
-
Previous Article
C-eigenvalue intervals for piezoelectric-type tensors via symmetric matrices
- JIMO Home
- This Issue
-
Next Article
Tabu search and simulated annealing for resource-constrained multi-project scheduling to minimize maximal cash flow gap
Computing shadow prices with multiple Lagrange multipliers
516 Jungong Road, Business School, University of Shanghai for Science and Technology, Shanghai 200093, China |
There is a wide consensus that the shadow prices of certain resources in an economic system are equal to Lagrange multipliers. However, this is misleading with respect to multiple Lagrange multipliers. In this paper, we propose a new type of Lagrange multiplier, the weighted minimum norm Lagrange multiplier, which is a type of shadow price. An attractive aspect of this type of Lagrange multiplier is that it conveys the sensitivity information when resources are required to be proportionally input. To compute the weighted minimum norm Lagrange multiplier, we propose two algorithms. One is the penalty function method with numeric stability, and the other is the accelerated gradient method with fewer arithmetic operations and a convergence rate of $ O(\frac{1}{k^2}) $. Furthermore, we propose a two-phase procedure to compute a particular subset of shadow prices that belongs to the set of bounded Lagrange multipliers. This subset is particularly attractive since all its elements are computable shadow prices. We report the numerical results for randomly generated problems.
References:
[1] |
M. Akgul, A note on shadow prices in linear programming, Journal of the Operational Research Society, 35 (1984), 425-431. Google Scholar |
[2] |
D. C. Aucamp and D. I. Steinberg, The computation of shadow prices in linear programming, Journal of the Operational Research Society, 33 (1982), 557-565.
doi: 10.1057/jors.1982.118. |
[3] |
M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley & Sons Inc., Hoboken, NJ, 2006.
doi: 10.1002/0471787779. |
[4] |
D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, Belmont, 2015. |
[5] |
D. P. Bertsekas, A. Nedi, A. E. Ozdaglar, et al., Convex Analysis and Optimization, Athena Scientific, Belmont, 2003. |
[6] |
D. P. Bertsekas and A. E. Ozdaglar,
Pseudonormality and a lagrange multiplier theory for constrained optimization, Journal of Optimization Theory and Applications, 114 (2002), 287-343.
doi: 10.1023/A:1016083601322. |
[7] |
J. P. Caulkins, D. Grass, G. Feichtinger and G. Tragler,
Optimizing counter-terror operations: Should one fight fire with"fir" or"wate"?, Computers & Operations Research, 35 (2008), 1874-1885.
doi: 10.1016/j.cor.2006.09.017. |
[8] |
T.-L. Chen, J. T. Lin and S.-C. Fang,
A shadow-price based heuristic for capacity planning of tft-lcd manufacturing, Journal of Industrial & Management Optimization, 6 (2010), 209-239.
doi: 10.3934/jimo.2010.6.209. |
[9] |
B. Col, A. Durnev and A. Molchanov,
Foreign risk, domestic problem: Capital allocation and firm performance under political instability, Management Science, 64 (2018), 1975-2471.
doi: 10.1287/mnsc.2016.2638. |
[10] |
M. E. Dyer,
The complexity of vertex enumeration methods, Mathematics of Operations Research, 8 (1983), 381-402.
doi: 10.1287/moor.8.3.381. |
[11] |
J. Gauvin,
Shadow prices in nonconvex mathematical programming, Mathematical Programming, 19 (1980), 300-312.
doi: 10.1007/BF01581650. |
[12] |
M. Hessel and M. Zeleny,
Optimal system design: towards new interpretation of shadow prices in linear programming, Computers & Operations Research, 14 (1987), 265-271.
doi: 10.1016/0305-0548(87)90063-3. |
[13] |
B. Jansen, J. De Jong, C. Roos and T. Terlaky,
Sensitivity analysis in linear programming: Just be careful!, European Journal of Operational Research, 101 (1997), 15-28.
doi: 10.1016/S0377-2217(96)00172-5. |
[14] |
T. T. Ke, Z.-J. M. Shen and J. M. Villas-Boas,
Search for information on multiple products, Management Science, 62 (2016), 3576-3603.
