• Previous Article
    Selecting the supply chain financing mode under price-sensitive demand: Confirmed warehouse financing vs. trade credit
  • JIMO Home
  • This Issue
  • Next Article
    Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming
July  2021, 17(4): 2013-2030. doi: 10.3934/jimo.2020056

Local search algorithm for the squared metric $ k $-facility location problem with linear penalties

1. 

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

2. 

School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China

3. 

School of Software, Shandong University, Jinan 250101, China

* Corresponding author: Yong Zhang

Received  October 2019 Revised  November 2019 Published  March 2020

In the $ k $-facility location problem, an important combinatorial optimization problem combining the classical facility location and $ k $-median problems, we are given the locations of some facilities and clients, and need to open at most $ k $ facilities and connect all clients to opened facilities, minimizing the facility opening and connection cost. This paper considers the squared metric $ k $-facility location problem with linear penalties, a robust version of the $ k $-facility location problem. In this problem, we do not have to connect all clients to facilities, but each client that is not served by any facility must pay a penalty cost. The connection costs of facilities and clients are supposed to be squared metric, which is more general than the metric case. We provide a constant approximation algorithm based on the local search scheme with add, drop, and swap operations for this problem. Furthermore, we improve the approximation ratio by using the scaling technique.

Citation: Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056
References:
[1]

V. AryaN. GargR. KhandekarA. MeyersonK. Munagala and V. Pandit, Local search heuristics for $k$-median and facility location problems, SIAM Journal on Computing, 33 (2004), 544-562.  doi: 10.1137/S0097539702416402.  Google Scholar

[2]

J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan and K. Trinh, An improved approximation for $k$-median and positive correlation in budgeted optimization, ACM Transactions on Algorithms, 13 (2017), Art. 23, 31 pp. doi: 10.1145/2981561.  Google Scholar

[3]

M. Charikar and S. Guha, Improved combinatorial algorithms for facility location problems, SIAM Journal on Computing, 34 (2005), 803-824.  doi: 10.1137/S0097539701398594.  Google Scholar

[4]

M. Charikar, S. Guha, É. Tardos and D. B. Shmoys, A constant-factor approximation algorithm for the $k$-median problem, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, (1999), 1–10. doi: 10.1145/301250.301257.  Google Scholar

[5]

M. Charikar, S. Khuller, D. M. Mount and G. Narasimhan, Algorithms for facility location problems with outliers, Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, (2001), 642–651.  Google Scholar

[6]

F. A. Chudak and D. B. Shmoys, Improved approximation algorithms for the uncapacitated facility location problem, SIAM Journal on Computing, 33 (2003), 1-25.  doi: 10.1137/S0097539703405754.  Google Scholar

[7]

C. G. FernandesL. A. A. MeiraF. K. Miyazawa and L. L. C. Pedrosa, A systematic approach to bound factor-revealing LPs and its application to the metric and squared metric facility location problems, Mathematical Programming, 153 (2015), 655-685.  doi: 10.1007/s10107-014-0821-x.  Google Scholar

[8]

M. HajiaghayiR. Khandekar and G. Kortsarz, Local search algorithms for the red-blue median problem, Algorithmica, 63 (2012), 795-814.  doi: 10.1007/s00453-011-9547-9.  Google Scholar

[9]

D. S. Hochbaum, Heuristics for the fixed cost median problem, Mathematical Programming, 22 (1982), 148-162.  doi: 10.1007/BF01581035.  Google Scholar

[10]

K. Jain and V. V. Vazirani, Approximation algorithms for metric facility location and $k$-median problems using the primal-dual schema and Lagrangian relaxation, Journal of the ACM, 48 (2001), 274-296.  doi: 10.1145/375827.375845.  Google Scholar

[11]

S. Li, A 1.488 approximation algorithm for the uncapacitated facility location problem, Information and Computation, 222 (2013), 45-58.  doi: 10.1016/j.ic.2012.01.007.  Google Scholar

[12]

Y. LiD. L. DuN. H. Xiu and D. C. Xu, Improved approximation algorithms for the facility location problems with linear/submodular penalties, Algorithmica, 73 (2015), 460-482.  doi: 10.1007/s00453-014-9911-7.  Google Scholar

[13]

