
-
Previous Article
On the convexity for the range set of two quadratic functions
- JIMO Home
- This Issue
-
Next Article
Portfolio optimization for jump-diffusion risky assets with regime switching: A time-consistent approach
Extension of Littlewood's rule to the multi-period static revenue management model with standby customers
Professor Emeritus, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8573, Japan |
Classical Littlewood's rule (1972) for the two-period static revenue management of a single perishable resource is extended to a generic $ T $-period model with monotonically increasing fixed fares, ending with standby customers with a special fare. The expected revenue in the entire period is expressed explicitly in terms of multiple definite integrals involving the distribution function of the demand in each period. The exact optimal protection level in each period is calculated successively, resulting in the maximized total expected revenue. The Brumelle-McGill's theorem for the optimal booking limits in the $ T $-period model is also extended to a similar model with standby customers. We show some numerical examples with comments on the effects of accepting standby customers on the optimal booking limits and the increase in the expected revenue.
References:
[1] |
P. P. Belobaba, Air Travel Demand and Airline Seat Inventory Management, Ph.D thesis, Massachusetts Institute of Technology, 1987. Google Scholar |
[2] |
S. L. Brumelle and J. I. McGill,
Airline seat allocation with multiple nested fare classes, Operations Research, 41 (1993), 127-137.
doi: 10.1287/opre.41.1.127. |
[3] |
R. E. Curry,
Optimal airline seat allocation with fare classes nested by origins and
destinations, Transportation Science, 24 (1990), 169-243.
doi: 10.1287/trsc.24.3.193. |
[4] |
M. Z. F. Li and T. H. Oum,
A note on the single leg, multifare seat allocation problem, Transportation Science, 36 (2002), 271-354.
doi: 10.1287/trsc.36.3.349.7830. |
[5] |
K. Littlewood, Forecasting and control of passenger bookings, J. Revenue Pricing Manag., 4 (2005), 111-123. Google Scholar |
[6] |
M. Müller-Bungart, Revenue Management with Flexible Products: Models and Methods for the Broadcasting Industry, Springer-Verlag Berlin Heidelberg, 2007. Google Scholar |
[7] |
S. Netessine and R. Shumsky,
Introduction to the theory and practice of yield management, INFORMS Transactions on Education, 3 (2002), 34-44.
doi: 10.1287/ited.3.1.34. |
[8] | R. Phillips, Pricing and Revenue Optimization, Stanford University Press, 2005. Google Scholar |
[9] |
L. W. Robinson,
Optimal and approximate control policies for airline booking with sequential
nonmonotonic fare classes, Operations Research, 43 (1995), 252-263.
doi: 10.1287/opre.43.2.252. |
[10] |
H. Takagi, Explicit calculation of optimal booking limits for the static revenue management with standby customers, in Conference Proceedings, Joint International Conference of Service Science and Innovation and Serviceology, ICSSI2018 and ICServe2018, Taichung, Taiwan, (2018), 119–126. Google Scholar |
[11] |
K. T. Talluri, Revenue management, in The Oxford Handbook of Pricing Management (eds. Ö. Özer and R. Phillips), Oxford University Press, (2012), 655–678.
doi: 10.1093/oxfordhb/9780199543175.013.0026. |
[12] |
K. T. Talluri and G. J. van Ryzin, The Theory and Practice of Revenue Management, International Series in Operations Research & Management Science, vol. 68, Kluwer Academic Publishers, Boston, MA, 2004.
doi: 10.1007/b139000. |
[13] |
G. J. van Ryzin and K. T. Talluri, An introduction to revenue management, Tutorials in Operations Research, (2005), 142–194.
doi: 10.1287/educ.1053.0019. |
[14] |
D. Walczak, E. A. Boyd and R. Cramer, Revenue management, in Quantitative Problem Solving Methods in the Airline Industry (eds. C. Barnhart and B. Smith), Springer, Boston, MA, (2012), 101–161.
doi: 10.1007/978-1-4614-1608-1_3. |
[15] |
R. D. Wollmer,
An airline seat management model for a single leg route when lower fare
classes book first, Operations Research, 40 (1992), 26-37.
