
-
Previous Article
The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis
- JIMO Home
- This Issue
-
Next Article
Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment
Back-ordered inventory model with inflation in a cloudy-fuzzy environment
1. | Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore-721102, West Bengal, India |
2. | Faculty of Engineering Management, Chair of Marketing and Economic Engineering, Poznan University of Technology, ul. Strzelecka 11, 60-965 Poznan, Poland |
3. | Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey |
In this paper, an Economic Production Quantity model for deteriorating items with time-dependent demand and shortages including partially back-ordered is developed under a cloudy-fuzzy environment. At first, we develop a crisp model by considering linearly time-dependent demand with constant deterioration rate, constant inflation rate and shortages under partially back-ordered, then we fuzzify the model to archive a decision under the cloudy-fuzzy (extension of fuzziness) demand rate, inflation rate, deterioration rate and the partially back-ordered rate which are followed by their practical applications. In this model, we assume ambiances where cloudy normalized triangular fuzzy number is used to handle the uncertainty in information which is coming from the data. The main purpose of our study is to defuzzify the total inventory cost by applying Ranking Index method of fuzzy numbers as well as cloudy-fuzzy numbers and minimize the total inventory cost of crisp, fuzzy, and cloudy-fuzzy model. Finally, a comparative analysis among crisp, fuzzy and cloudy-fuzzy total cost is carried out in this paper. Numerical example, sensitivity analysis, and managerial insights are elaborated to justify the usefulness of the new approach. A comparative inquiry of the numerical result with a new existing paper is also carried out. This paper ends with a conclusion along with advantages and limitations of our solution approach, and an outlook towards possible future studies.
References:
[1] |
S. De, S. Maity and M. Pal, Two decision makers's single decision over a back order eoq model with dense fuzzy demand rate, Finance and Market, 3, https://doi.org/10.18686/fm.v3.1061. Google Scholar |
[2] |
S. K. De and I. Beg,
Triangular dense fuzzy sets and new defuzzification methods, Journal of Intelligent & Fuzzy systems, 31 (2016), 469-477.
doi: 10.3233/IFS-162160. |
[3] |
S. K. De and A. Goswami,
An EOQ model with fuzzy inflation rate and fuzzy deterioration rate when a delay in payment is permissible, International Journal of Systems Science, 37 (2006), 323-335.
doi: 10.1080/00207720600681112. |
[4] |
S. K. De and G. C. Mahata,
Decision of a fuzzy inventory with fuzzy backorder model under cloudy fuzzy demand rate, International Journal of Applied and Computational Mathematics, 3 (2017), 2593-2609.
doi: 10.1007/s40819-016-0258-4. |
[5] |
S. K. De and G. C. Mahata,
A cloudy fuzzy economic order quantity model for imperfect-quality items with allowable proportionate discounts, Journal of Industrial Engineering International, 15 (2019), 571-583.
doi: 10.1007/s40092-019-0310-1. |
[6] |
S. K. De, P. K. Kundu and A. Goswami,
An economic production quantity inventory model involving fuzzy demand rate and fuzzy deterioration rate, Journal of Applied Mathematics and Computing, 12 (2003), 251-260.
doi: 10.1007/BF02936197. |
[7] |
D. Dutta and P. Kumar, Fuzzy inventory model for deteriorating items with shortages under fully backlogged condition, International Journal of Soft Computing and Engineering (IJSCE), 3 (2013), 393-398. Google Scholar |
[8] |
T. Garai and H. Garg,
Multi-objective linear fractional inventory model with possibility and necessity constraints under generalised intuitionistic fuzzy set environment, CAAI Transactions on Intelligence Technology, 4 (2019), 175-181.
doi: 10.1049/trit.2019.0030. |
[9] |
H. Garg, Fuzzy inventory models for deteriorating items under different types of lead-time distributions, Intelligent Techniques in Engineering Management, Springer, (2015), 247–274.
doi: 10.1007/978-3-319-17906-3_11. |
[10] |
P. Gautam and A. Khanna,
An imperfect production inventory model with setup cost reduction and carbon emission for an integrated supply chain, Uncertain Supply Chain Management, 6 (2018), 271-286.
doi: 10.5267/j.uscm.2017.11.003. |
[11] |
P. Gautam, A. Kishore, A. Khanna and C. K. Jaggi,
Strategic defect management for a sustainable green supply chain, Journal of Cleaner Production, 233 (2019), 226-241.
doi: 10.1016/j.jclepro.2019.06.005. |
[12] |
N. Ghasemi and B. Afshar Nadjafi, EOQ models with varying holding cost, Journal of Industrial Mathematics, 2013 (2013), 743921, 1–7.
doi: 10.1155/2013/743921. |
[13] |
P. Guchhait, M. K. Maiti and M. Maiti,
Production-inventory models for a damageable item with variable demands and inventory costs in an imperfect production process, International Journal of Production Economics, 144 (2013), 180-188.
doi: 10.1016/j.ijpe.2013.02.002. |
[14] |
K.-C. Hung,
An inventory model with generalized type demand, deterioration and backorder rates, European Journal of Operational Research, 208 (2011), 239-242.
doi: 10.1016/j.ejor.2010.08.026. |
[15] |
S. Indrajitsingha, P. Samanta and U. Misra, Fuzzy inventory model with shortages under fully backlogged using signed distance method, International Journal for Research in Applied Science & Engineering Technology, 4 (2016), 197-203. Google Scholar |
[16] |
C. K. Jaggi, S. Pareek, A. Sharma and Ni dhi, Fuzzy inventory model for deteriorating items with time-varying demand and shortages, American Journal of Operational Research, 2 (2012), 81-92. Google Scholar |
[17] |
C. K. Jaggi, S. Pareek, A. Khanna and N. Nidhi,
Optimal replenishment policy for fuzzy inventory model with deteriorating items and allowable shortages under inflationary conditions, Yugoslav Journal of Operations Research, 26 (2016), 507-526.