D. B. Shmoys, É. Tardos, and K. Aardal, Approximation algorithms for facility location problems, Proceedings of the 29th Annual ACM Symposium on Theory of Computing, ACM, New York, NY, (1997), 265–274. doi: 10.1145/258533.258600.  Google Scholar

[14]

Y. S. WangD. C. XuD. L. Du and C. C. Wu, An approximation algorithm for the nth power metric facility location problem with linear penalties, Optimization Letters, 11 (2017), 983-993.  doi: 10.1007/s11590-015-0989-x.  Google Scholar

[15]

Y. S. WangD. C. XuD. L. Du and C. C. Wu, An approximation algorithm for $k$-facility location problem with linear penalties using local search scheme, Journal of Combinatorial Optimization, 36 (2018), 264-279.  doi: 10.1007/s10878-016-0080-2.  Google Scholar

[16]

Y. C. XuD. C. XuD. L. Du and D. M. Zhang, Approximation algorithm for squared metric facility location problem with nonuniform capacities, Discrete Applied Mathematics, 264 (2019), 208-217.  doi: 10.1016/j.dam.2019.03.013.  Google Scholar

[17]

Y. C. XuD. C. XuD. L. Du and C. C. Wu, Local search algorithm for universal facility location problem with linear penalties, Journal of Global Optimization, 67 (2017), 367-378.  doi: 10.1007/s10898-015-0394-0.  Google Scholar

[18]

P. Zhang, A new approximation algorithm for the $k$-facility location problem, Theoretical Computer Science, 384 (2007), 126-135.  doi: 10.1016/j.tcs.2007.05.024.  Google Scholar

[19]

D. M. ZhangD. C. XuY. S. WangP. Zhang and Z. N. Zhang, Local search approximation algorithms for the sum of squares facility location problems, Journal of Global Optimization, 74 (2019), 909-932.  doi: 10.1007/s10898-018-00733-2.  Google Scholar

[20]

D. M. ZhangD. C. XuY. S. WangP. Zhang and Z. N. Zhang, A local search approximation algorithm for a squared metric $k$-facility location problem, Journal of Combinatorial Optimization, 35 (2018), 1168-1184.  doi: 10.1007/s10878-018-0261-2.  Google Scholar

show all references

References:
[1]

V. AryaN. GargR. KhandekarA. MeyersonK. Munagala and V. Pandit, Local search heuristics for $k$-median and facility location problems, SIAM Journal on Computing, 33 (2004), 544-562.  doi: 10.1137/S0097539702416402.  Google Scholar

[2]

J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan and K. Trinh, An improved approximation for $k$-median and positive correlation in budgeted optimization, ACM Transactions on Algorithms, 13 (2017), Art. 23, 31 pp. doi: 10.1145/2981561.  Google Scholar

[3]

M. Charikar and S. Guha, Improved combinatorial algorithms for facility location problems, SIAM Journal on Computing, 34 (2005), 803-824.  doi: 10.1137/S0097539701398594.  Google Scholar

[4]

M. Charikar, S. Guha, É. Tardos and D. B. Shmoys, A constant-factor approximation algorithm for the $k$-median problem, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, (1999), 1–10. doi: 10.1145/301250.301257.  Google Scholar

[5]

M. Charikar, S. Khuller, D. M. Mount and G. Narasimhan, Algorithms for facility location problems with outliers, Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, (2001), 642–651.  Google Scholar

[6]

F. A. Chudak and D. B. Shmoys, Improved approximation algorithms for the uncapacitated facility location problem, SIAM Journal on Computing, 33 (2003), 1-25.  doi: 10.1137/S0097539703405754.  Google Scholar

[7]

C. G. FernandesL. A. A. MeiraF. K. Miyazawa and L. L. C. Pedrosa, A systematic approach to bound factor-revealing LPs and its application to the metric and squared metric facility location problems, Mathematical Programming, 153 (2015), 655-685.  doi: 10.1007/s10107-014-0821-x.  Google Scholar

[8]

M. HajiaghayiR. Khandekar and G. Kortsarz, Local search algorithms for the red-blue median problem, Algorithmica, 63 (2012), 795-814.  doi: 10.1007/s00453-011-9547-9.  Google Scholar

[9]

D. S. Hochbaum, Heuristics for the fixed cost median problem, Mathematical Programming, 22 (1982), 148-162.  doi: 10.1007/BF01581035.  Google Scholar

