• Previous Article
    Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform
  • JIMO Home
  • This Issue
  • Next Article
    Effect of institutional deleveraging on option valuation problems
July  2021, 17(4): 2119-2138. doi: 10.3934/jimo.2020061

Distributed convex optimization with coupling constraints over time-varying directed graphs

1. 

School of Finance and Economics, Yangtze Normal University, Chongqing, 408100, China

2. 

Department of Mathematics and Statistics, Curtin University, Bentley, WA, 6102, Australia

3. 

School of Mathematical Sciences, Chongqing Normal University, Chongqing, 400047, China

* Corresponding author: Jueyou Li

Received  March 2019 Revised  November 2019 Published  July 2021 Early access  March 2020

Fund Project: This research was partially supported by the NSFC 11971083 and 11871128, by the Natural Science Foundation Projection of Chongqing cstc2017jcyjAX0253, by the Fund Program of Chongqing Social Science Planning of China 2017YBGL137 and by the Science and Technology Research Program of Chongqing Municipal Education Commission KJQN201800520.

This paper considers a distributed convex optimization problem over a time-varying multi-agent network, where each agent has its own decision variables that should be set so as to minimize its individual objective subject to local constraints and global coupling constraints. Over directed graphs, we propose a distributed algorithm that incorporates the push-sum protocol into dual sub-gradient methods. Under the convexity assumption, the optimality of primal and dual variables, and the constraint violation are first established. Then the explicit convergence rates of the proposed algorithm are obtained. Finally, numerical experiments on the economic dispatch problem are provided to demonstrate the efficacy of the proposed algorithm.

Citation: Bingru Zhang, Chuanye Gu, Jueyou Li. Distributed convex optimization with coupling constraints over time-varying directed graphs. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2119-2138. doi: 10.3934/jimo.2020061
References:
[1]

N. S. Aybat and E. Y. Hamedani, Distributed primal-dual method for multi-agent sharing problem with conic constraints, 2016 50th Asilomar Conference on Signals, Systems and Computers, (2016), 777–782. doi: 10.1109/ACSSC.2016.7869152.

[2]

N. S. Aybat and E. Y. Hamedani, A distributed ADMM-like method for resource sharing over time-varying networks, SIAM J. Optim., 29 (2019), 3036-3068.  doi: 10.1137/17M1151973.

[3]

B. BainganaG. Mateos and G. B. Giannakis, Proximal-gradient algorithms for tracking cascades over social networks, IEEE Journal of Selected Topics in Signal Processing, 8 (2014), 563-575.  doi: 10.1109/JSTSP.2014.2317284.

[4]

A. BeckA. NedićA. Ozdaglar and M. Teboulle, An $O(1/k)$ gradient method for network resource allocation problems, IEEE Trans. Control Netw. Syst., 1 (2014), 64-73.  doi: 10.1109/TCNS.2014.2309751.

[5] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511804441.
[6]

T.-H. ChangA. Nedić and A. Scaglione, Distributed constrained optimization by consensus-based primal-dual perturbation method, IEEE Trans. Automat. Control, 59 (2014), 1524-1538.  doi: 10.1109/TAC.2014.2308612.

[7]

T.-H. ChangM. Hong and X. Wang, Multi-agent distributed optimization via inexact consensus ADMM, IEEE Trans. Signal Process., 63 (2015), 482-497.  doi: 10.1109/TSP.2014.2367458.

[8]

T.-H. Chang, A proximal dual consensus ADMM method for multi-agent constrained optimization, IEEE Trans. Signal Process., 64 (2016), 3719-3734.  doi: 10.1109/TSP.2016.2544743.

[9]

J. C. Duchi, A. Agarwal and M. J. Wainwright, Dual averaging for distributed optimization: Convergence analysis and network scaling, IEEE Trans. Automat. Control, 57 (2012) 592–606. doi: 10.1109/TAC.2011.2161027.

[10]

A. FalsoneK. MargellosS. Garatti and M. Prandini, Dual decomposition for multi-agent distributed optimization with coupling constraints, Automatica J. IFAC, 84 (2017), 149-158.  doi: 10.1016/j.automatica.2017.07.003.

[11]

X. S. HanH. B. Gooi and D. S. Kirschen, Dynamic economic dispatch: Feasible and optimal solutions, 2001 Power Engineering Society Summer Meeting. Conference Proceedings, 16 (2001), 22-28.  doi: 10.1109/PESS.2001.970332.