doi: 10.2298/YJOR150202002Y. |
[18] |
S. Jain, S. Tiwari, L. E. Cárdenas-Barrón, A. A. Shaikh and S. R. Singh,
A fuzzy imperfect production and repair inventory model with time dependent demand, production and repair rates under inflationary conditions, RAIRO-Operations Research, 52 (2018), 217-239.
doi: 10.1051/ro/2017070. |
[19] |
A. Karbassi Yazdi, M. A. Kaviani, A. H. Sarfaraz, L. E. Cárdenas-Barrón, H.-M. Wee and S. Tiwari, A comparative study on economic production quantity (epq) model under space constraint with different kinds of data, Grey Systems: Theory and Application, 9 (2019), 86-100. Google Scholar |
[20] |
N. Kazemi, E. Shekarian, L. E. Cárdenas-Barrón and E. U. Olugu,
Incorporating human learning into a fuzzy eoq inventory model with backorders, Computers & Industrial Engineering, 87 (2015), 540-542.
doi: 10.1016/j.cie.2015.05.014. |
[21] |
A. Khanna, M. Mittal, P. Gautam and C. Jaggi,
Credit financing for deteriorating imperfect quality items with allowable shortages, Decision Science Letters, 5 (2016), 45-60.
doi: 10.5267/j.dsl.2015.9.001. |
[22] |
A. Khanna, P. Gautam and C. K. Jaggi,
Inventory modeling for deteriorating imperfect quality items with selling price dependent demand and shortage backordering under credit financing, International Journal of Mathematical, Engineering and Management Sciences, 2 (2017), 110-124.
doi: 10.33889/IJMEMS.2017.2.2-010. |
[23] |
N. Kumar and S. Kumar,
An inventory model for deteriorating items with partial backlogging using linear demand in fuzzy environment, Cogent Business & Management, 4 (2017), 1-16.
doi: 10.1080/23311975.2017.1307687. |
[24] |
S. Kumar and U. S. Rajput,
Fuzzy inventory model for deteriorating items with time dependent demand and partial backlogging, Applied Mathematics, 6 (2015), 496-509.
doi: 10.4236/am.2015.63047. |
[25] |
A. Moradi, J. Razmi, R. Babazadeh and A. Sabbaghnia,
An integrated principal component analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty, J. Ind. Manag. Optim., 15 (2019), 855-879.
|
[26] |
P. Muniappan, R. Uthayakumar and S. Ganesh,
An EOQ model for deteriorating items with inflation and time value of money considering time-dependent deteriorating rate and delay payments, Systems Science & Control Engineering, 3 (2015), 427-434.
doi: 10.1080/21642583.2015.1073638. |
[27] |
M. Pervin, G. C. Mahata and S. Kumar Roy, An inventory model with declining demand market for deteriorating items under a trade credit policy, International Journal of Management Science and Engineering Management, 11 (2016), 243-251. Google Scholar |
[28] |
M. Pervin, S. K. Roy and G. W. Weber,
A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numer. Algebra Control Optim., 7 (2017), 21-50.
doi: 10.3934/naco.2017002. |
[29] |
M. Pervin, S. K. Roy and G. W. Weber,
Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Annals of Operations Research, 260 (2018), 437-460.
doi: 10.1007/s10479-016-2355-5. |
[30] |
M. Pervin, S. K. Roy and G. W. Weber,
An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numer. Algebra Control Optim., 8 (2018), 169-191.
doi: 10.3934/naco.2018010. |
[31] |
M. Pervin, S. K. Roy and G. W. Weber, Deteriorating inventory with preservation technology under price-and stock-sensitive demand, Journal of Industrial & Management Optimization, (2019), 275–284, https://doi.org/10.3934/jimo.2019019.
doi: 10.3934/jimo.2019019. |
[32] |
M. Pervin, S. K. Roy and G. W. Weber, An integrated vendor-buyer model with quadratic demand under inspection policy and preservation technology, Hacettepe Journal of Mathematics and Statistics, (2019), 1–22, https://doi.org/10.15672/hujms.476056.
doi: 10.15672/hujms.476056. |
[33] |
M. Pervin, S. K. Roy and G. W. Weber,
Multi-item deteriorating two-echelon inventory model with price-and stock-dependent demand: A trade-credit policy, J. Ind. Manag. Optim., 15 (2019), 1345-1373.
|
[34] |
S. K. Roy, M. Pervin and G. W. Weber, A two-warehouse probabilistic model with price discount on backorders under two levels of trade-credit policy, Journal of Industrial & Management Optimization, (2018), 658–662, https://doi.org/10.3934/jimo.2018167. Google Scholar |
[35] |
S. K. Roy, M. Pervin and G. W. Weber, Imperfection with inspection policy and variable demand under trade-credit: A deteriorating inventory model, Numerical Algebra, Control & Optimization, (2019), 658–662, https://doi.org/10.3934/naco.2019032. Google Scholar |
[36] |
S. Saha and T. Chakrabarti, Fuzzy inventory model for deteriorating items in a supply chain system with price dependent demand and without backorder, American Journal of Engineering Research, 6 (2017), 183-187. Google Scholar |
[37] |
B. Sarkar and A. S. Mahapatra,
Periodic review fuzzy inventory model with variable lead time and fuzzy demand, International Transactions in Operational Research, 24 (2017), 1197-1227.
doi: 10.1111/itor.12177. |
[38] |
S. Sarkar and T. Chakrabarti, An EPQ model having weibull distribution deterioration with exponential demand and production with shortages under permissible delay in payments, Mathematical Theory and Modelling, 3 (2013), 1-7. Google Scholar |
[39] |
S. Shabani, A. Mirzazadeh and E. Sharifi,
An inventory model with fuzzy deterioration and fully backlogged shortage under inflation, SOP Transactions on Applied Mathematics, 1 (2014), 161-171.
doi: 10.15764/AM.2014.02015. |
[40] |
A. A. Shaikh, A. K. Bhunia, L. E. Cárdenas-Barrón, L. Sahoo and S. Tiwari,
A fuzzy inventory model for a deteriorating item with variable demand, permissible delay in payments and partial backlogging with shortage follows inventory (SFI) policy, International Journal of Fuzzy Systems, 20 (2018), 1606-1623.