[10]

K. Jain and V. V. Vazirani, Approximation algorithms for metric facility location and $k$-median problems using the primal-dual schema and Lagrangian relaxation, Journal of the ACM, 48 (2001), 274-296.  doi: 10.1145/375827.375845.  Google Scholar

[11]

S. Li, A 1.488 approximation algorithm for the uncapacitated facility location problem, Information and Computation, 222 (2013), 45-58.  doi: 10.1016/j.ic.2012.01.007.  Google Scholar

[12]

Y. LiD. L. DuN. H. Xiu and D. C. Xu, Improved approximation algorithms for the facility location problems with linear/submodular penalties, Algorithmica, 73 (2015), 460-482.  doi: 10.1007/s00453-014-9911-7.  Google Scholar

[13]

D. B. Shmoys, É. Tardos, and K. Aardal, Approximation algorithms for facility location problems, Proceedings of the 29th Annual ACM Symposium on Theory of Computing, ACM, New York, NY, (1997), 265–274. doi: 10.1145/258533.258600.  Google Scholar

[14]

Y. S. WangD. C. XuD. L. Du and C. C. Wu, An approximation algorithm for the nth power metric facility location problem with linear penalties, Optimization Letters, 11 (2017), 983-993.  doi: 10.1007/s11590-015-0989-x.  Google Scholar

[15]

Y. S. WangD. C. XuD. L. Du and C. C. Wu, An approximation algorithm for $k$-facility location problem with linear penalties using local search scheme, Journal of Combinatorial Optimization, 36 (2018), 264-279.  doi: 10.1007/s10878-016-0080-2.  Google Scholar

[16]

Y. C. XuD. C. XuD. L. Du and D. M. Zhang, Approximation algorithm for squared metric facility location problem with nonuniform capacities, Discrete Applied Mathematics, 264 (2019), 208-217.  doi: 10.1016/j.dam.2019.03.013.  Google Scholar

[17]

Y. C. XuD. C. XuD. L. Du and C. C. Wu, Local search algorithm for universal facility location problem with linear penalties, Journal of Global Optimization, 67 (2017), 367-378.  doi: 10.1007/s10898-015-0394-0.  Google Scholar

[18]

P. Zhang, A new approximation algorithm for the $k$-facility location problem, Theoretical Computer Science, 384 (2007), 126-135.  doi: 10.1016/j.tcs.2007.05.024.  Google Scholar

[19]

D. M. ZhangD. C. XuY. S. WangP. Zhang and Z. N. Zhang, Local search approximation algorithms for the sum of squares facility location problems, Journal of Global Optimization, 74 (2019), 909-932.  doi: 10.1007/s10898-018-00733-2.  Google Scholar

[20]

D. M. ZhangD. C. XuY. S. WangP. Zhang and Z. N. Zhang, A local search approximation algorithm for a squared metric $k$-facility location problem, Journal of Combinatorial Optimization, 35 (2018), 1168-1184.  doi: 10.1007/s10878-018-0261-2.  Google Scholar

Figure 1.  Partitions and local operations of $ F $ and $ F^* $ for analyzing the upper bound of $ C_f + C_p $. The black solid squares represent all bad facilities. Each gray solid square represents the nearest facility among a part of $ F^* $ to the bad facility capturing them
Figure 3.  Swap operations (case of $ |F|>|F^*| $) for analyzing the upper bound of $ C_s + C_p $. The black solid square is a bad facility
Figure 2.  Different cases (partition of $ N_F(a^l_i) \cup N_F^*(b^l_i) $) for analyzing the new cost after the operation $ swap(a^l_i, b^l_i) $
[1]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[2]

Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021082

[3]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[4]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[5]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079

[6]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[7]

Gbeminiyi John Oyewole, Olufemi Adetunji. Solving the facility location and fixed charge solid transportation problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1557-1575. doi: 10.3934/jimo.2020034

[8]

Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075

[9]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2635-3652. doi: 10.3934/dcds.2020378

[10]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[11]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[13]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[14]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[15]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021096

[16]

Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021101

[17]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[18]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[19]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3045-3062. doi: 10.3934/dcds.2020397

[20]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (94)
  • HTML views (454)
  • Cited by (0)

Other articles
by authors

[Back to Top]