doi: 10.3934/jimo.2020056

Local search algorithm for the squared metric $ k $-facility location problem with linear penalties

1. 

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

2. 

School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China

3. 

School of Software, Shandong University, Jinan 250101, China

* Corresponding author: Yong Zhang

Received  October 2019 Revised  November 2019 Published  March 2020

In the $ k $-facility location problem, an important combinatorial optimization problem combining the classical facility location and $ k $-median problems, we are given the locations of some facilities and clients, and need to open at most $ k $ facilities and connect all clients to opened facilities, minimizing the facility opening and connection cost. This paper considers the squared metric $ k $-facility location problem with linear penalties, a robust version of the $ k $-facility location problem. In this problem, we do not have to connect all clients to facilities, but each client that is not served by any facility must pay a penalty cost. The connection costs of facilities and clients are supposed to be squared metric, which is more general than the metric case. We provide a constant approximation algorithm based on the local search scheme with add, drop, and swap operations for this problem. Furthermore, we improve the approximation ratio by using the scaling technique.

Citation: Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020056
References:
[1]

V. AryaN. GargR. KhandekarA. MeyersonK. Munagala and V. Pandit, Local search heuristics for $k$-median and facility location problems, SIAM Journal on Computing, 33 (2004), 544-562.  doi: 10.1137/S0097539702416402.  Google Scholar

[2]

J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan and K. Trinh, An improved approximation for $k$-median and positive correlation in budgeted optimization, ACM Transactions on Algorithms, 13 (2017), Art. 23, 31 pp. doi: 10.1145/2981561.  Google Scholar

[3]

M. Charikar and S. Guha, Improved combinatorial algorithms for facility location problems, SIAM Journal on Computing, 34 (2005), 803-824.  doi: 10.1137/S0097539701398594.  Google Scholar

[4]

M. Charikar, S. Guha, É. Tardos and D. B. Shmoys, A constant-factor approximation algorithm for the $k$-median problem, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, (1999), 1–10. doi: 10.1145/301250.301257.  Google Scholar

[5]

M. Charikar, S. Khuller, D. M. Mount and G. Narasimhan, Algorithms for facility location problems with outliers, Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, (2001), 642–651.  Google Scholar

[6]

F. A. Chudak and D. B. Shmoys, Improved approximation algorithms for the uncapacitated facility location problem, SIAM Journal on Computing, 33 (2003), 1-25.  doi: 10.1137/S0097539703405754.  Google Scholar

[7]

C. G. FernandesL. A. A. MeiraF. K. Miyazawa and L. L. C. Pedrosa, A systematic approach to bound factor-revealing LPs and its application to the metric and squared metric facility location problems, Mathematical Programming, 153 (2015), 655-685.  doi: 10.1007/s10107-014-0821-x.  Google Scholar

[8]

M. HajiaghayiR. Khandekar and G. Kortsarz, Local search algorithms for the red-blue median problem, Algorithmica, 63 (2012), 795-814.  doi: 10.1007/s00453-011-9547-9.  Google Scholar

[9]

D. S. Hochbaum, Heuristics for the fixed cost median problem, Mathematical Programming, 22 (1982), 148-162.  doi: 10.1007/BF01581035.  Google Scholar

[10]

K. Jain and V. V. Vazirani, Approximation algorithms for metric facility location and $k$-median problems using the primal-dual schema and Lagrangian relaxation, Journal of the ACM, 48 (2001), 274-296.  doi: 10.1145/375827.375845.  Google Scholar

[11]

S. Li, A 1.488 approximation algorithm for the uncapacitated facility location problem, Information and Computation, 222 (2013), 45-58.  doi: 10.1016/j.ic.2012.01.007.  Google Scholar

[12]

Y. LiD. L. DuN. H. Xiu and D. C. Xu, Improved approximation algorithms for the facility location problems with linear/submodular penalties, Algorithmica, 73 (2015), 460-482.  doi: 10.1007/s00453-014-9911-7.  Google Scholar

[13]

D. B. Shmoys, É. Tardos, and K. Aardal, Approximation algorithms for facility location problems, Proceedings of the 29th Annual ACM Symposium on Theory of Computing, ACM, New York, NY, (1997), 265–274. doi: 10.1145/258533.258600.  Google Scholar

[14]

Y. S. WangD. C. XuD. L. Du and C. C. Wu, An approximation algorithm for the nth power metric facility location problem with linear penalties, Optimization Letters, 11 (2017), 983-993.  doi: 10.1007/s11590-015-0989-x.  Google Scholar

[15]

Y. S. WangD. C. XuD. L. Du and C. C. Wu, An approximation algorithm for $k$-facility location problem with linear penalties using local search scheme, Journal of Combinatorial Optimization, 36 (2018), 264-279.  doi: 10.1007/s10878-016-0080-2.  Google Scholar

