
-
Previous Article
Analysis of dynamic service system between regular and retrial queues with impatient customers
- JIMO Home
- This Issue
-
Next Article
Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution
Effect of institutional deleveraging on option valuation problems
1. | Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong |
2. | School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, China |
This paper studies the valuation problem of European call options when the presence of distressed selling may lead to further endogenous volatility and correlation between the stock issuer's asset value and the price of the stock underlying the option, and hence influence the option price. A change of numéraire technique, based on Girsanov Theorem, is applied to derive the analytical pricing formula for the European call option when the price of underlying stock is subject to price pressure triggered by the stock issuer's own distressed selling. Numerical experiments are also provided to study the impacts of distressed selling on the European call option prices.
References:
[1] |
M. Anton and C. Polk,
Connected stocks, The Journal of Finance, 69 (2014), 1099-1127.
doi: 10.1111/jofi.12149. |
[2] |
F. Black and M. Scholes,
The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062. |
[3] |
M. K. Brunnermeier,
Deciphering the liquidity and credit crunch 2007-2008, Journal of Economic Perspectives, 23 (2009), 77-100.
doi: 10.1257/jep.23.1.77. |
[4] |
M. Carlson, A brief history of the 1987 stock market crash with a discussion of the federal reserve response, in Finance and Economics Discussion Series, Federal Reserve Board, Washington, DC., 2006. Google Scholar |
[5] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[6] |
R. Cont and L. Wagalath,
Fire sales forensics: Measuring endogenous risk, Mathematical Finance, 26 (2016), 835-866.
doi: 10.1111/mafi.12071. |
[7] |
J. Coval and E. Stafford,
Asset fire sales (and purchases) in equity markets, Journal of Financial Economics, 86 (2007), 479-512.
doi: 10.1016/j.jfineco.2006.09.007. |
[8] |
D. Duffie and K. Singleton,
Modeling term structures of defaultable bonds, The Review of Financial Studies, 12 (1999), 687-720.
doi: 10.1093/rfs/12.4.687. |
[9] |
A. Ellul, C. Jotikasthira and T. C. Lundblad,
Regulatory pressure and fire sales in the corporate bond market, Journal of Financial Economics, 101 (2011), 596-620.
doi: 10.1016/j.jfineco.2011.03.020. |
[10] |
H. Geman, N. El Karoui and J.-C. Rochet,
Changes of num'eraire, changes of probability measure and option pricing, Journal of Applied Probability, 32 (1995), 443-458.
doi: 10.2307/3215299. |
[11] |
R. Greenwood and D. Thesmar,
Stock price fragility, Journal of Financial Economics, 102 (2011), 471-490.
doi: 10.1016/j.jfineco.2011.06.003. |
[12] |
T. Hida, J. Potthoff and L. Streit,
Dirichlet forms and white noise analysis, Communications in Mathematical Physics, 116 (1988), 235-245.
doi: 10.1007/BF01225257. |
[13] |
A. Khandani and A. W. Lo,
What happened to the quants in August 2007? Evidence from factors and transactions data, Journal of Financial Markets, 14 (2011), 1-46.
doi: 10.1016/j.finmar.2010.07.005. |
[14] |
A. S. Kyle and W. Xiong,
Contagion as a wealth effect, The Journal of Finance, 56 (2001), 1401-1440.
doi: 10.1111/0022-1082.00373. |
[15] |
R. C. Merton,
Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1976), 125-144.
doi: 10.1016/0304-405X(76)90022-2. |
[16] |
P. Pedler,
Occupation times for two state Markov chains, Journal of Applied Probability, 8 (1971), 381-390.
doi: 10.2307/3211908. |
[17] |
B. Sericola,
Occupation times in Markov processes, Communications in Statistics. Stochastic Models, 16 (2000), 479-510.
doi: 10.1080/15326340008807601. |
[18] |
S. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer Finance. Springer-Verlag, New York, 2004. |
[19] |
A. Shleifer and R. W. Vishny,
Liquidation values and debt capacity: A market equilibrium approach, The Journal of Finance, 47 (1992), 1343-1366.
doi: 10.1111/j.1540-6261.1992.tb04661.x. |
[20] |
A. Shleifer and R. W. Vishny,
Fire sales in finance and macroeconomics, Journal of Economic Perspectives, 25 (2011), 29-48.
doi: 10.1257/jep.25.1.29. |
[21] |
R. Wiggins, T. Piontek and A. Metrick, The Lehman Brothers Bankruptcy A: Overview. Yale Program on Financial Stability Case Study 2014-3A-V1, SSRN, (2015), 23 pp.
doi: 10.2139/ssrn.2588531. |
[22] |
Q.-Q. Yang, W.-K. Ching and T.-K. Siu,
Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales, Journal of Industrial and Management Optimization, 15 (2019), 293-318.
doi: 10.3934/jimo.2018044. |
show all references
References:
[1] |
M. Anton and C. Polk,
Connected stocks, The Journal of Finance, 69 (2014), 1099-1127.