doi: 10.1287/opre.40.1.26. |
show all references
References:
[1] |
P. P. Belobaba, Air Travel Demand and Airline Seat Inventory Management, Ph.D thesis, Massachusetts Institute of Technology, 1987. Google Scholar |
[2] |
S. L. Brumelle and J. I. McGill,
Airline seat allocation with multiple nested fare classes, Operations Research, 41 (1993), 127-137.
doi: 10.1287/opre.41.1.127. |
[3] |
R. E. Curry,
Optimal airline seat allocation with fare classes nested by origins and
destinations, Transportation Science, 24 (1990), 169-243.
doi: 10.1287/trsc.24.3.193. |
[4] |
M. Z. F. Li and T. H. Oum,
A note on the single leg, multifare seat allocation problem, Transportation Science, 36 (2002), 271-354.
doi: 10.1287/trsc.36.3.349.7830. |
[5] |
K. Littlewood, Forecasting and control of passenger bookings, J. Revenue Pricing Manag., 4 (2005), 111-123. Google Scholar |
[6] |
M. Müller-Bungart, Revenue Management with Flexible Products: Models and Methods for the Broadcasting Industry, Springer-Verlag Berlin Heidelberg, 2007. Google Scholar |
[7] |
S. Netessine and R. Shumsky,
Introduction to the theory and practice of yield management, INFORMS Transactions on Education, 3 (2002), 34-44.
doi: 10.1287/ited.3.1.34. |
[8] | R. Phillips, Pricing and Revenue Optimization, Stanford University Press, 2005. Google Scholar |
[9] |
L. W. Robinson,
Optimal and approximate control policies for airline booking with sequential
nonmonotonic fare classes, Operations Research, 43 (1995), 252-263.
doi: 10.1287/opre.43.2.252. |
[10] |
H. Takagi, Explicit calculation of optimal booking limits for the static revenue management with standby customers, in Conference Proceedings, Joint International Conference of Service Science and Innovation and Serviceology, ICSSI2018 and ICServe2018, Taichung, Taiwan, (2018), 119–126. Google Scholar |
[11] |
K. T. Talluri, Revenue management, in The Oxford Handbook of Pricing Management (eds. Ö. Özer and R. Phillips), Oxford University Press, (2012), 655–678.
doi: 10.1093/oxfordhb/9780199543175.013.0026. |
[12] |
K. T. Talluri and G. J. van Ryzin, The Theory and Practice of Revenue Management, International Series in Operations Research & Management Science, vol. 68, Kluwer Academic Publishers, Boston, MA, 2004.
doi: 10.1007/b139000. |
[13] |
G. J. van Ryzin and K. T. Talluri, An introduction to revenue management, Tutorials in Operations Research, (2005), 142–194.
doi: 10.1287/educ.1053.0019. |
[14] |
D. Walczak, E. A. Boyd and R. Cramer, Revenue management, in Quantitative Problem Solving Methods in the Airline Industry (eds. C. Barnhart and B. Smith), Springer, Boston, MA, (2012), 101–161.
doi: 10.1007/978-1-4614-1608-1_3. |
[15] |
R. D. Wollmer,
An airline seat management model for a single leg route when lower fare
classes book first, Operations Research, 40 (1992), 26-37.
