• Previous Article
    Distributed convex optimization with coupling constraints over time-varying directed graphs
  • JIMO Home
  • This Issue
  • Next Article
    Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems
July  2021, 17(4): 2097-2118. doi: 10.3934/jimo.2020060

Effect of institutional deleveraging on option valuation problems

1. 

Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong

2. 

School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, China

* Corresponding author: Na Song

Received  March 2019 Revised  November 2019 Published  March 2020

This paper studies the valuation problem of European call options when the presence of distressed selling may lead to further endogenous volatility and correlation between the stock issuer's asset value and the price of the stock underlying the option, and hence influence the option price. A change of numéraire technique, based on Girsanov Theorem, is applied to derive the analytical pricing formula for the European call option when the price of underlying stock is subject to price pressure triggered by the stock issuer's own distressed selling. Numerical experiments are also provided to study the impacts of distressed selling on the European call option prices.

Citation: Qing-Qing Yang, Wai-Ki Ching, Wan-Hua He, Na Song. Effect of institutional deleveraging on option valuation problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2097-2118. doi: 10.3934/jimo.2020060
References:
[1]

M. Anton and C. Polk, Connected stocks, The Journal of Finance, 69 (2014), 1099-1127.  doi: 10.1111/jofi.12149.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[3]

M. K. Brunnermeier, Deciphering the liquidity and credit crunch 2007-2008, Journal of Economic Perspectives, 23 (2009), 77-100.  doi: 10.1257/jep.23.1.77.  Google Scholar

[4]

M. Carlson, A brief history of the 1987 stock market crash with a discussion of the federal reserve response, in Finance and Economics Discussion Series, Federal Reserve Board, Washington, DC., 2006. Google Scholar

[5]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.  Google Scholar

[6]

R. Cont and L. Wagalath, Fire sales forensics: Measuring endogenous risk, Mathematical Finance, 26 (2016), 835-866.  doi: 10.1111/mafi.12071.  Google Scholar

[7]

J. Coval and E. Stafford, Asset fire sales (and purchases) in equity markets, Journal of Financial Economics, 86 (2007), 479-512.  doi: 10.1016/j.jfineco.2006.09.007.  Google Scholar

[8]

D. Duffie and K. Singleton, Modeling term structures of defaultable bonds, The Review of Financial Studies, 12 (1999), 687-720.  doi: 10.1093/rfs/12.4.687.  Google Scholar

[9]

A. EllulC. Jotikasthira and T. C. Lundblad, Regulatory pressure and fire sales in the corporate bond market, Journal of Financial Economics, 101 (2011), 596-620.  doi: 10.1016/j.jfineco.2011.03.020.  Google Scholar

[10]

H. GemanN. El Karoui and J.-C. Rochet, Changes of num'eraire, changes of probability measure and option pricing, Journal of Applied Probability, 32 (1995), 443-458.  doi: 10.2307/3215299.  Google Scholar

[11]

R. Greenwood and D. Thesmar, Stock price fragility, Journal of Financial Economics, 102 (2011), 471-490.  doi: 10.1016/j.jfineco.2011.06.003.  Google Scholar

[12]

T. HidaJ. Potthoff and L. Streit, Dirichlet forms and white noise analysis, Communications in Mathematical Physics, 116 (1988), 235-245.  doi: 10.1007/BF01225257.  Google Scholar

[13]

A. Khandani and A. W. Lo, What happened to the quants in August 2007? Evidence from factors and transactions data, Journal of Financial Markets, 14 (2011), 1-46.  doi: 10.1016/j.finmar.2010.07.005.  Google Scholar

[14]

A. S. Kyle and W. Xiong, Contagion as a wealth effect, The Journal of Finance, 56 (2001), 1401-1440.  doi: 10.1111/0022-1082.00373.  Google Scholar

[15]

R. C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1976), 125-144.  doi: 10.1016/0304-405X(76)90022-2.  Google Scholar

[16]

P. Pedler, Occupation times for two state Markov chains, Journal of Applied Probability, 8 (1971), 381-390.  doi: 10.2307/3211908.  Google Scholar

[17]

B. Sericola, Occupation times in Markov processes, Communications in Statistics. Stochastic Models, 16 (2000), 479-510.  doi: 10.1080/15326340008807601.  Google Scholar

[18]

S. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer Finance. Springer-Verlag, New York, 2004.  Google Scholar

[19]

A. Shleifer and R. W. Vishny, Liquidation values and debt capacity: A market equilibrium approach, The Journal of Finance, 47 (1992), 1343-1366.  doi: 10.1111/j.1540-6261.1992.tb04661.x.  Google Scholar

