# American Institute of Mathematical Sciences

doi: 10.3934/jimo.2020060

## Effect of institutional deleveraging on option valuation problems

 1 Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong 2 School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, China

* Corresponding author: Na Song

Received  March 2019 Revised  November 2019 Published  March 2020

This paper studies the valuation problem of European call options when the presence of distressed selling may lead to further endogenous volatility and correlation between the stock issuer's asset value and the price of the stock underlying the option, and hence influence the option price. A change of numéraire technique, based on Girsanov Theorem, is applied to derive the analytical pricing formula for the European call option when the price of underlying stock is subject to price pressure triggered by the stock issuer's own distressed selling. Numerical experiments are also provided to study the impacts of distressed selling on the European call option prices.

Citation: Qing-Qing Yang, Wai-Ki Ching, Wan-Hua He, Na Song. Effect of institutional deleveraging on option valuation problems. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020060
##### References:

show all references

##### References:
Variation of European Call Option with Respect to Distressed Selling Impact
Variation of Delta of a European Call Option with Respect to Distressed Selling Impact
Variation of Vega of a European Call Option with Respect to Distressed Selling Impact
Variation of Gamma of a European Call Option with Respect Distressed Selling Impact
Variation of European Call Option Price with Respect to Distressed Selling Impact. $f = \frac{\log{x}}{\eta}$
Variation of European Call Option Price with Respect to Distressed Selling Impact. $f = \frac{1-e^x}{\eta}$
Greeks
 Option Price($C(t)$) $S(t)\mathcal{N}(d_+(t))-KB(t,T)\mathcal N(d_-(t))$ Delta($\Delta$) $\mathcal N(d_+(t))$ Vega($\mathcal V$) $S(t) n(d_+(t))\sqrt{T-t}$ Gamma($\Gamma$) $\frac{ n(d_+)}{S(t)\bar{\sigma}_t\sqrt{T-t}}$
 Option Price($C(t)$) $S(t)\mathcal{N}(d_+(t))-KB(t,T)\mathcal N(d_-(t))$ Delta($\Delta$) $\mathcal N(d_+(t))$ Vega($\mathcal V$) $S(t) n(d_+(t))\sqrt{T-t}$ Gamma($\Gamma$) $\frac{ n(d_+)}{S(t)\bar{\sigma}_t\sqrt{T-t}}$
Preference parameters
 Parameters Values Parameters Values Market depth $L=10$ MLR $\eta=1$ Volatility $\sigma_S=0.2$ Volatility $\sigma_X=0.1$ Volatility $\sigma_r=0.15$ Time to maturity $T-t=1$ Initial price $S_0=40$ Strike price $K=40$ Initial price $X_0=100$ Initial price $B(t,T)=0.05$ Correlation $\rho=0.7$ Time steps $N=100$ Correlation $\rho_{1r}=0.5$ Correlation $\rho_{2r}=0.6$ Mean-reverting speed $a=100$ Long-term interest rate $b=0.0243$
 Parameters Values Parameters Values Market depth $L=10$ MLR $\eta=1$ Volatility $\sigma_S=0.2$ Volatility $\sigma_X=0.1$ Volatility $\sigma_r=0.15$ Time to maturity $T-t=1$ Initial price $S_0=40$ Strike price $K=40$ Initial price $X_0=100$ Initial price $B(t,T)=0.05$ Correlation $\rho=0.7$ Time steps $N=100$ Correlation $\rho_{1r}=0.5$ Correlation $\rho_{2r}=0.6$ Mean-reverting speed $a=100$ Long-term interest rate $b=0.0243$
 [1] Stefan Weber, Kerstin Weske. The joint impact of bankruptcy costs, fire sales and cross-holdings on systemic risk in financial networks. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 9-. doi: 10.1186/s41546-017-0020-9 [2] Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013 [3] Qing-Qing Yang, Wai-Ki Ching, Wanhua He, Tak-Kuen Siu. Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales. Journal of Industrial & Management Optimization, 2019, 15 (1) : 293-318. doi: 10.3934/jimo.2018044 [4] Na Song, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. A real option approach for investment opportunity valuation. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1213-1235. doi: 10.3934/jimo.2016069 [5] Junkee Jeon, Jehan Oh. Valuation of American strangle option: Variational inequality approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 755-781. doi: 10.3934/dcdsb.2018206 [6] Bei Hu, Lishang Jiang, Jin Liang, Wei Wei. A fully non-linear PDE problem from pricing CDS with counterparty risk. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2001-2016. doi: 10.3934/dcdsb.2012.17.2001 [7] Tak Kuen Siu, Yang Shen. Risk-minimizing pricing and Esscher transform in a general non-Markovian regime-switching jump-diffusion model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2595-2626. doi: 10.3934/dcdsb.2017100 [8] Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial & Management Optimization, 2020, 16 (1) : 387-396. doi: 10.3934/jimo.2018158 [9] Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229 [10] Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1473-1492. doi: 10.3934/jimo.2018105 [11] Andrew P. Sage. Risk in system of systems engineering and management. Journal of Industrial & Management Optimization, 2008, 4 (3) : 477-487. doi: 10.3934/jimo.2008.4.477 [12] Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial & Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043 [13] Fazlollah Soleymani, Ali Akgül. European option valuation under the Bates PIDE in finance: A numerical implementation of the Gaussian scheme. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 889-909. doi: 10.3934/dcdss.2020052 [14] Kai Zhang, Song Wang. Convergence property of an interior penalty approach to pricing American option. Journal of Industrial & Management Optimization, 2011, 7 (2) : 435-447. doi: 10.3934/jimo.2011.7.435 [15] Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529 [16] Tak Kuen Siu, Howell Tong, Hailiang Yang. Option pricing under threshold autoregressive models by threshold Esscher transform. Journal of Industrial & Management Optimization, 2006, 2 (2) : 177-197. doi: 10.3934/jimo.2006.2.177 [17] Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial & Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783 [18] Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237 [19] Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531 [20] Zhimin Zhang. On a risk model with randomized dividend-decision times. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1041-1058. doi: 10.3934/jimo.2014.10.1041

2019 Impact Factor: 1.366