[1]
|
Y.-J. Chen, S. Oraintara and K. S. Amaratunga, Dyadic-based factorizations for regular paraunitary filterbanks and $M$-band orthogonal wavelets with structural vanishing moments, IEEE Transactions on Signal Processing, 53 (2005), 193-207.
doi: 10.1109/TSP.2004.838962.
|
[2]
|
M. T. de Gouvêa and D. Odloak, A new treatment of inconsistent quadratic programs in a sqp-based algorithm, Computers & Chemical Engineering, 22 (1998), 1623-1651.
|
[3]
|
Y.-T. Fong and C.-W. Kok, Correction to "Iterative least squares design of DC-leakage free paraunitary cosine modulated filter banks'', IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 50 (2003), 238-243.
doi: 10.1109/TCSII.2007.895968.
|
[4]
|
X. Q. Gao, T. Q. Nguyen and G. Strang, Theory and lattice structure of complex paraunitary filterbanks with filters of (hermitian-) symmetry/antisymmetry properties, IEEE Transactions on Signal Processing, 49 (2001), 1028-1043.
doi: 10.1109/78.917806.
|
[5]
|
X. Q. Gao, T. Q. Nguyen and G. Strang, On factorization of $M$-channel paraunitary filterbanks, IEEE Transactions on Signal Processing, 49 (2001), 1433-1446.
doi: 10.1109/78.928696.
|
[6]
|
L. Gan and K.-K. Ma, A simplified lattice factorization for linear-phase paraunitary filter banks with pairwise mirror image frequency responses, IEEE Transactions on Circuits and Systems II: Express Briefs, 51 (2004), 3-7.
doi: 10.1109/TCSII.2003.821515.
|
[7]
|
N. Holighaus, Z. Prŭša and P. L. Søndergaard, Reassignment and synchrosqueezing for general time-frequency filter banks, subsampling and processing, Signal Processing, 125 (2016), 1-8.
doi: 10.1016/j.sigpro.2016.01.007.
|
[8]
|
M. Ikehara, T. Nagai and T. Q. Nguyen, Time-domain design and lattice structure of FIR paraunitary filter banks with linear phase, Signal Processing, 80 (2000), 333-342.
doi: 10.1016/S0165-1684(99)00131-0.
|
[9]
|
M. Ikehara and T. Q. Nguyen, Time-domain design of linear-phase pr filter banks, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, 3 (1997), 2077-2080.
|
[10]
|
J.-Z. Jiang, F. Zhou, S. Ouyang and G. S. Liao, Efficient design of high-complexity interleaved DFT modulated filter bank, Signal Processing, 94 (2014), 130-137.
doi: 10.1016/j.sigpro.2013.06.006.
|
[11]
|
J.-B. Jian, Q.-J. Xu and D.-L. Han, A strongly convergent norm-relaxed method of strongly sub-feasible direction for optimization with nonlinear equality and inequality constraints, Applied Mathematics and Computation, 182 (2006), 854-870.
doi: 10.1016/j.amc.2006.04.049.
|
[12]
|
J.-B. Jian, X.-Y. Ke and W.-X. Cheng, A superlinearly convergent norm-relaxed sqp method of strongly sub-feasible directions for constrained optimization without strict complementarity, Applied Mathematics and Computation, 214 (2009), 632-644.
doi: 10.1016/j.amc.2009.04.022.
|
[13]
|
C. W. Kok, T. Nagai, M. Ikehara and T. Q. Nguyen, Lattice structures parameterization of linear phase paraunitary matrices with pairwise mirror-image symmetry in the frequency domain with an odd number of rows, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48 (2001), 633-636.
doi: 10.1109/82.943336.
|
[14]
|
Y.-P. Lin and P. Vaidyanathan, Linear phase cosine modulated maximally decimated filter banks with perfect reconstruction, IEEE Transactions on Signal Processing, 43 (1995), 2525-2539.
|
[15]
|
C. Liu, B. W. Ling, C. Y. Ho and Q. Dai, Finite number of necessary and sufficient discrete condition in frequency domain for maximally decimated m-channel mirrored paraunitary linear phase fir filter bank, 2014 IEEE International Conference on Consumer Electronics-China, (2014), 1–5.