doi: 10.1287/mnsc.2015.2316. |
[15] |
R. Kutsuzawa, A. Yamashita, N. Takemura, J. Matsumoto, M. Tanaka and N. Yamanaka, Demand response minimizing the impact on the consumers' utility towards renewable energy, in Smart Grid Communications (SmartGridComm), 2016 IEEE International Conference on, IEEE, 2016, 68–73.
doi: 10.1109/SmartGridComm.2016.7778740. |
[16] |
J. Kyparisis,
On uniqueness of kuhn-tucker multipliers in nonlinear programming, Mathematical Programming, 32 (1985), 242-246.
doi: 10.1007/BF01586095. |
[17] |
C.-Y. Lee and P. Zhou, Directional shadow price estimation of co2, so2 and nox in the united states coal power industry 1990–2010, Energy Economics, 51 (2015), 493-502. Google Scholar |
[18] |
O. L. Mangasarian,
Uniqueness of solution in linear programming, Linear Algebra and Its Applications, 25 (1979), 151-162.
doi: 10.1016/0024-3795(79)90014-4. |
[19] |
W. Meng and X. Wang,
Distributed energy management in smart grid with wind power and temporally coupled constraints, IEEE Transactions on Industrial Electronics, 64 (2017), 6052-6062.
doi: 10.1109/TIE.2017.2682001. |
[20] |
K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, 282. Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-61582-5. |
[21] |
N. Walter, Microeconomic Theory: Basic Principles and Extensions., Nelson Education, Canada, 2005. Google Scholar |
[22] |
Q. Wei and H. Yan,
A method of transferring polyhedron between the intersection-form and the sum-form, Computers & Mathematics with Applications, 41 (2001), 1327-1342.
doi: 10.1016/S0898-1221(01)00100-6. |
[23] |
L. Zhang, D. Feng, J. Lei, C. Xu, Z. Yan, S. Xu, N. Li and L. Jing,
Congestion surplus minimization pricing solutions when lagrange multipliers are not unique, IEEE Transactions on Power Systems, 29 (2014), 2023-2032.
doi: 10.1109/TPWRS.2014.2301213. |
show all references
References:
[1] |
M. Akgul, A note on shadow prices in linear programming, Journal of the Operational Research Society, 35 (1984), 425-431. Google Scholar |
[2] |
D. C. Aucamp and D. I. Steinberg, The computation of shadow prices in linear programming, Journal of the Operational Research Society, 33 (1982), 557-565.
doi: 10.1057/jors.1982.118. |
[3] |
M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley & Sons Inc., Hoboken, NJ, 2006.
doi: 10.1002/0471787779. |
[4] |
D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific, Belmont, 2015. |
[5] |
D. P. Bertsekas, A. Nedi, A. E. Ozdaglar, et al., Convex Analysis and Optimization, Athena Scientific, Belmont, 2003. |
[6] |
D. P. Bertsekas and A. E. Ozdaglar,
Pseudonormality and a lagrange multiplier theory for constrained optimization, Journal of Optimization Theory and Applications, 114 (2002), 287-343.
doi: 10.1023/A:1016083601322. |
[7] |
J. P. Caulkins, D. Grass, G. Feichtinger and G. Tragler,
Optimizing counter-terror operations: Should one fight fire with"fir" or"wate"?, Computers & Operations Research, 35 (2008), 1874-1885.
doi: 10.1016/j.cor.2006.09.017. |
[8] |
T.-L. Chen, J. T. Lin and S.-C. Fang,
A shadow-price based heuristic for capacity planning of tft-lcd manufacturing, Journal of Industrial & Management Optimization, 6 (2010), 209-239.
doi: 10.3934/jimo.2010.6.209. |
[9] |
B. Col, A. Durnev and A. Molchanov,
Foreign risk, domestic problem: Capital allocation and firm performance under political instability, Management Science, 64 (2018), 1975-2471.