doi: 10.1007/s40815-018-0466-7. |
[41] |
A. A. Shaikh, L. E. Cárdenas-Barrón and S. Tiwari, A two-warehouse inventory model for non-instantaneous deteriorating items with interval-valued inventory costs and stock-dependent demand under inflationary conditions, Neural Computing and Applications, 31 (2019), 1931-1948. Google Scholar |
[42] |
E. Shekarian, M. Y. Jaber, N. Kazemi and E. Ehsani,
A fuzzified version of the economic production quantity (EPQ) model with backorders and rework for a single-stage system, European Journal of Industrial Engineering, 8 (2014), 291-324.
doi: 10.1504/EJIE.2014.060998. |
[43] |
E. Shekarian, N. Kazemi, S. H. Abdul-Rashid and E. U. Olugu,
Fuzzy inventory models: A comprehensive review, Applied Soft Computing, 55 (2017), 588-621.
doi: 10.1016/j.asoc.2017.01.013. |
[44] |
E. Shekarian, E. U. Olugu, S. H. Abdul-Rashid and N. Kazemi,
An economic order quantity model considering different holding costs for imperfect quality items subject to fuzziness and learning, Journal of Intelligent & Fuzzy Systems, 30 (2016), 2985-2997.
doi: 10.3233/IFS-151907. |
[45] |
S. Tiwari, L. E. Cárdenas-Barrón, A. Khanna and C. K. Jaggi,
Impact of trade credit and inflation on retailer's ordering policies for non-instantaneous deteriorating items in a two-warehouse environment, International Journal of Production Economics, 176 (2016), 154-169.
doi: 10.1016/j.ijpe.2016.03.016. |
[46] |
R. R. Yager,
A procedure for ordering fuzzy subsets of the unit interval, Information Sciences, 24 (1981), 143-161.
doi: 10.1016/0020-0255(81)90017-7. |
[47] |
L. A. Zadeh,
Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |
show all references
References:
[1] |
S. De, S. Maity and M. Pal, Two decision makers's single decision over a back order eoq model with dense fuzzy demand rate, Finance and Market, 3, https://doi.org/10.18686/fm.v3.1061. Google Scholar |
[2] |
S. K. De and I. Beg,
Triangular dense fuzzy sets and new defuzzification methods, Journal of Intelligent & Fuzzy systems, 31 (2016), 469-477.
doi: 10.3233/IFS-162160. |
[3] |
S. K. De and A. Goswami,
An EOQ model with fuzzy inflation rate and fuzzy deterioration rate when a delay in payment is permissible, International Journal of Systems Science, 37 (2006), 323-335.
doi: 10.1080/00207720600681112. |
[4] |
S. K. De and G. C. Mahata,
Decision of a fuzzy inventory with fuzzy backorder model under cloudy fuzzy demand rate, International Journal of Applied and Computational Mathematics, 3 (2017), 2593-2609.
doi: 10.1007/s40819-016-0258-4. |
[5] |
S. K. De and G. C. Mahata,
A cloudy fuzzy economic order quantity model for imperfect-quality items with allowable proportionate discounts, Journal of Industrial Engineering International, 15 (2019), 571-583.
doi: 10.1007/s40092-019-0310-1. |
[6] |
S. K. De, P. K. Kundu and A. Goswami,
An economic production quantity inventory model involving fuzzy demand rate and fuzzy deterioration rate, Journal of Applied Mathematics and Computing, 12 (2003), 251-260.
doi: 10.1007/BF02936197. |
[7] |
D. Dutta and P. Kumar, Fuzzy inventory model for deteriorating items with shortages under fully backlogged condition, International Journal of Soft Computing and Engineering (IJSCE), 3 (2013), 393-398. Google Scholar |
[8] |
T. Garai and H. Garg,
Multi-objective linear fractional inventory model with possibility and necessity constraints under generalised intuitionistic fuzzy set environment, CAAI Transactions on Intelligence Technology, 4 (2019), 175-181.
doi: 10.1049/trit.2019.0030. |
[9] |
H. Garg, Fuzzy inventory models for deteriorating items under different types of lead-time distributions, Intelligent Techniques in Engineering Management, Springer, (2015), 247–274.
doi: 10.1007/978-3-319-17906-3_11. |
[10] |
P. Gautam and A. Khanna,
An imperfect production inventory model with setup cost reduction and carbon emission for an integrated supply chain, Uncertain Supply Chain Management, 6 (2018), 271-286.
doi: 10.5267/j.uscm.2017.11.003. |
[11] |
P. Gautam, A. Kishore, A. Khanna and C. K. Jaggi,
Strategic defect management for a sustainable green supply chain, Journal of Cleaner Production, 233 (2019), 226-241.
doi: 10.1016/j.jclepro.2019.06.005. |
[12] |
N. Ghasemi and B. Afshar Nadjafi, EOQ models with varying holding cost, Journal of Industrial Mathematics, 2013 (2013), 743921, 1–7.
doi: 10.1155/2013/743921. |
[13] |
P. Guchhait, M. K. Maiti and M. Maiti,
Production-inventory models for a damageable item with variable demands and inventory costs in an imperfect production process, International Journal of Production Economics, 144 (2013), 180-188.
doi: 10.1016/j.ijpe.2013.02.002. |
[14] |
K.-C. Hung,
An inventory model with generalized type demand, deterioration and backorder rates, European Journal of Operational Research, 208 (2011), 239-242.
doi: 10.1016/j.ejor.2010.08.026. |
[15] |
S. Indrajitsingha, P. Samanta and U. Misra, Fuzzy inventory model with shortages under fully backlogged using signed distance method, International Journal for Research in Applied Science & Engineering Technology, 4 (2016), 197-203. Google Scholar |
[16] |
C. K. Jaggi, S. Pareek, A. Sharma and Ni dhi, Fuzzy inventory model for deteriorating items with time-varying demand and shortages, American Journal of Operational Research, 2 (2012), 81-92. Google Scholar |
[17] |
C. K. Jaggi, S. Pareek, A. Khanna and N. Nidhi,
Optimal replenishment policy for fuzzy inventory model with deteriorating items and allowable shortages under inflationary conditions, Yugoslav Journal of Operations Research, 26 (2016), 507-526.