[12]

J. LiC. WuZ. Wu and Q. Long, Gradient-free method for nonsmooth distributed optimization, J. Global Optim., 61 (2015), 325-340.  doi: 10.1007/s10898-014-0174-2.

[13]

J. LiG. ChenZ. Dong and Z. Wu, A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints, Comput. Optim. Appl., 64 (2016), 671-697.  doi: 10.1007/s10589-016-9826-0.

[14]

J. Li, C. Gu, Z. Wu and C. Wu, Distributed optimization methods for nonconvex problems with inequality constraints over time-varying networks, Complexity, 2017 (2017), Article ID 3610283, 10 pp. doi: 10.1155/2017/3610283.

[15]

P. Di Lorenzo and G. Scutari, NEXT: In-network nonconvex optimization, IEEE Trans. Signal Inform. Process. Netw., 2 (2016), 120-136.  doi: 10.1109/TSIPN.2016.2524588.

[16]

G. Mateos and G. B. Giannakis, Distributed recursive least-squares: Stability and performance analysis, IEEE Trans. Signal Process., 60 (2012), 3740-3754.  doi: 10.1109/TSP.2012.2194290.

[17]

D. K. MolzahnF. DörflerH. SandbergS. H. LowS. ChakrabartiR. Baldick and J. Lavaei, A survey of distributed optimization and control algorithms for electric power systems, IEEE Transactions on Smart Grid, 8 (2017), 2941-2962. 

[18]

A. Nedić and A. Ozdaglar, Distributed subgradient methods for multi-agent optimization, IEEE Trans. Automat. Control, 54 (2009), 48-61.  doi: 10.1109/TAC.2008.2009515.

[19]

A. Nedić and A. Olshevsky, Distributed optimization over time-varying directed graphs, IEEE Trans. Automat. Control, 60 (2015), 601-615.  doi: 10.1109/TAC.2014.2364096.

[20]

A. NedićA. Olshevsky and W. Shi, Achieving geometric convergence for distributed optimization over time-varying graphs, SIAM J. Optim., 27 (2017), 2597-2633.  doi: 10.1137/16M1084316.

[21]

B. T. Polyak, Introduction to Optimization, Optimization Software, Inc., Publications Division, New York, 1987.

[22]

S. S. RamA. Nedić and V. V. Veeravalli, Distributed stochastic subgradient projection algorithms for convex optimization, J. Optim. Theory Appl., 147 (2010), 516-545.  doi: 10.1007/s10957-010-9737-7.

[23]

W. ShiQ. LingK. YuanG. Wu and W. Yin, On the linear convergence of the ADMM in decentralized consensus optimization, IEEE Trans. Signal Process., 62 (2014), 1750-1761.  doi: 10.1109/TSP.2014.2304432.

[24]

W. ShiQ. LingG. Wu and W. Yin, EXTRA: An exact first-order algorithm for decentralized consensus optimization, SIAM J. Optim., 25 (2015), 944-966.  doi: 10.1137/14096668X.

[25]

K. I. Tsianos, S. Lawlor and M. G. Rabbat, Push-sum distributed dual averaging for convex optimization, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2012), 5453–5458. doi: 10.1109/CDC.2012.6426375.

[26]

S. Wang and C. Li, Distributed robust optimization in networked system, IEEE Transactions on Cybernetics, 47 (2017), 2321-2333.  doi: 10.1109/TCYB.2016.2613129.

[27]

X. Xia and A. M. Elaiw, Optimal dynamic economic dispatch of generation: A review, Electric Power Systems Research, 80 (2010), 975-986.  doi: 10.1016/j.epsr.2009.12.012.

[28]

C. Yang, Y. Xu, L. Zhou and Y. Sun, Model-free composite control of flexible manipulators based on adaptive dynamic programming, Complexity, 2018 (2018), Article ID 9720309, 9 pp. doi: 10.1155/2018/9720309.

[29]

D. YuanS. Xu and H. Zhao, Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41 (2011), 1715-1724. 

[30]

D. YuanD. W. Ho and Y. Hong, On convergence rate of distributed stochastic gradient algorithm for convex optimization with inequality constraints, SIAM J. Control Optim., 54 (2016), 2872-2892.  doi: 10.1137/15M1048896.

[31]

D. YuanD. W. C. Ho and S. Xu, Regularized primal-dual subgradient method for distributed constrained optimization, IEEE Transactions on Cybernetics, 46 (2016), 2109-2118.  doi: 10.1109/TCYB.2015.2464255.