doi: 10.1111/jofi.12149. |
[2] |
F. Black and M. Scholes,
The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062. |
[3] |
M. K. Brunnermeier,
Deciphering the liquidity and credit crunch 2007-2008, Journal of Economic Perspectives, 23 (2009), 77-100.
doi: 10.1257/jep.23.1.77. |
[4] |
M. Carlson, A brief history of the 1987 stock market crash with a discussion of the federal reserve response, in Finance and Economics Discussion Series, Federal Reserve Board, Washington, DC., 2006. Google Scholar |
[5] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. |
[6] |
R. Cont and L. Wagalath,
Fire sales forensics: Measuring endogenous risk, Mathematical Finance, 26 (2016), 835-866.
doi: 10.1111/mafi.12071. |
[7] |
J. Coval and E. Stafford,
Asset fire sales (and purchases) in equity markets, Journal of Financial Economics, 86 (2007), 479-512.
doi: 10.1016/j.jfineco.2006.09.007. |
[8] |
D. Duffie and K. Singleton,
Modeling term structures of defaultable bonds, The Review of Financial Studies, 12 (1999), 687-720.
doi: 10.1093/rfs/12.4.687. |
[9] |
A. Ellul, C. Jotikasthira and T. C. Lundblad,
Regulatory pressure and fire sales in the corporate bond market, Journal of Financial Economics, 101 (2011), 596-620.
doi: 10.1016/j.jfineco.2011.03.020. |
[10] |
H. Geman, N. El Karoui and J.-C. Rochet,
Changes of num'eraire, changes of probability measure and option pricing, Journal of Applied Probability, 32 (1995), 443-458.
doi: 10.2307/3215299. |
[11] |
R. Greenwood and D. Thesmar,
Stock price fragility, Journal of Financial Economics, 102 (2011), 471-490.
doi: 10.1016/j.jfineco.2011.06.003. |
[12] |
T. Hida, J. Potthoff and L. Streit,
Dirichlet forms and white noise analysis, Communications in Mathematical Physics, 116 (1988), 235-245.
doi: 10.1007/BF01225257. |
[13] |
A. Khandani and A. W. Lo,
What happened to the quants in August 2007? Evidence from factors and transactions data, Journal of Financial Markets, 14 (2011), 1-46.
doi: 10.1016/j.finmar.2010.07.005. |
[14] |
A. S. Kyle and W. Xiong,
Contagion as a wealth effect, The Journal of Finance, 56 (2001), 1401-1440.
doi: 10.1111/0022-1082.00373. |
[15] |
R. C. Merton,
Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1976), 125-144.
doi: 10.1016/0304-405X(76)90022-2. |
[16] |
P. Pedler,
Occupation times for two state Markov chains, Journal of Applied Probability, 8 (1971), 381-390.
doi: 10.2307/3211908. |
[17] |
B. Sericola,
Occupation times in Markov processes, Communications in Statistics. Stochastic Models, 16 (2000), 479-510.
doi: 10.1080/15326340008807601. |
[18] |
S. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer Finance. Springer-Verlag, New York, 2004. |
[19] |
A. Shleifer and R. W. Vishny,
Liquidation values and debt capacity: A market equilibrium approach, The Journal of Finance, 47 (1992), 1343-1366.
doi: 10.1111/j.1540-6261.1992.tb04661.x. |
[20] |
A. Shleifer and R. W. Vishny,
Fire sales in finance and macroeconomics, Journal of Economic Perspectives, 25 (2011), 29-48.
doi: 10.1257/jep.25.1.29. |
[21] |
R. Wiggins, T. Piontek and A. Metrick, The Lehman Brothers Bankruptcy A: Overview. Yale Program on Financial Stability Case Study 2014-3A-V1, SSRN, (2015), 23 pp.
doi: 10.2139/ssrn.2588531. |
[22] |
Q.-Q. Yang, W.-K. Ching and T.-K. Siu,
Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales, Journal of Industrial and Management Optimization, 15 (2019), 293-318.
doi: 10.3934/jimo.2018044. |






Option Price( |
|
Delta( |
|
Vega( |
|
Gamma( |
Option Price( |
|
Delta( |
|
Vega( |
|
Gamma( |
Parameters | Values | Parameters | Values |
Market depth | MLR | ||
Volatility | Volatility | ||
Volatility | Time to maturity | ||
Initial price | Strike price | ||
Initial price | Initial price | ||
Correlation | Time steps | ||
Correlation | Correlation | ||
Mean-reverting speed | Long-term interest rate |
Parameters | Values | Parameters | Values |
Market depth | MLR | ||
Volatility | Volatility | ||
Volatility | Time to maturity | ||
Initial price | Strike price | ||
Initial price | Initial price | ||
Correlation | Time steps | ||
Correlation | Correlation | ||
Mean-reverting speed | Long-term interest rate |
[1] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[2] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[3] |
Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117 |
[4] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[5] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[6] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[7] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020179 |
[8] |
Chang-Yuan Cheng, Shyan-Shiou Chen, Rui-Hua Chen. Delay-induced spiking dynamics in integrate-and-fire neurons. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020363 |
[9] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[10] |
Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153 |
[11] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
[12] |
Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]