|
[16]
|
B. W.-K. Ling, N. Tian, C. Y.-F. Ho, W.-C. Siu, K.-L. Teo and Q. Y. Dai, Maximally decimated paraunitary linear phase FIR filter bank design via iterative SVD approach, IEEE Transactions on Signal Processing, 63 (2015), 466-481.
doi: 10.1109/TSP.2014.2371779.
|
[17]
|
T. Q. Nguyen, A quadratic-constrained least-squares approach to the design of digital filter banks, 1992 IEEE International Symposium on Circuits and Systems, 3 (1992), 1344-1347.
doi: 10.1109/ISCAS.1992.230255.
|
[18]
|
T. Q. Nguyen, A. K. Soman and P. Vaidyanathan, A quadratic-constrained least-squares approach to linear phase orthonormal filter bank design, 1993 IEEE International Symposium on Circuits and Systems, (1993), 383–386.
|
[19]
|
S. Oraintara, T. D. Tran, P. N. Heller and T. Q. Nguyen, Lattice structure for regular paraunitary linear-phase filterbanks and $M$-band orthogonal symmetric wavelets, IEEE Transactions on Signal Processing, 49 (2001), 2659-2672.
doi: 10.1109/78.960413.
|
[20]
|
S. Patel, R. Dhuli and B. Lall, Design and analysis of matrix wiener synthesis filter for multirate filter bank, Signal Processing, 102 (2014), 256-264.
doi: 10.1016/j.sigpro.2014.03.021.
|
[21]
|
M. Sangnier, J. Gauthier and A. Rakotomamonjy, Filter bank learning for signal classification, Signal Processing, 113 (2015), 124-137.
doi: 10.1016/j.sigpro.2014.12.028.
|
[22]
|
A. K. Soman, P. P. Vaidyanathan and T. Q. Nguyen, Linear phase paraunitary filter banks: Theory, factorizations and designs, IEEE Transactions on Signal Processing, 41 (1993), 3480-3496.
doi: 10.1109/78.258087.
|
[23]
|
A. K. Soman and P. P. Vaidyanathan, A complete factorization of paraunitary matrices with pairwise mirror-image symmetry in the frequency domain, IEEE Transactions on Signal Processing, 43 (1995), 1002-1004.
doi: 10.1109/78.376855.
|
[24]
|
C. G. Shen, W. J. Xue and X. D. Chen, Global convergence of a robust filter SQP algorithm, European Journal of Operational Research, 206 (2010), 34-45.
doi: 10.1016/j.ejor.2010.02.031.
|
[25]
|
T. D. Tran and T. Q. Nguyen, On m-channel linear phase fir filter banks and application in image compression, IEEE Transactions on Signal Processing, 45 (1997), 2175-2187.
|
[26]
|
T. D. Tran, M. Ikehara and T. Q. Nguyen, Linear phase paraunitary filter bank with filters of different lengths and its application in image compression,, IEEE Transactions on Signal Processing, 47 (1999), 2730-2744.
doi: 10.1109/78.790655.
|
[27]
|
T. D. Tran, R. L. De Queiroz and T. Q. Nguyen, Linear-phase perfect reconstruction filter bank: Lattice structure, design, and application in image coding, IEEE Transactions on Signal Processing, 48 (2000), 133-147.
|
[28]
|
P. G. Vouras and T. D. Tran, Factorization of paraunitary polyphase matrices using subspace projections, 2008 42nd Asilomar Conference on Signals, Systems and Computers, (2008), 602–605.
doi: 10.1109/ACSSC.2008.5074476.
|
[29]
|
Z. M. Xu and A. Makur, On the arbitrary-length $M$-channel linear phase perfect reconstruction filter banks, IEEE Transactions on Signal Processing, 57 (2009), 4118-4123.
doi: 10.1109/TSP.2009.2024026.
|
[30]
|
W. J. Xue, C. G. Shen and D. G. Pu, A penalty-function-free line search sqp method for nonlinear programming, Journal of Computational and Applied Mathematics, 228 (2009), 313-325.
doi: 10.1016/j.cam.2008.09.031.
|