[16]

Y. C. XuD. C. XuD. L. Du and D. M. Zhang, Approximation algorithm for squared metric facility location problem with nonuniform capacities, Discrete Applied Mathematics, 264 (2019), 208-217.  doi: 10.1016/j.dam.2019.03.013.  Google Scholar

[17]

Y. C. XuD. C. XuD. L. Du and C. C. Wu, Local search algorithm for universal facility location problem with linear penalties, Journal of Global Optimization, 67 (2017), 367-378.  doi: 10.1007/s10898-015-0394-0.  Google Scholar

[18]

P. Zhang, A new approximation algorithm for the $k$-facility location problem, Theoretical Computer Science, 384 (2007), 126-135.  doi: 10.1016/j.tcs.2007.05.024.  Google Scholar

[19]

D. M. ZhangD. C. XuY. S. WangP. Zhang and Z. N. Zhang, Local search approximation algorithms for the sum of squares facility location problems, Journal of Global Optimization, 74 (2019), 909-932.  doi: 10.1007/s10898-018-00733-2.  Google Scholar

[20]

D. M. ZhangD. C. XuY. S. WangP. Zhang and Z. N. Zhang, A local search approximation algorithm for a squared metric $k$-facility location problem, Journal of Combinatorial Optimization, 35 (2018), 1168-1184.  doi: 10.1007/s10878-018-0261-2.  Google Scholar

show all references

References:
[1]

V. AryaN. GargR. KhandekarA. MeyersonK. Munagala and V. Pandit, Local search heuristics for $k$-median and facility location problems, SIAM Journal on Computing, 33 (2004), 544-562.  doi: 10.1137/S0097539702416402.  Google Scholar

[2]

J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan and K. Trinh, An improved approximation for $k$-median and positive correlation in budgeted optimization, ACM Transactions on Algorithms, 13 (2017), Art. 23, 31 pp. doi: 10.1145/2981561.  Google Scholar

[3]

M. Charikar and S. Guha, Improved combinatorial algorithms for facility location problems, SIAM Journal on Computing, 34 (2005), 803-824.  doi: 10.1137/S0097539701398594.  Google Scholar

[4]

M. Charikar, S. Guha, É. Tardos and D. B. Shmoys, A constant-factor approximation algorithm for the $k$-median problem, Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York, (1999), 1–10. doi: 10.1145/301250.301257.  Google Scholar

[5]

M. Charikar, S. Khuller, D. M. Mount and G. Narasimhan, Algorithms for facility location problems with outliers, Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, (2001), 642–651.  Google Scholar

[6]

F. A. Chudak and D. B. Shmoys, Improved approximation algorithms for the uncapacitated facility location problem, SIAM Journal on Computing, 33 (2003), 1-25.  doi: 10.1137/S0097539703405754.  Google Scholar

[7]

C. G. FernandesL. A. A. MeiraF. K. Miyazawa and L. L. C. Pedrosa, A systematic approach to bound factor-revealing LPs and its application to the metric and squared metric facility location problems, Mathematical Programming, 153 (2015), 655-685.  doi: 10.1007/s10107-014-0821-x.  Google Scholar

[8]

M. HajiaghayiR. Khandekar and G. Kortsarz, Local search algorithms for the red-blue median problem, Algorithmica, 63 (2012), 795-814.  doi: 10.1007/s00453-011-9547-9.  Google Scholar

[9]

D. S. Hochbaum, Heuristics for the fixed cost median problem, Mathematical Programming, 22 (1982), 148-162.  doi: 10.1007/BF01581035.  Google Scholar

[10]

K. Jain and V. V. Vazirani, Approximation algorithms for metric facility location and $k$-median problems using the primal-dual schema and Lagrangian relaxation, Journal of the ACM, 48 (2001), 274-296.  doi: 10.1145/375827.375845.  Google Scholar

[11]

S. Li, A 1.488 approximation algorithm for the uncapacitated facility location problem, Information and Computation, 222 (2013), 45-58.  doi: 10.1016/j.ic.2012.01.007.  Google Scholar

[12]

Y. LiD. L. DuN. H. Xiu and D. C. Xu, Improved approximation algorithms for the facility location problems with linear/submodular penalties, Algorithmica, 73 (2015), 460-482.  doi: 10.1007/s00453-014-9911-7.  Google Scholar

[13]

D. B. Shmoys, É. Tardos, and K. Aardal, Approximation algorithms for facility location problems, Proceedings of the 29th Annual ACM Symposium on Theory of Computing, ACM, New York, NY, (1997), 265–274. doi: 10.1145/258533.258600.  Google Scholar

[14]

Y. S. WangD. C. XuD. L. Du and C. C. Wu, An approximation algorithm for the nth power metric facility location problem with linear penalties, Optimization Letters, 11 (2017), 983-993.  doi: 10.1007/s11590-015-0989-x.  Google Scholar

