In the $ k $-facility location problem, an important combinatorial optimization problem combining the classical facility location and $ k $-median problems, we are given the locations of some facilities and clients, and need to open at most $ k $ facilities and connect all clients to opened facilities, minimizing the facility opening and connection cost. This paper considers the squared metric $ k $-facility location problem with linear penalties, a robust version of the $ k $-facility location problem. In this problem, we do not have to connect all clients to facilities, but each client that is not served by any facility must pay a penalty cost. The connection costs of facilities and clients are supposed to be squared metric, which is more general than the metric case. We provide a constant approximation algorithm based on the local search scheme with add, drop, and swap operations for this problem. Furthermore, we improve the approximation ratio by using the scaling technique.
Citation: |
[1] |
V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala and V. Pandit, Local search heuristics for $k$-median and facility location problems, SIAM Journal on Computing, 33 (2004), 544-562.
doi: 10.1137/S0097539702416402.![]() ![]() ![]() |
[2] |
J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan and K. Trinh, An improved approximation for $k$-median and positive correlation in budgeted optimization, ACM Transactions on Algorithms, 13 (2017), Art. 23, 31 pp.
doi: 10.1145/2981561.![]() ![]() ![]() |
[3] |
M. Charikar and S. Guha, Improved combinatorial algorithms for facility location problems, SIAM Journal on Computing, 34 (2005), 803-824.
doi: 10.1137/S0097539701398594.![]() ![]() ![]() |
[4] |
M. Charikar, S. Guha, É. Tardos and D. B. Shmoys, A constant-factor approximation algorithm for the $k$-median problem, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, (1999), 1–10.
doi: 10.1145/301250.301257.![]() ![]() ![]() |
[5] |
M. Charikar, S. Khuller, D. M. Mount and G. Narasimhan, Algorithms for facility location problems with outliers, Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, (2001), 642–651.
![]() ![]() |
[6] |
F. A. Chudak and D. B. Shmoys, Improved approximation algorithms for the uncapacitated facility location problem, SIAM Journal on Computing, 33 (2003), 1-25.
doi: 10.1137/S0097539703405754.![]() ![]() ![]() |
[7] |
C. G. Fernandes, L. A. A. Meira, F. K. Miyazawa and L. L. C. Pedrosa, A systematic approach to bound factor-revealing LPs and its application to the metric and squared metric facility location problems, Mathematical Programming, 153 (2015), 655-685.
doi: 10.1007/s10107-014-0821-x.![]() ![]() ![]() |
[8] |
M. Hajiaghayi, R. Khandekar and G. Kortsarz, Local search algorithms for the red-blue median problem, Algorithmica, 63 (2012), 795-814.
doi: 10.1007/s00453-011-9547-9.![]() ![]() ![]() |
[9] |
D. S. Hochbaum, Heuristics for the fixed cost median problem, Mathematical Programming, 22 (1982), 148-162.
doi: 10.1007/BF01581035.![]() ![]() ![]() |
[10] |
K. Jain and V. V. Vazirani, Approximation algorithms for metric facility location and $k$-median problems using the primal-dual schema and Lagrangian relaxation, Journal of the ACM, 48 (2001), 274-296.
doi: 10.1145/375827.375845.![]() ![]() ![]() |
[11] |
S. Li, A 1.488 approximation algorithm for the uncapacitated facility location problem, Information and Computation, 222 (2013), 45-58.
doi: 10.1016/j.ic.2012.01.007.![]() ![]() ![]() |
[12] |
Y. Li, D. L. Du, N. H. Xiu and D. C. Xu, Improved approximation algorithms for the facility location problems with linear/submodular penalties, Algorithmica, 73 (2015), 460-482.
doi: 10.1007/s00453-014-9911-7.![]() ![]() ![]() |
[13] |
D. B. Shmoys, É. Tardos, and K. Aardal, Approximation algorithms for facility location problems, Proceedings of the 29th Annual ACM Symposium on Theory of Computing, ACM, New York, NY, (1997), 265–274.
doi: 10.1145/258533.258600.![]() ![]() |
[14] |
Y. S. Wang, D. C. Xu, D. L. Du and C. C. Wu, An approximation algorithm for the nth power metric facility location problem with linear penalties, Optimization Letters, 11 (2017), 983-993.
doi: 10.1007/s11590-015-0989-x.![]() ![]() ![]() |
[15] |
Y. S. Wang, D. C. Xu, D. L. Du and C. C. Wu, An approximation algorithm for $k$-facility location problem with linear penalties using local search scheme, Journal of Combinatorial Optimization, 36 (2018), 264-279.
doi: 10.1007/s10878-016-0080-2.![]() ![]() ![]() |
[16] |
Y. C. Xu, D. C. Xu, D. L. Du and D. M. Zhang, Approximation algorithm for squared metric facility location problem with nonuniform capacities, Discrete Applied Mathematics, 264 (2019), 208-217.
doi: 10.1016/j.dam.2019.03.013.![]() ![]() ![]() |
[17] |
Y. C. Xu, D. C. Xu, D. L. Du and C. C. Wu, Local search algorithm for universal facility location problem with linear penalties, Journal of Global Optimization, 67 (2017), 367-378.
doi: 10.1007/s10898-015-0394-0.![]() ![]() ![]() |
[18] |
P. Zhang, A new approximation algorithm for the $k$-facility location problem, Theoretical Computer Science, 384 (2007), 126-135.
doi: 10.1016/j.tcs.2007.05.024.![]() ![]() ![]() |
[19] |
D. M. Zhang, D. C. Xu, Y. S. Wang, P. Zhang and Z. N. Zhang, Local search approximation algorithms for the sum of squares facility location problems, Journal of Global Optimization, 74 (2019), 909-932.
doi: 10.1007/s10898-018-00733-2.![]() ![]() ![]() |
[20] |
D. M. Zhang, D. C. Xu, Y. S. Wang, P. Zhang and Z. N. Zhang, A local search approximation algorithm for a squared metric $k$-facility location problem, Journal of Combinatorial Optimization, 35 (2018), 1168-1184.
doi: 10.1007/s10878-018-0261-2.![]() ![]() ![]() |
Partitions and local operations of
Swap operations (case of
Different cases (partition of