doi: 10.2298/YJOR150202002Y. |
[18] |
S. Jain, S. Tiwari, L. E. Cárdenas-Barrón, A. A. Shaikh and S. R. Singh,
A fuzzy imperfect production and repair inventory model with time dependent demand, production and repair rates under inflationary conditions, RAIRO-Operations Research, 52 (2018), 217-239.
doi: 10.1051/ro/2017070. |
[19] |
A. Karbassi Yazdi, M. A. Kaviani, A. H. Sarfaraz, L. E. Cárdenas-Barrón, H.-M. Wee and S. Tiwari, A comparative study on economic production quantity (epq) model under space constraint with different kinds of data, Grey Systems: Theory and Application, 9 (2019), 86-100. Google Scholar |
[20] |
N. Kazemi, E. Shekarian, L. E. Cárdenas-Barrón and E. U. Olugu,
Incorporating human learning into a fuzzy eoq inventory model with backorders, Computers & Industrial Engineering, 87 (2015), 540-542.
doi: 10.1016/j.cie.2015.05.014. |
[21] |
A. Khanna, M. Mittal, P. Gautam and C. Jaggi,
Credit financing for deteriorating imperfect quality items with allowable shortages, Decision Science Letters, 5 (2016), 45-60.
doi: 10.5267/j.dsl.2015.9.001. |
[22] |
A. Khanna, P. Gautam and C. K. Jaggi,
Inventory modeling for deteriorating imperfect quality items with selling price dependent demand and shortage backordering under credit financing, International Journal of Mathematical, Engineering and Management Sciences, 2 (2017), 110-124.
doi: 10.33889/IJMEMS.2017.2.2-010. |
[23] |
N. Kumar and S. Kumar,
An inventory model for deteriorating items with partial backlogging using linear demand in fuzzy environment, Cogent Business & Management, 4 (2017), 1-16.
doi: 10.1080/23311975.2017.1307687. |
[24] |
S. Kumar and U. S. Rajput,
Fuzzy inventory model for deteriorating items with time dependent demand and partial backlogging, Applied Mathematics, 6 (2015), 496-509.
doi: 10.4236/am.2015.63047. |
[25] |
A. Moradi, J. Razmi, R. Babazadeh and A. Sabbaghnia,
An integrated principal component analysis and multi-objective mathematical programming approach to agile supply chain network design under uncertainty, J. Ind. Manag. Optim., 15 (2019), 855-879.
|
[26] |
P. Muniappan, R. Uthayakumar and S. Ganesh,
An EOQ model for deteriorating items with inflation and time value of money considering time-dependent deteriorating rate and delay payments, Systems Science & Control Engineering, 3 (2015), 427-434.
doi: 10.1080/21642583.2015.1073638. |
[27] |
M. Pervin, G. C. Mahata and S. Kumar Roy, An inventory model with declining demand market for deteriorating items under a trade credit policy, International Journal of Management Science and Engineering Management, 11 (2016), 243-251. Google Scholar |
[28] |
M. Pervin, S. K. Roy and G. W. Weber,
A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numer. Algebra Control Optim., 7 (2017), 21-50.
doi: 10.3934/naco.2017002. |
[29] |
M. Pervin, S. K. Roy and G. W. Weber,
Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Annals of Operations Research, 260 (2018), 437-460.
doi: 10.1007/s10479-016-2355-5. |
[30] |
M. Pervin, S. K. Roy and G. W. Weber,
An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numer. Algebra Control Optim., 8 (2018), 169-191.
doi: 10.3934/naco.2018010. |
[31] |
M. Pervin, S. K. Roy and G. W. Weber, Deteriorating inventory with preservation technology under price-and stock-sensitive demand, Journal of Industrial & Management Optimization, (2019), 275–284, https://doi.org/10.3934/jimo.2019019.
doi: 10.3934/jimo.2019019. |
[32] |
M. Pervin, S. K. Roy and G. W. Weber, An integrated vendor-buyer model with quadratic demand under inspection policy and preservation technology, Hacettepe Journal of Mathematics and Statistics, (2019), 1–22, https://doi.org/10.15672/hujms.476056.
doi: 10.15672/hujms.476056. |
[33] |
M. Pervin, S. K. Roy and G. W. Weber,
Multi-item deteriorating two-echelon inventory model with price-and stock-dependent demand: A trade-credit policy, J. Ind. Manag. Optim., 15 (2019), 1345-1373.
|
[34] |
S. K. Roy, M. Pervin and G. W. Weber, A two-warehouse probabilistic model with price discount on backorders under two levels of trade-credit policy, Journal of Industrial & Management Optimization, (2018), 658–662, https://doi.org/10.3934/jimo.2018167. Google Scholar |
[35] |
S. K. Roy, M. Pervin and G. W. Weber, Imperfection with inspection policy and variable demand under trade-credit: A deteriorating inventory model, Numerical Algebra, Control & Optimization, (2019), 658–662, https://doi.org/10.3934/naco.2019032. Google Scholar |
[36] |
S. Saha and T. Chakrabarti, Fuzzy inventory model for deteriorating items in a supply chain system with price dependent demand and without backorder, American Journal of Engineering Research, 6 (2017), 183-187. Google Scholar |
[37] |
B. Sarkar and A. S. Mahapatra,
Periodic review fuzzy inventory model with variable lead time and fuzzy demand, International Transactions in Operational Research, 24 (2017), 1197-1227.
doi: 10.1111/itor.12177. |
[38] |
S. Sarkar and T. Chakrabarti, An EPQ model having weibull distribution deterioration with exponential demand and production with shortages under permissible delay in payments, Mathematical Theory and Modelling, 3 (2013), 1-7. Google Scholar |
[39] |
S. Shabani, A. Mirzazadeh and E. Sharifi,
An inventory model with fuzzy deterioration and fully backlogged shortage under inflation, SOP Transactions on Applied Mathematics, 1 (2014), 161-171.