[15]

Y. S. WangD. C. XuD. L. Du and C. C. Wu, An approximation algorithm for $k$-facility location problem with linear penalties using local search scheme, Journal of Combinatorial Optimization, 36 (2018), 264-279.  doi: 10.1007/s10878-016-0080-2.  Google Scholar

[16]

Y. C. XuD. C. XuD. L. Du and D. M. Zhang, Approximation algorithm for squared metric facility location problem with nonuniform capacities, Discrete Applied Mathematics, 264 (2019), 208-217.  doi: 10.1016/j.dam.2019.03.013.  Google Scholar

[17]

Y. C. XuD. C. XuD. L. Du and C. C. Wu, Local search algorithm for universal facility location problem with linear penalties, Journal of Global Optimization, 67 (2017), 367-378.  doi: 10.1007/s10898-015-0394-0.  Google Scholar

[18]

P. Zhang, A new approximation algorithm for the $k$-facility location problem, Theoretical Computer Science, 384 (2007), 126-135.  doi: 10.1016/j.tcs.2007.05.024.  Google Scholar

[19]

D. M. ZhangD. C. XuY. S. WangP. Zhang and Z. N. Zhang, Local search approximation algorithms for the sum of squares facility location problems, Journal of Global Optimization, 74 (2019), 909-932.  doi: 10.1007/s10898-018-00733-2.  Google Scholar

[20]

D. M. ZhangD. C. XuY. S. WangP. Zhang and Z. N. Zhang, A local search approximation algorithm for a squared metric $k$-facility location problem, Journal of Combinatorial Optimization, 35 (2018), 1168-1184.  doi: 10.1007/s10878-018-0261-2.  Google Scholar

Figure 1.  Partitions and local operations of $ F $ and $ F^* $ for analyzing the upper bound of $ C_f + C_p $. The black solid squares represent all bad facilities. Each gray solid square represents the nearest facility among a part of $ F^* $ to the bad facility capturing them
Figure 3.  Swap operations (case of $ |F|>|F^*| $) for analyzing the upper bound of $ C_s + C_p $. The black solid square is a bad facility
Figure 2.  Different cases (partition of $ N_F(a^l_i) \cup N_F^*(b^l_i) $) for analyzing the new cost after the operation $ swap(a^l_i, b^l_i) $
[1]

Gaidi Li, Zhen Wang, Dachuan Xu. An approximation algorithm for the $k$-level facility location problem with submodular penalties. Journal of Industrial & Management Optimization, 2012, 8 (3) : 521-529. doi: 10.3934/jimo.2012.8.521

[2]

Jianqin Zhou, Wanquan Liu, Xifeng Wang, Guanglu Zhou. On the $ k $-error linear complexity for $ p^n $-periodic binary sequences via hypercube theory. Mathematical Foundations of Computing, 2019, 2 (4) : 279-297. doi: 10.3934/mfc.2019018

[3]

Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086

[4]

Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011

[5]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045

[6]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2020021

[7]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[8]

Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1801-1834. doi: 10.3934/jimo.2019030

[9]

Adam Kanigowski, Federico Rodriguez Hertz, Kurt Vinhage. On the non-equivalence of the Bernoulli and $ K$ properties in dimension four. Journal of Modern Dynamics, 2018, 13: 221-250. doi: 10.3934/jmd.2018019

[10]

Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001

[11]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[12]

Gyu Eun Lee. Local wellposedness for the critical nonlinear Schrödinger equation on $ \mathbb{T}^3 $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2763-2783. doi: 10.3934/dcds.2019116

[13]

Tuan Anh Dao, Michael Reissig. $ L^1 $ estimates for oscillating integrals and their applications to semi-linear models with $ \sigma $-evolution like structural damping. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5431-5463. doi: 10.3934/dcds.2019222

[14]

Edcarlos D. Silva, José Carlos de Albuquerque, Uberlandio Severo. On a class of linearly coupled systems on $ \mathbb{R}^N $ involving asymptotically linear terms. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3089-3101. doi: 10.3934/cpaa.2019138

[15]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020039

[16]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure & Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[17]

Huimin Zheng, Xuejun Guo, Hourong Qin. The Mahler measure of $ (x+1/x)(y+1/y)(z+1/z)+\sqrt{k} $. Electronic Research Archive, 2020, 28 (1) : 103-125. doi: 10.3934/era.2020007

[18]

Sanjiban Santra. On the positive solutions for a perturbed negative exponent problem on $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1441-1460. doi: 10.3934/dcds.2018059

[19]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[20]

Shengbing Deng. Construction solutions for Neumann problem with Hénon term in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2233-2253. doi: 10.3934/dcds.2019094

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (36)
  • HTML views (139)
  • Cited by (0)

Other articles
by authors

[Back to Top]