[32]

Y. Zhang and G. B. Giannakis, Distributed stochastic market clearing with high-penetration wind power, IEEE Transactions on Power Systems, 31 (2016), 895-906. 

[33]

Z. Zhang and M. Y. Chow, Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid, IEEE Transactions on Power Systems, 27 (2012), 1761-1768.  doi: 10.1109/TPWRS.2012.2188912.

[34]

M. Zhu and S. Martínez, On distributed convex optimization under inequality and equality constraints, IEEE Trans. Automat. Control, 57 (2012), 151-164.  doi: 10.1109/TAC.2011.2167817.

show all references

References:
[1]

N. S. Aybat and E. Y. Hamedani, Distributed primal-dual method for multi-agent sharing problem with conic constraints, 2016 50th Asilomar Conference on Signals, Systems and Computers, (2016), 777–782. doi: 10.1109/ACSSC.2016.7869152.

[2]

N. S. Aybat and E. Y. Hamedani, A distributed ADMM-like method for resource sharing over time-varying networks, SIAM J. Optim., 29 (2019), 3036-3068.  doi: 10.1137/17M1151973.

[3]

B. BainganaG. Mateos and G. B. Giannakis, Proximal-gradient algorithms for tracking cascades over social networks, IEEE Journal of Selected Topics in Signal Processing, 8 (2014), 563-575.  doi: 10.1109/JSTSP.2014.2317284.

[4]

A. BeckA. NedićA. Ozdaglar and M. Teboulle, An $O(1/k)$ gradient method for network resource allocation problems, IEEE Trans. Control Netw. Syst., 1 (2014), 64-73.  doi: 10.1109/TCNS.2014.2309751.

[5] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511804441.
[6]

T.-H. ChangA. Nedić and A. Scaglione, Distributed constrained optimization by consensus-based primal-dual perturbation method, IEEE Trans. Automat. Control, 59 (2014), 1524-1538.  doi: 10.1109/TAC.2014.2308612.

[7]

T.-H. ChangM. Hong and X. Wang, Multi-agent distributed optimization via inexact consensus ADMM, IEEE Trans. Signal Process., 63 (2015), 482-497.  doi: 10.1109/TSP.2014.2367458.

[8]

T.-H. Chang, A proximal dual consensus ADMM method for multi-agent constrained optimization, IEEE Trans. Signal Process., 64 (2016), 3719-3734.  doi: 10.1109/TSP.2016.2544743.

[9]

J. C. Duchi, A. Agarwal and M. J. Wainwright, Dual averaging for distributed optimization: Convergence analysis and network scaling, IEEE Trans. Automat. Control, 57 (2012) 592–606. doi: 10.1109/TAC.2011.2161027.

[10]

A. FalsoneK. MargellosS. Garatti and M. Prandini, Dual decomposition for multi-agent distributed optimization with coupling constraints, Automatica J. IFAC, 84 (2017), 149-158.  doi: 10.1016/j.automatica.2017.07.003.

[11]

X. S. HanH. B. Gooi and D. S. Kirschen, Dynamic economic dispatch: Feasible and optimal solutions, 2001 Power Engineering Society Summer Meeting. Conference Proceedings, 16 (2001), 22-28.  doi: 10.1109/PESS.2001.970332.

[12]

J. LiC. WuZ. Wu and Q. Long, Gradient-free method for nonsmooth distributed optimization, J. Global Optim., 61 (2015), 325-340.  doi: 10.1007/s10898-014-0174-2.

[13]

J. LiG. ChenZ. Dong and Z. Wu, A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints, Comput. Optim. Appl., 64 (2016), 671-697.  doi: 10.1007/s10589-016-9826-0.

[14]

J. Li, C. Gu, Z. Wu and C. Wu, Distributed optimization methods for nonconvex problems with inequality constraints over time-varying networks, Complexity, 2017 (2017), Article ID 3610283, 10 pp. doi: 10.1155/2017/3610283.

[15]

P. Di Lorenzo and G. Scutari, NEXT: In-network nonconvex optimization, IEEE Trans. Signal Inform. Process. Netw., 2 (2016), 120-136.  doi: 10.1109/TSIPN.2016.2524588.