doi: 10.15764/AM.2014.02015. |
[40] |
A. A. Shaikh, A. K. Bhunia, L. E. Cárdenas-Barrón, L. Sahoo and S. Tiwari,
A fuzzy inventory model for a deteriorating item with variable demand, permissible delay in payments and partial backlogging with shortage follows inventory (SFI) policy, International Journal of Fuzzy Systems, 20 (2018), 1606-1623.
doi: 10.1007/s40815-018-0466-7. |
[41] |
A. A. Shaikh, L. E. Cárdenas-Barrón and S. Tiwari, A two-warehouse inventory model for non-instantaneous deteriorating items with interval-valued inventory costs and stock-dependent demand under inflationary conditions, Neural Computing and Applications, 31 (2019), 1931-1948. Google Scholar |
[42] |
E. Shekarian, M. Y. Jaber, N. Kazemi and E. Ehsani,
A fuzzified version of the economic production quantity (EPQ) model with backorders and rework for a single-stage system, European Journal of Industrial Engineering, 8 (2014), 291-324.
doi: 10.1504/EJIE.2014.060998. |
[43] |
E. Shekarian, N. Kazemi, S. H. Abdul-Rashid and E. U. Olugu,
Fuzzy inventory models: A comprehensive review, Applied Soft Computing, 55 (2017), 588-621.
doi: 10.1016/j.asoc.2017.01.013. |
[44] |
E. Shekarian, E. U. Olugu, S. H. Abdul-Rashid and N. Kazemi,
An economic order quantity model considering different holding costs for imperfect quality items subject to fuzziness and learning, Journal of Intelligent & Fuzzy Systems, 30 (2016), 2985-2997.
doi: 10.3233/IFS-151907. |
[45] |
S. Tiwari, L. E. Cárdenas-Barrón, A. Khanna and C. K. Jaggi,
Impact of trade credit and inflation on retailer's ordering policies for non-instantaneous deteriorating items in a two-warehouse environment, International Journal of Production Economics, 176 (2016), 154-169.
doi: 10.1016/j.ijpe.2016.03.016. |
[46] |
R. R. Yager,
A procedure for ordering fuzzy subsets of the unit interval, Information Sciences, 24 (1981), 143-161.
doi: 10.1016/0020-0255(81)90017-7. |
[47] |
L. A. Zadeh,
Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X. |








Author(s) | Variable demand Rate | Fuzzy demand Rate | Cloudy Fuzzy Demand Rate | Fuzzy Deterioration | Cloudy Fuzzy Deterioration | Fuzzy Inflation | cloudy Fuzzy Inflation | Variable Holding cost | Fuzzy Back order Rate | cloudy Back order Rate |
De et al. (2003) | ||||||||||
De and Goswami (2006) | ||||||||||
Jaggi et al. (2012) | ||||||||||
Dutta and Kumar (2013) | ||||||||||
Nadjfi (2013) | ||||||||||
Shaboni et al. (2014) | ||||||||||
Pervin et al. (2015) | ||||||||||
Kumar and Rajput (2015) | ||||||||||
Pervin et al. (2016) | ||||||||||
De and Mahata (2017) | | | ||||||||
Parvin et al. (2017) | ||||||||||
Kumar and Kumar (2017) | ||||||||||
Pervin et al. (2018) | ||||||||||
Our paper |
Author(s) | Variable demand Rate | Fuzzy demand Rate | Cloudy Fuzzy Demand Rate | Fuzzy Deterioration | Cloudy Fuzzy Deterioration | Fuzzy Inflation | cloudy Fuzzy Inflation | Variable Holding cost | Fuzzy Back order Rate | cloudy Back order Rate |
De et al. (2003) | ||||||||||
De and Goswami (2006) | ||||||||||
Jaggi et al. (2012) | ||||||||||
Dutta and Kumar (2013) | ||||||||||
Nadjfi (2013) | ||||||||||
Shaboni et al. (2014) | ||||||||||
Pervin et al. (2015) | ||||||||||
Kumar and Rajput (2015) | ||||||||||
Pervin et al. (2016) | ||||||||||
De and Mahata (2017) | | | ||||||||
Parvin et al. (2017) | ||||||||||
Kumar and Kumar (2017) | ||||||||||
Pervin et al. (2018) | ||||||||||
Our paper |
Model | $T^*$(week) | ${T_1}^*$(week) | ${T_2}^*$(week) | Minimum cost | ||
Crisp | 4.21999 | 0.0101996 | 3.16691 | 206.931 | — | — |
Fuzzy | 4.84194 | 0.00915884 | 2.80802 | 213.634 | 0.16 | — |
Cloudy fuzzy | 5.72418 | 0.0101397 | 3.15275 | 169.752 | — | 0.14 |
Model | $T^*$(week) | ${T_1}^*$(week) | ${T_2}^*$(week) | Minimum cost | ||
Crisp | 4.21999 | 0.0101996 | 3.16691 | 206.931 | — | — |
Fuzzy | 4.84194 | 0.00915884 | 2.80802 | 213.634 | 0.16 | — |
Cloudy fuzzy | 5.72418 | 0.0101397 | 3.15275 | 169.752 | — | 0.14 |
Cycle time | Crisp model | Fuzzy model | ||||