doi: 10.1287/opre.40.1.26. |


Literature | class 1 customers | class 2 customers |
Littlewood [5] | high-yield passengers | low-yield passengers |
Müller-Bungart [6,p. 55] | high fare passengers | low fare passengers |
Netessine and Shumsky [7] | business customers | leisure customers |
Phillips [8,p. 149] | full-fare customers | discount customers |
Talluri and van Ryzin [12] |
class 1 demands | class 2 demands |
Walczak et al. [14,p. 133] | high fare demand | low fare demand |
Literature | class 1 customers | class 2 customers |
Littlewood [5] | high-yield passengers | low-yield passengers |
Müller-Bungart [6,p. 55] | high fare passengers | low fare passengers |
Netessine and Shumsky [7] | business customers | leisure customers |
Phillips [8,p. 149] | full-fare customers | discount customers |
Talluri and van Ryzin [12] |
class 1 demands | class 2 demands |
Walczak et al. [14,p. 133] | high fare demand | low fare demand |
Fare | Mean | Standard | ||||
period | deviation | |||||
0 | Variable | 10.0 | 10.0000 | 2.0 | 2.0000 | 0.2000 |
1 | 105 | 20.3 | 20.5135 | 8.6 | 8.3414 | 0.4236 |
2 | 83 | 33.4 | 33.9289 | 15.1 | 14.4936 | 0.4521 |
3 | 57 | 19.3 | 19.7139 | 9.2 | 8.7453 | 0.4767 |
4 | 39 | 29.7 | 30.1047 | 13.1 | 12.6264 | 0.4411 |
Fare | Mean | Standard | ||||
period | deviation | |||||
0 | Variable | 10.0 | 10.0000 | 2.0 | 2.0000 | 0.2000 |
1 | 105 | 20.3 | 20.5135 | 8.6 | 8.3414 | 0.4236 |
2 | 83 | 33.4 | 33.9289 | 15.1 | 14.4936 | 0.4521 |
3 | 57 | 19.3 | 19.7139 | 9.2 | 8.7453 | 0.4767 |
4 | 39 | 29.7 | 30.1047 | 13.1 | 12.6264 | 0.4411 |
(a) 2-period model with standby customers (expected total demand = 64.442). | ||||||
r0 | b1* | b2* | R(b1*,b2*) | S(b1*,b2*) | ||
150 | 98.04880 | 82.53349 | 6465.337 | 64.40167 | ||
120 | 99.30070 | 83.08922 | 6165.701 | 64.40301 | ||
106 | 101.69624 | 83.55498 | 6025.950 | 64.40352 | ||
105 | 107 | 83.61577 | 6015.975 | 64.40354 | ||
90 | 107 | 85.47684 | 5866.468 | 64.40366 | ||
83 | 107 | 86.34620 | 5796.699 | 64.40369 | ||
50 | 107 | 89.94355 | 5467.795 | 64.403745 | ||
30 | 107 | 91.58374 | 5268.461 | 64.403750 | ||
0 | 107 | 93.43602 | 4969.460 | 64.403753 | ||
(b) 3-period model with standby customers (expected total demand = 84.156). | ||||||
r0 | b1* | b2* | b3* | R(b1*,b2*,b3*) | S(b1*,b2*,b3*) | |
150 | 98.04880 | 82.53349 | 46.72013 | 7468.847 | 82.9636 | |
120 | 99.30070 | 83.08922 | 47.23458 | 7174.891 | 82.9934 | |
106 | 101.69624 | 83.55498 | 47.63984 | 7039.305 | 83.0073 | |
105 | 107 | 83.61577 | 47.68707 | 7029.778 | 83.0082 | |
90 | 107 | 85.47684 | 48.90773 | 6890.287 | 83.0211 | |
83 | 107 | 86.34620 | 49.52548 | 6825.326 | 83.0250 | |
50 | 107 | 89.94355 | 52.73081 | 6824.932 | 83.0332 | |
30 | 107 | 91.58374 | 54.77039 | 6334.970 | 83.0345 | |
0 | 107 | 93.43602 | 57.73468 | 6057.888 | 83.0352 | |
(c) 4-period model with standby customers (expected total demand = 114.261). | ||||||
r0 | b1* | b2* | b3* | b4* | R(b1*,b2*,b3*,b4*) | S(b1*,b2*,b3*,b4*)) |
150 | 98.049 | 82.533 | 46.720 | 18.50316 | 7864.765 | 95.6543 |
120 | 99.301 | 83.089 | 47.235 | 19.00966 | 7438.307 | 96.0016 |
106 | 101.696 | 83.555 | 47.640 | 19.40404 | 7312.431 | 96.2417 |
105 | 107 | 83.616 | 47.687 | 19.44909 | 7304.006 | 96.2670 |
90 | 107 | 85.477 | 48.908 | 20.57752 | 7191.889 | 96.8510 |
83 | 107 | 86.346 | 49.525 | 21.15184 | 7141.103 | 97.1230 |
50 | 107 | 89.944 | 52.731 | 24.21901 | 6914.435 | 98.3425 |
30 | 107 | 91.584 | 54.770 | 26.29302 | 6786.543 | 98.9860 |