[16]

G. Mateos and G. B. Giannakis, Distributed recursive least-squares: Stability and performance analysis, IEEE Trans. Signal Process., 60 (2012), 3740-3754.  doi: 10.1109/TSP.2012.2194290.

[17]

D. K. MolzahnF. DörflerH. SandbergS. H. LowS. ChakrabartiR. Baldick and J. Lavaei, A survey of distributed optimization and control algorithms for electric power systems, IEEE Transactions on Smart Grid, 8 (2017), 2941-2962. 

[18]

A. Nedić and A. Ozdaglar, Distributed subgradient methods for multi-agent optimization, IEEE Trans. Automat. Control, 54 (2009), 48-61.  doi: 10.1109/TAC.2008.2009515.

[19]

A. Nedić and A. Olshevsky, Distributed optimization over time-varying directed graphs, IEEE Trans. Automat. Control, 60 (2015), 601-615.  doi: 10.1109/TAC.2014.2364096.

[20]

A. NedićA. Olshevsky and W. Shi, Achieving geometric convergence for distributed optimization over time-varying graphs, SIAM J. Optim., 27 (2017), 2597-2633.  doi: 10.1137/16M1084316.

[21]

B. T. Polyak, Introduction to Optimization, Optimization Software, Inc., Publications Division, New York, 1987.

[22]

S. S. RamA. Nedić and V. V. Veeravalli, Distributed stochastic subgradient projection algorithms for convex optimization, J. Optim. Theory Appl., 147 (2010), 516-545.  doi: 10.1007/s10957-010-9737-7.

[23]

W. ShiQ. LingK. YuanG. Wu and W. Yin, On the linear convergence of the ADMM in decentralized consensus optimization, IEEE Trans. Signal Process., 62 (2014), 1750-1761.  doi: 10.1109/TSP.2014.2304432.

[24]

W. ShiQ. LingG. Wu and W. Yin, EXTRA: An exact first-order algorithm for decentralized consensus optimization, SIAM J. Optim., 25 (2015), 944-966.  doi: 10.1137/14096668X.

[25]

K. I. Tsianos, S. Lawlor and M. G. Rabbat, Push-sum distributed dual averaging for convex optimization, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), (2012), 5453–5458. doi: 10.1109/CDC.2012.6426375.

[26]

S. Wang and C. Li, Distributed robust optimization in networked system, IEEE Transactions on Cybernetics, 47 (2017), 2321-2333.  doi: 10.1109/TCYB.2016.2613129.

[27]

X. Xia and A. M. Elaiw, Optimal dynamic economic dispatch of generation: A review, Electric Power Systems Research, 80 (2010), 975-986.  doi: 10.1016/j.epsr.2009.12.012.

[28]

C. Yang, Y. Xu, L. Zhou and Y. Sun, Model-free composite control of flexible manipulators based on adaptive dynamic programming, Complexity, 2018 (2018), Article ID 9720309, 9 pp. doi: 10.1155/2018/9720309.

[29]

D. YuanS. Xu and H. Zhao, Distributed primal-dual subgradient method for multiagent optimization via consensus algorithms, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41 (2011), 1715-1724. 

[30]

D. YuanD. W. Ho and Y. Hong, On convergence rate of distributed stochastic gradient algorithm for convex optimization with inequality constraints, SIAM J. Control Optim., 54 (2016), 2872-2892.  doi: 10.1137/15M1048896.

[31]

D. YuanD. W. C. Ho and S. Xu, Regularized primal-dual subgradient method for distributed constrained optimization, IEEE Transactions on Cybernetics, 46 (2016), 2109-2118.  doi: 10.1109/TCYB.2015.2464255.

[32]

Y. Zhang and G. B. Giannakis, Distributed stochastic market clearing with high-penetration wind power, IEEE Transactions on Power Systems, 31 (2016), 895-906. 

[33]

Z. Zhang and M. Y. Chow, Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid, IEEE Transactions on Power Systems, 27 (2012), 1761-1768.  doi: 10.1109/TPWRS.2012.2188912.

[34]

M. Zhu and S. Martínez, On distributed convex optimization under inequality and equality constraints, IEEE Trans. Automat. Control, 57 (2012), 151-164.  doi: 10.1109/TAC.2011.2167817.