2 | 0.0102881 | 3.18061 | 253.543 | 0.00921317 | 2.82304 | 265.894 |
3 | 0.0102483 | 3.17444 | 218.974 | 0.00919408 | 2.81776 | 228.391 |
4 | 0.0102084 | 3.16827 | 207.867 | 0.00917496 | 2.81248 | 215.966 |
| ||||||
6 | 0.0101286 | 3.15589 | 209.536 | 0.00913665 | 2.80188 | 216.623 |
7 | 0.0100887 | 3.14968 | 215.669 | 0.00911746 | 2.79657 | 222.603 |
8 | 0.0100488 | 3.14347 | 223.674 | 0.00909825 | 2.79125 | 230.574 |
9 | 0.0100089 | 3.13725 | 232.997 | 0.00907901 | 2.78591 | 239.944 |
10 | 0.00997 | 3.13101 | 243.307 | 0.00905975 | 2.78057 | 250.359 |
* Bold represents optimal solution. |
Cycle time | Crisp model | Fuzzy model | ||||
2 | 0.0102881 | 3.18061 | 253.543 | 0.00921317 | 2.82304 | 265.894 |
3 | 0.0102483 | 3.17444 | 218.974 | 0.00919408 | 2.81776 | 228.391 |
4 | 0.0102084 | 3.16827 | 207.867 | 0.00917496 | 2.81248 | 215.966 |
| ||||||
6 | 0.0101286 | 3.15589 | 209.536 | 0.00913665 | 2.80188 | 216.623 |
7 | 0.0100887 | 3.14968 | 215.669 | 0.00911746 | 2.79657 | 222.603 |
8 | 0.0100488 | 3.14347 | 223.674 | 0.00909825 | 2.79125 | 230.574 |
9 | 0.0100089 | 3.13725 | 232.997 | 0.00907901 | 2.78591 | 239.944 |
10 | 0.00997 | 3.13101 | 243.307 | 0.00905975 | 2.78057 | 250.359 |
* Bold represents optimal solution. |
Cycle time | |||
2 | 0.0102881 | 3.18061 | 233.896 |
3 | 0.0101824 | 3.15873 | 195.051 |
4 | 0.0101661 | 3.1565 | 177.841 |
5 | 0.0101501 | 3.15431 | 170.946 |
6 | 0.0101357 | 3.15216 | 169.901 |
7 | 0.0101212 | 3.15005 | 172.574 |
8 | 0.010107 | 3.14797 | 177.808 |
9 | 0.0100932 | 3.14592 | 184.919 |
10 | 0.0100796 | 3.1439 | 193.475 |
* Bold represents optimal solution. |
Cycle time | |||
2 | 0.0102881 | 3.18061 | 233.896 |
3 | 0.0101824 | 3.15873 | 195.051 |
4 | 0.0101661 | 3.1565 | 177.841 |
5 | 0.0101501 | 3.15431 | 170.946 |
6 | 0.0101357 | 3.15216 | 169.901 |
7 | 0.0101212 | 3.15005 | 172.574 |
8 | 0.010107 | 3.14797 | 177.808 |
9 | 0.0100932 | 3.14592 | 184.919 |
10 | 0.0100796 | 3.1439 | 193.475 |
* Bold represents optimal solution. |
Parameter | New value of parameter | ||||||
+50 | 750 | 8.10737 | 0.010155 | 3.14775 | 246.259 | 45 | |
+30 | 650 | 7.24503 | 0.010117 | 3.14954 | 217.988 | 28.3 | |
+15 | 575 | 6.52651 | 0.010128 | 3.15104 | 194.942 | 14.74 | |
-15 | 425 | 4.80246 | 0.0101536 | 3.15474 | 141.517 | -0.17 | |
-30 | 350 | 3.68946 | 0.0101711 | 3.15718 | 108.416 | -36.19 | |
-50 | 250 | 1.45517 | 0.0102102 | 3.16223 | 45.2895 | -73.34 | |
| +50 | 28.5 | 5.75063 | 0.0101458 | 3.15369 | 169.34 | -0.33 |
+30 | 24.7 | 5.73997 | 0.0101434 | 3.15332 | 169.505 | -0.23 | |
+15 | 21.85 | 5.73204 | 0.0101416 | 3.15304 | 169.628 | -0.16 | |
-30 | 13.3 | 5.70862 | 0.0101359 | 3.15216 | 169.997 | 0.06 | |
-50 | 9.5 | 5.69837 | 0.0101333 | 3.15175 | 170.161 | 0.15 | |
| +50 | 70.255 | 5.72707 | 0.0101755 | 3.1383 | 170.195 | 0.17 |
+30 | 0.221 | 5.72593 | 0.0101611 | 3.14403 | 170.018 | 0.07 | |
+15 | 0.1955 | 5.72507 | 0.0101504 | 3.14837 | 169.906 | 0.03 | |
-15 | 0.1445 | 5.72326 | 0.0101292 | 3.15716 | 169.617 | -0.17 | |
-30 | 0.119 | 5.72231 | 0.0101187 | 3.16161 | 169.302 | -0.4 | |
-50 | 0.085 | 5.721 | 0.010105 | 3.1676 | 169.302 | -0.4 | |
+50 | 0.225 | 5.72139 | 0.010109 | 3.16583 | 169.355 | -0.32 | |
+30 | 0.195 | 5.72254 | 0.0101212 | 3.16056 | 169.514 | -0.23 | |
+15 | 0.1725 | 5.72337 | 0.0101304 | 3.15664 | 169.633 | -0.16 | |
-15 | 0.1275 | 5.72496 | 0.0101491 | 3.14888 | 169.87 | -0.02 | |
-30 | 0.105 | 5.72573 | 0.0101586 | 3.14505 | 169.987 | 0.05 | |
-50 | 0.075 | 5.72672 | 0.0101713 | 3.13998 | 170.143 | 0.14 | |
| +50 | 1.05 | 4.41441 | 0.0119104 | 3.11271 | 191.321 | 12.61 |
+30 | 0.91 | 4.85547 | 0.0112016 | 3.12682 | 183.808 | 8.19 | |
+15 | 0.805 | 5.25137 | 0.0106705 | 3.13897 | 177.247 | 4.32 | |
-15 | 0.595 | 6.30428 | 0.0096094 | 3.16852 | 161.137 | -5.16 | |
-30 | 0.49 | 7.0423 | 0.009079 | 3.18673 | 151.136 | -11.04 | |
-50 | 0.35 | 8.44384 | 0.00837292 | 3.21582 | 134.889 | -20.61 | |
| +50 | 4.5 | 4.51458 | 0.0157385 | 3.19932 | 136.373 | -19.73 |