[20]

A. Shleifer and R. W. Vishny, Fire sales in finance and macroeconomics, Journal of Economic Perspectives, 25 (2011), 29-48.  doi: 10.1257/jep.25.1.29.  Google Scholar

[21]

R. Wiggins, T. Piontek and A. Metrick, The Lehman Brothers Bankruptcy A: Overview. Yale Program on Financial Stability Case Study 2014-3A-V1, SSRN, (2015), 23 pp. doi: 10.2139/ssrn.2588531.  Google Scholar

[22]

Q.-Q. YangW.-K. Ching and T.-K. Siu, Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales, Journal of Industrial and Management Optimization, 15 (2019), 293-318.  doi: 10.3934/jimo.2018044.  Google Scholar

show all references

References:
[1]

M. Anton and C. Polk, Connected stocks, The Journal of Finance, 69 (2014), 1099-1127.  doi: 10.1111/jofi.12149.  Google Scholar

[2]

F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[3]

M. K. Brunnermeier, Deciphering the liquidity and credit crunch 2007-2008, Journal of Economic Perspectives, 23 (2009), 77-100.  doi: 10.1257/jep.23.1.77.  Google Scholar

[4]

M. Carlson, A brief history of the 1987 stock market crash with a discussion of the federal reserve response, in Finance and Economics Discussion Series, Federal Reserve Board, Washington, DC., 2006. Google Scholar

[5]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.  Google Scholar

[6]

R. Cont and L. Wagalath, Fire sales forensics: Measuring endogenous risk, Mathematical Finance, 26 (2016), 835-866.  doi: 10.1111/mafi.12071.  Google Scholar

[7]

J. Coval and E. Stafford, Asset fire sales (and purchases) in equity markets, Journal of Financial Economics, 86 (2007), 479-512.  doi: 10.1016/j.jfineco.2006.09.007.  Google Scholar

[8]

D. Duffie and K. Singleton, Modeling term structures of defaultable bonds, The Review of Financial Studies, 12 (1999), 687-720.  doi: 10.1093/rfs/12.4.687.  Google Scholar

[9]

A. EllulC. Jotikasthira and T. C. Lundblad, Regulatory pressure and fire sales in the corporate bond market, Journal of Financial Economics, 101 (2011), 596-620.  doi: 10.1016/j.jfineco.2011.03.020.  Google Scholar

[10]

H. GemanN. El Karoui and J.-C. Rochet, Changes of num'eraire, changes of probability measure and option pricing, Journal of Applied Probability, 32 (1995), 443-458.  doi: 10.2307/3215299.  Google Scholar

[11]

R. Greenwood and D. Thesmar, Stock price fragility, Journal of Financial Economics, 102 (2011), 471-490.  doi: 10.1016/j.jfineco.2011.06.003.  Google Scholar

[12]

T. HidaJ. Potthoff and L. Streit, Dirichlet forms and white noise analysis, Communications in Mathematical Physics, 116 (1988), 235-245.  doi: 10.1007/BF01225257.  Google Scholar

[13]

A. Khandani and A. W. Lo, What happened to the quants in August 2007? Evidence from factors and transactions data, Journal of Financial Markets, 14 (2011), 1-46.  doi: 10.1016/j.finmar.2010.07.005.  Google Scholar

[14]

A. S. Kyle and W. Xiong, Contagion as a wealth effect, The Journal of Finance, 56 (2001), 1401-1440.  doi: 10.1111/0022-1082.00373.  Google Scholar

[15]

R. C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1976), 125-144.  doi: 10.1016/0304-405X(76)90022-2.  Google Scholar

[16]

P. Pedler, Occupation times for two state Markov chains, Journal of Applied Probability, 8 (1971), 381-390.  doi: 10.2307/3211908.  Google Scholar

[17]

B. Sericola, Occupation times in Markov processes, Communications in Statistics. Stochastic Models, 16 (2000), 479-510.  doi: 10.1080/15326340008807601.  Google Scholar

[18]

S. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer Finance. Springer-Verlag, New York, 2004.  Google Scholar

[19]

A. Shleifer and R. W. Vishny, Liquidation values and debt capacity: A market equilibrium approach, The Journal of Finance, 47 (1992), 1343-1366.  doi: 10.1111/j.1540-6261.1992.tb04661.x.  Google Scholar

[20]

A. Shleifer and R. W. Vishny, Fire sales in finance and macroeconomics, Journal of Economic Perspectives, 25 (2011), 29-48.  doi: 10.1257/jep.25.1.29.  Google Scholar

[21]

