on retailer's ordering policies for non-instantaneous deteriorating items in a two-warehouse environment, International Journal of Production Economics, 176 (2016), 154-169.
doi: 10.1016/j.ijpe.2016.03.016.
|
[46]
|
R. R. Yager, A procedure for ordering fuzzy subsets of the unit interval, Information Sciences, 24 (1981), 143-161.
doi: 10.1016/0020-0255(81)90017-7.
|
[47]
|
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X.
|