+30 | 3.9 | 5.02358 | 0.0134956 | 3.18289 | 150.54 | -11.4 | |
+15 | 3.45 | 5.38207 | 0.0118164 | 3.16882 | 160.415 | -5.58 | |
-15 | 2.55 | 6.05227 | 0.00846561 | 3.13411 | 178.618 | 5.13 | |
-30 | 2.1 | 6.36819 | 0.00679407 | 3.11212 | 187.067 | 10.1 | |
-50 | 1.5 | 6.77288 | 0.00456966 | 3.07548 | 197.757 | 16.4 | |
+50 | 0.09 | 5.78754 | 0.0103801 | 3.07074 | 171.68 | 1.05 | |
+30 | 0.078 | 5.76298 | 0.0102877 | 3.10254 | 170.932 | 0.61 | |
+15 | 0.069 | 5.74389 | 0.0102152 | 3.12725 | 170.351 | 0.61 | |
-15 | 0.051 | 5.70382 | 0.0100611 | 3.17908 | 169.133 | -0.45 | |
-30 | 0.042 | 5.68276 | 0.009979 | 3.20629 | 168.493 | -0.83 | |
-50 | 0.03 | 5.65353 | 0.00986411 | 3, 24406 | 167.606 | -1.35 | |
| +50 | 45 | 1.60043 | 0.0162324 | 4.01898 | 70.9432 | -58.24 |
+30 | 39 | 3.51682 | 0.0138168 | 3.69291 | 129.89 | -23.55 | |
+15 | 34.5 | 4.6588 | 0.0119896 | 3.43165 | 154.538 | -9.04 | |
-15 | 24.5 | 7.00539 | 0.007835 | 2.78187 | 179.177 | 5.46 | |
-30 | 21 | 7.83848 | 0.00633401 | 2.52404 | 180.747 | 6.38 | |
-50 | 15 | 9.35126 | 0.00366725 | 2.02744 | 176.399 | 3.82 | |
+50 | 0.0075 | 5.76822 | 0.0101149 | 3.1489 | 169.312 | -0.35 | |
+30 | 0.0065 | 5.75046 | 0.0101249 | 3.14046 | 169.489 | -0.24 | |
+15 | 0.00575 | 5.73726 | 0.0101324 | 3.15161 | 169.621 | -0.16 | |
-15 | 0.00425 | 5.7112 | 0.010147 | 3.15388 | 169.882 | -0.01 | |
-30 | 0.0035 | 5.69833 | 0.0101543 | 3.155 | 170.012 | 0.07 | |
-50 | 0.0025 | 5.68133 | 0.0101638 | 3.15647 | 170.183 | 0.17 | |
| +50 | 1.05 | 6.0493 | 0.00775952 | 2.76778 | 179.705 | 5.77 |
+30 | 0.91 | 5.93784 | 0.008571 | 2.90253 | 176.282 | 3.75 | |
+15 | 0.805 | 5.83939 | 0.00929235 | 3.01911 | 173.268 | 0.02 | |
-15 | 0.595 | 5.58678 | 0.0111551 | 3.30832 | 165.573 | -2.55 | |
-30 | .49 | 5.41893 | 0.0124013 | 3.49299 | 160.49 | -5.54 | |
-50 | 0.35 | 5.12323 | 0.0146078 | 3.8047 | 151.594 | -10.77 | |
| +50 | 0.3 | 5.27247 | 0.0101332 | 3.15255 | 159.446 | -6.15 |
+30 | 0.26 | 5.43884 | 0.0101356 | 3.15261 | 163.181 | -3.95 | |
+15 | 0.23 | 5.57508 | 0.0101376 | 3.15267 | 166.293 | -2.12 | |
-15 | 0.17 | 5.89021 | 0.0101421 | 3.15284 | 173.664 | 2.21 | |
-30 | 0.14 | 6.07952 | 0.0101448 | 3.15295 | 178.199 | 4.88 | |
-50 | 0.1 | 6.38786 | 0.010149 | 3.15313 | 185.743 | 9.32 | |
* Bold shows the most sensitive total inventory cost. |
Parameter | New value of parameter | ||||||
+50 | 750 | 8.10737 | 0.010155 | 3.14775 | 246.259 | 45 | |
+30 | 650 | 7.24503 | 0.010117 | 3.14954 | 217.988 | 28.3 | |
+15 | 575 | 6.52651 | 0.010128 | 3.15104 | 194.942 | 14.74 | |
-15 | 425 | 4.80246 | 0.0101536 | 3.15474 | 141.517 | -0.17 | |
-30 | 350 | 3.68946 | 0.0101711 | 3.15718 | 108.416 | -36.19 | |
-50 | 250 | 1.45517 | 0.0102102 | 3.16223 | 45.2895 | -73.34 | |
| +50 | 28.5 | 5.75063 | 0.0101458 | 3.15369 | 169.34 | -0.33 |
+30 | 24.7 | 5.73997 | 0.0101434 | 3.15332 | 169.505 | -0.23 | |
+15 | 21.85 | 5.73204 | 0.0101416 | 3.15304 | 169.628 | -0.16 | |
-30 | 13.3 | 5.70862 | 0.0101359 | 3.15216 | 169.997 | 0.06 | |
-50 | 9.5 | 5.69837 | 0.0101333 | 3.15175 | 170.161 | 0.15 | |
| +50 | 70.255 | 5.72707 | 0.0101755 | 3.1383 | 170.195 | 0.17 |
+30 | 0.221 | 5.72593 | 0.0101611 | 3.14403 | 170.018 | 0.07 | |
+15 | 0.1955 | 5.72507 | 0.0101504 | 3.14837 | 169.906 | 0.03 | |
-15 | 0.1445 | 5.72326 | 0.0101292 | 3.15716 | 169.617 | -0.17 | |
-30 | 0.119 | 5.72231 | 0.0101187 | 3.16161 | 169.302 | -0.4 | |
-50 | 0.085 | 5.721 | 0.010105 | 3.1676 | 169.302 | -0.4 | |
+50 | 0.225 | 5.72139 | 0.010109 | 3.16583 | 169.355 | -0.32 | |
+30 | 0.195 | 5.72254 | 0.0101212 | 3.16056 | 169.514 | -0.23 | |
+15 | 0.1725 | 5.72337 | 0.0101304 | 3.15664 | 169.633 | -0.16 | |
-15 | 0.1275 | 5.72496 | 0.0101491 | 3.14888 | 169.87 | -0.02 | |
-30 | 0.105 | 5.72573 | 0.0101586 | 3.14505 | 169.987 | 0.05 | |
-50 | 0.075 | 5.72672 | 0.0101713 | 3.13998 | 170.143 | 0.14 | |
| +50 | 1.05 | 4.41441 | 0.0119104 | 3.11271 | 191.321 | 12.61 |
+30 | 0.91 | 4.85547 | 0.0112016 | 3.12682 | 183.808 | 8.19 | |