R. Wiggins, T. Piontek and A. Metrick, The Lehman Brothers Bankruptcy A: Overview. Yale Program on Financial Stability Case Study 2014-3A-V1, SSRN, (2015), 23 pp. doi: 10.2139/ssrn.2588531.  Google Scholar

[22]

Q.-Q. YangW.-K. Ching and T.-K. Siu, Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales, Journal of Industrial and Management Optimization, 15 (2019), 293-318.  doi: 10.3934/jimo.2018044.  Google Scholar

Figure 1.  Variation of European Call Option with Respect to Distressed Selling Impact
Figure 2.  Variation of Delta of a European Call Option with Respect to Distressed Selling Impact
Figure 3.  Variation of Vega of a European Call Option with Respect to Distressed Selling Impact
Figure 4.  Variation of Gamma of a European Call Option with Respect Distressed Selling Impact
Figure 5.  Variation of European Call Option Price with Respect to Distressed Selling Impact. $ f = \frac{\log{x}}{\eta} $
Figure 6.  Variation of European Call Option Price with Respect to Distressed Selling Impact. $ f = \frac{1-e^x}{\eta} $
Table 1.  Greeks
Option Price($C(t)$) $S(t)\mathcal{N}(d_+(t))-KB(t,T)\mathcal N(d_-(t))$
Delta($\Delta$) $\mathcal N(d_+(t))$
Vega($\mathcal V$) $S(t) n(d_+(t))\sqrt{T-t}$
Gamma($\Gamma$) $\frac{ n(d_+)}{S(t)\bar{\sigma}_t\sqrt{T-t}}$
Option Price($C(t)$) $S(t)\mathcal{N}(d_+(t))-KB(t,T)\mathcal N(d_-(t))$
Delta($\Delta$) $\mathcal N(d_+(t))$
Vega($\mathcal V$) $S(t) n(d_+(t))\sqrt{T-t}$
Gamma($\Gamma$) $\frac{ n(d_+)}{S(t)\bar{\sigma}_t\sqrt{T-t}}$
Table 2.  Preference parameters
Parameters Values Parameters Values
Market depth $ L=10 $ MLR $ \eta=1 $
Volatility $ \sigma_S=0.2 $ Volatility $ \sigma_X=0.1 $
Volatility $ \sigma_r=0.15 $ Time to maturity $ T-t=1 $
Initial price $ S_0=40 $ Strike price $ K=40 $
Initial price $ X_0=100 $ Initial price $ B(t,T)=0.05 $
Correlation $ \rho=0.7 $ Time steps $ N=100 $
Correlation $ \rho_{1r}=0.5 $ Correlation $ \rho_{2r}=0.6 $
Mean-reverting speed $ a=100 $ Long-term interest rate $ b=0.0243 $
Parameters Values Parameters Values
Market depth $ L=10 $ MLR $ \eta=1 $
Volatility $ \sigma_S=0.2 $ Volatility $ \sigma_X=0.1 $
Volatility $ \sigma_r=0.15 $ Time to maturity $ T-t=1 $
Initial price $ S_0=40 $ Strike price $ K=40 $
Initial price $ X_0=100 $ Initial price $ B(t,T)=0.05 $
Correlation $ \rho=0.7 $ Time steps $ N=100 $
Correlation $ \rho_{1r}=0.5 $ Correlation $ \rho_{2r}=0.6 $
Mean-reverting speed $ a=100 $ Long-term interest rate $ b=0.0243 $
[1]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[2]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[3]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[4]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[5]

Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021042

[6]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[7]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[8]

Feng Wei, Hong Chen. Independent sales or bundling? Decisions under different market-dominant powers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1593-1612. doi: 10.3934/jimo.2020036

[9]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[10]

Chong Wang, Xu Chen. Fresh produce price-setting newsvendor with bidirectional option contracts. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021052

[11]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[12]

Kai Li, Tao Zhou, Bohai Liu. Pricing new and remanufactured products based on customer purchasing behavior. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021043

[13]

Peng Tong, Xiaogang Ma. Design of differentiated warranty coverage that considers usage rate and service option of consumers under 2D warranty policy. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1577-1591. doi: 10.3934/jimo.2020035

[14]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[15]

Jinsen Guo, Yongwu Zhou, Baixun Li. The optimal pricing and service strategies of a dual-channel retailer under free riding. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021056

[16]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021057

[17]

Guiyang Zhu. Optimal pricing and ordering policy for defective items under temporary price reduction with inspection errors and price sensitive demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021060

[18]

Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021079

[19]

Patrick Beißner, Emanuela Rosazza Gianin. The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 23-52. doi: 10.3934/puqr.2021002

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]