0 | 107 | 93.436 | 57.735 | 29.54009 | 6606.416 | 99.7556 |
(a) 2-period model with standby customers (expected total demand = 64.442). | ||||||
r0 | b1* | b2* | R(b1*,b2*) | S(b1*,b2*) | ||
150 | 98.04880 | 82.53349 | 6465.337 | 64.40167 | ||
120 | 99.30070 | 83.08922 | 6165.701 | 64.40301 | ||
106 | 101.69624 | 83.55498 | 6025.950 | 64.40352 | ||
105 | 107 | 83.61577 | 6015.975 | 64.40354 | ||
90 | 107 | 85.47684 | 5866.468 | 64.40366 | ||
83 | 107 | 86.34620 | 5796.699 | 64.40369 | ||
50 | 107 | 89.94355 | 5467.795 | 64.403745 | ||
30 | 107 | 91.58374 | 5268.461 | 64.403750 | ||
0 | 107 | 93.43602 | 4969.460 | 64.403753 | ||
(b) 3-period model with standby customers (expected total demand = 84.156). | ||||||
r0 | b1* | b2* | b3* | R(b1*,b2*,b3*) | S(b1*,b2*,b3*) | |
150 | 98.04880 | 82.53349 | 46.72013 | 7468.847 | 82.9636 | |
120 | 99.30070 | 83.08922 | 47.23458 | 7174.891 | 82.9934 | |
106 | 101.69624 | 83.55498 | 47.63984 | 7039.305 | 83.0073 | |
105 | 107 | 83.61577 | 47.68707 | 7029.778 | 83.0082 | |
90 | 107 | 85.47684 | 48.90773 | 6890.287 | 83.0211 | |
83 | 107 | 86.34620 | 49.52548 | 6825.326 | 83.0250 | |
50 | 107 | 89.94355 | 52.73081 | 6824.932 | 83.0332 | |
30 | 107 | 91.58374 | 54.77039 | 6334.970 | 83.0345 | |
0 | 107 | 93.43602 | 57.73468 | 6057.888 | 83.0352 | |
(c) 4-period model with standby customers (expected total demand = 114.261). | ||||||
r0 | b1* | b2* | b3* | b4* | R(b1*,b2*,b3*,b4*) | S(b1*,b2*,b3*,b4*)) |
150 | 98.049 | 82.533 | 46.720 | 18.50316 | 7864.765 | 95.6543 |
120 | 99.301 | 83.089 | 47.235 | 19.00966 | 7438.307 | 96.0016 |
106 | 101.696 | 83.555 | 47.640 | 19.40404 | 7312.431 | 96.2417 |
105 | 107 | 83.616 | 47.687 | 19.44909 | 7304.006 | 96.2670 |
90 | 107 | 85.477 | 48.908 | 20.57752 | 7191.889 | 96.8510 |
83 | 107 | 86.346 | 49.525 | 21.15184 | 7141.103 | 97.1230 |
50 | 107 | 89.944 | 52.731 | 24.21901 | 6914.435 | 98.3425 |
30 | 107 | 91.584 | 54.770 | 26.29302 | 6786.543 | 98.9860 |
0 | 107 | 93.436 | 57.735 | 29.54009 | 6606.416 | 99.7556 |
[1] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[2] |
Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117 |
[3] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
[4] |
Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021027 |
[5] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[6] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[7] |
François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015 |
[8] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[9] |
Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374 |
[10] |
Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021 doi: 10.3934/jgm.2021002 |
[11] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[12] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[13] |
Chiun-Chuan Chen, Yuan Lou, Hirokazu Ninomiya, Peter Polacik, Xuefeng Wang. Preface: DCDS-A special issue to honor Wei-Ming Ni's 70th birthday. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : ⅰ-ⅱ. doi: 10.3934/dcds.2020171 |
[14] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[15] |
Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051 |
[16] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293 |
[17] |
Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233 |
[18] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[19] |
Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047 |
[20] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]