Figure 1.  The directed connected graph at time $ t $ with $ \mathscr{G}[t] = (\mathscr{V}, \mathscr{E}[t]) $
Figure 2.  Dual variables (fanxiexian_myfh/MWh) v.s. iterations
Figure 3.  Generation outputs (MW) v.s. iterations
Figure 4.  Total generation v.s. demand
Figure 5.  Value of total cost function v.s. iterations
Table 1.  Parameters for 7 generators in IEEE 57-bus system
Gen. $ a_{i} $ $ b_{i} $ $ c_{i} $ [$ p_{i}^{\mathrm{min}},p_{i}^{\mathrm{max}} $]
1 0.0775795 20 0 [0,575.88]
2 0.01 40 0 [0,100]
3 0.25 20 0 [0,140]
6 0.01 40 0 [0,100]
8 0.0222222 20 0 [0,550]
9 0.01 40 0 [0,100]
12 0.0322581 20 0 [0,410]
Gen. $ a_{i} $ $ b_{i} $ $ c_{i} $ [$ p_{i}^{\mathrm{min}},p_{i}^{\mathrm{max}} $]
1 0.0775795 20 0 [0,575.88]
2 0.01 40 0 [0,100]
3 0.25 20 0 [0,140]
6 0.01 40 0 [0,100]
8 0.0222222 20 0 [0,550]
9 0.01 40 0 [0,100]
12 0.0322581 20 0 [0,410]
Table 2.  Number of iterations with different nodes for both Algorithms DDSG-PS and DDP
Number of node $ m $ Alg. DDSG-PS Alg. DDSG
10 38 34
50 97 99
100 203 201
Number of node $ m $ Alg. DDSG-PS Alg. DDSG
10 38 34
50 97 99
100 203 201
Table 3.  Number of iterations with different dimensions for both Algorithms DDSG-PS and DDP
Dimension of $ \widehat{\mathbf{x}}_{i} $ Alg. DDSG-PS Alg. DDSG
3 50 84
5 77 98
9 108 136
Dimension of $ \widehat{\mathbf{x}}_{i} $ Alg. DDSG-PS Alg. DDSG
3 50 84
5 77 98
9 108 136
[1]

Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022001

[2]

Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022

[3]

Richard Carney, Monique Chyba, Chris Gray, George Wilkens, Corey Shanbrom. Multi-agent systems for quadcopters. Journal of Geometric Mechanics, 2022, 14 (1) : 1-28. doi: 10.3934/jgm.2021005

[4]

Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020

[5]

Ke Yang, Wencheng Zou, Zhengrong Xiang, Ronghao Wang. Fully distributed consensus for higher-order nonlinear multi-agent systems with unmatched disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1535-1551. doi: 10.3934/dcdss.2020396

[6]

Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047

[7]

Giulia Cavagnari, Antonio Marigonda, Benedetto Piccoli. Optimal synchronization problem for a multi-agent system. Networks and Heterogeneous Media, 2017, 12 (2) : 277-295. doi: 10.3934/nhm.2017012

[8]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105

[9]

Nadia Loy, Andrea Tosin. Boltzmann-type equations for multi-agent systems with label switching. Kinetic and Related Models, 2021, 14 (5) : 867-894. doi: 10.3934/krm.2021027

[10]

Mei Luo, Jinrong Wang, Yumei Liao. Bounded consensus of double-integrator stochastic multi-agent systems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022088

[11]

Sarah Ibri. An efficient distributed optimization and coordination protocol: Application to the emergency vehicle management. Journal of Industrial and Management Optimization, 2015, 11 (1) : 41-63. doi: 10.3934/jimo.2015.11.41

[12]

Brendan Pass. Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of solutions. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1623-1639. doi: 10.3934/dcds.2014.34.1623

[13]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[14]

Tyrone E. Duncan. Some partially observed multi-agent linear exponential quadratic stochastic differential games. Evolution Equations and Control Theory, 2018, 7 (4) : 587-597. doi: 10.3934/eect.2018028

[15]

Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111

[16]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[17]

Hongru Ren, Shubo Li, Changxin Lu. Event-triggered adaptive fault-tolerant control for multi-agent systems with unknown disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1395-1414. doi: 10.3934/dcdss.2020379

[18]

Xiaojin Huang, Hongfu Yang, Jianhua Huang. Consensus stability analysis for stochastic multi-agent systems with multiplicative measurement noises and Markovian switching topologies. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021024

[19]

Mario Roy, Mariusz Urbański. Random graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 261-298. doi: 10.3934/dcds.2011.30.261

[20]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (428)
  • HTML views (704)
  • Cited by (0)

Other articles
by authors

[Back to Top]