+15 | 0.805 | 5.25137 | 0.0106705 | 3.13897 | 177.247 | 4.32 | |
-15 | 0.595 | 6.30428 | 0.0096094 | 3.16852 | 161.137 | -5.16 | |
-30 | 0.49 | 7.0423 | 0.009079 | 3.18673 | 151.136 | -11.04 | |
-50 | 0.35 | 8.44384 | 0.00837292 | 3.21582 | 134.889 | -20.61 | |
| +50 | 4.5 | 4.51458 | 0.0157385 | 3.19932 | 136.373 | -19.73 |
+30 | 3.9 | 5.02358 | 0.0134956 | 3.18289 | 150.54 | -11.4 | |
+15 | 3.45 | 5.38207 | 0.0118164 | 3.16882 | 160.415 | -5.58 | |
-15 | 2.55 | 6.05227 | 0.00846561 | 3.13411 | 178.618 | 5.13 | |
-30 | 2.1 | 6.36819 | 0.00679407 | 3.11212 | 187.067 | 10.1 | |
-50 | 1.5 | 6.77288 | 0.00456966 | 3.07548 | 197.757 | 16.4 | |
+50 | 0.09 | 5.78754 | 0.0103801 | 3.07074 | 171.68 | 1.05 | |
+30 | 0.078 | 5.76298 | 0.0102877 | 3.10254 | 170.932 | 0.61 | |
+15 | 0.069 | 5.74389 | 0.0102152 | 3.12725 | 170.351 | 0.61 | |
-15 | 0.051 | 5.70382 | 0.0100611 | 3.17908 | 169.133 | -0.45 | |
-30 | 0.042 | 5.68276 | 0.009979 | 3.20629 | 168.493 | -0.83 | |
-50 | 0.03 | 5.65353 | 0.00986411 | 3, 24406 | 167.606 | -1.35 | |
| +50 | 45 | 1.60043 | 0.0162324 | 4.01898 | 70.9432 | -58.24 |
+30 | 39 | 3.51682 | 0.0138168 | 3.69291 | 129.89 | -23.55 | |
+15 | 34.5 | 4.6588 | 0.0119896 | 3.43165 | 154.538 | -9.04 | |
-15 | 24.5 | 7.00539 | 0.007835 | 2.78187 | 179.177 | 5.46 | |
-30 | 21 | 7.83848 | 0.00633401 | 2.52404 | 180.747 | 6.38 | |
-50 | 15 | 9.35126 | 0.00366725 | 2.02744 | 176.399 | 3.82 | |
+50 | 0.0075 | 5.76822 | 0.0101149 | 3.1489 | 169.312 | -0.35 | |
+30 | 0.0065 | 5.75046 | 0.0101249 | 3.14046 | 169.489 | -0.24 | |
+15 | 0.00575 | 5.73726 | 0.0101324 | 3.15161 | 169.621 | -0.16 | |
-15 | 0.00425 | 5.7112 | 0.010147 | 3.15388 | 169.882 | -0.01 | |
-30 | 0.0035 | 5.69833 | 0.0101543 | 3.155 | 170.012 | 0.07 | |
-50 | 0.0025 | 5.68133 | 0.0101638 | 3.15647 | 170.183 | 0.17 | |
| +50 | 1.05 | 6.0493 | 0.00775952 | 2.76778 | 179.705 | 5.77 |
+30 | 0.91 | 5.93784 | 0.008571 | 2.90253 | 176.282 | 3.75 | |
+15 | 0.805 | 5.83939 | 0.00929235 | 3.01911 | 173.268 | 0.02 | |
-15 | 0.595 | 5.58678 | 0.0111551 | 3.30832 | 165.573 | -2.55 | |
-30 | .49 | 5.41893 | 0.0124013 | 3.49299 | 160.49 | -5.54 | |
-50 | 0.35 | 5.12323 | 0.0146078 | 3.8047 | 151.594 | -10.77 | |
| +50 | 0.3 | 5.27247 | 0.0101332 | 3.15255 | 159.446 | -6.15 |
+30 | 0.26 | 5.43884 | 0.0101356 | 3.15261 | 163.181 | -3.95 | |
+15 | 0.23 | 5.57508 | 0.0101376 | 3.15267 | 166.293 | -2.12 | |
-15 | 0.17 | 5.89021 | 0.0101421 | 3.15284 | 173.664 | 2.21 | |
-30 | 0.14 | 6.07952 | 0.0101448 | 3.15295 | 178.199 | 4.88 | |
-50 | 0.1 | 6.38786 | 0.010149 | 3.15313 | 185.743 | 9.32 | |
* Bold shows the most sensitive total inventory cost. |
[1] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[2] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[3] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[4] |
Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 |
[5] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[6] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[7] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[8] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020353 |
[9] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[10] |
Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088 |
[11] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[12] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[13] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[14] |
Shuai Huang, Zhi-Ping Fan, Xiaohuan Wang. Optimal financing and operational decisions of capital-constrained manufacturer under green credit and subsidy. Journal of Industrial & Management Optimization, 2021, 17 (1) : 261-277. doi: 10.3934/jimo.2019110 |
[15] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[16] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[17] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[18] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[19] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[20] |
Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]