doi: 10.1287/mnsc.2016.2638. |
[10] |
M. E. Dyer,
The complexity of vertex enumeration methods, Mathematics of Operations Research, 8 (1983), 381-402.
doi: 10.1287/moor.8.3.381. |
[11] |
J. Gauvin,
Shadow prices in nonconvex mathematical programming, Mathematical Programming, 19 (1980), 300-312.
doi: 10.1007/BF01581650. |
[12] |
M. Hessel and M. Zeleny,
Optimal system design: towards new interpretation of shadow prices in linear programming, Computers & Operations Research, 14 (1987), 265-271.
doi: 10.1016/0305-0548(87)90063-3. |
[13] |
B. Jansen, J. De Jong, C. Roos and T. Terlaky,
Sensitivity analysis in linear programming: Just be careful!, European Journal of Operational Research, 101 (1997), 15-28.
doi: 10.1016/S0377-2217(96)00172-5. |
[14] |
T. T. Ke, Z.-J. M. Shen and J. M. Villas-Boas,
Search for information on multiple products, Management Science, 62 (2016), 3576-3603.
doi: 10.1287/mnsc.2015.2316. |
[15] |
R. Kutsuzawa, A. Yamashita, N. Takemura, J. Matsumoto, M. Tanaka and N. Yamanaka, Demand response minimizing the impact on the consumers' utility towards renewable energy, in Smart Grid Communications (SmartGridComm), 2016 IEEE International Conference on, IEEE, 2016, 68–73.
doi: 10.1109/SmartGridComm.2016.7778740. |
[16] |
J. Kyparisis,
On uniqueness of kuhn-tucker multipliers in nonlinear programming, Mathematical Programming, 32 (1985), 242-246.
doi: 10.1007/BF01586095. |
[17] |
C.-Y. Lee and P. Zhou, Directional shadow price estimation of co2, so2 and nox in the united states coal power industry 1990–2010, Energy Economics, 51 (2015), 493-502. Google Scholar |
[18] |
O. L. Mangasarian,
Uniqueness of solution in linear programming, Linear Algebra and Its Applications, 25 (1979), 151-162.
doi: 10.1016/0024-3795(79)90014-4. |
[19] |
W. Meng and X. Wang,
Distributed energy management in smart grid with wind power and temporally coupled constraints, IEEE Transactions on Industrial Electronics, 64 (2017), 6052-6062.
doi: 10.1109/TIE.2017.2682001. |
[20] |
K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, 282. Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-61582-5. |
[21] |
N. Walter, Microeconomic Theory: Basic Principles and Extensions., Nelson Education, Canada, 2005. Google Scholar |
[22] |
Q. Wei and H. Yan,
A method of transferring polyhedron between the intersection-form and the sum-form, Computers & Mathematics with Applications, 41 (2001), 1327-1342.
doi: 10.1016/S0898-1221(01)00100-6. |
[23] |
L. Zhang, D. Feng, J. Lei, C. Xu, Z. Yan, S. Xu, N. Li and L. Jing,
Congestion surplus minimization pricing solutions when lagrange multipliers are not unique, IEEE Transactions on Power Systems, 29 (2014), 2023-2032.
doi: 10.1109/TPWRS.2014.2301213. |





Computational Time | ||
500 | 5000 | 10.7504 |
500 | 10000 | 11.4222 |
500 | 20000 | 12.5574 |
500 | 50000 | 15.5700 |
1000 | 5000 | 21.4259 |
1000 | 10000 | 21.8054 |
1000 | 20000 | 22.2733 |
1000 | 50000 | 25.2937 |
5000 | 5000 | 101.1437 |
5000 | 10000 | 102.1762 |
5000 | 20000 | 106.8786 |
5000 | 50000 | 107.3515 |
Computational Time | ||
500 | 5000 | 10.7504 |
500 | 10000 | 11.4222 |
500 | 20000 | 12.5574 |
500 | 50000 | 15.5700 |
1000 | 5000 | 21.4259 |
1000 | 10000 | 21.8054 |
1000 | 20000 | 22.2733 |
1000 | 50000 | 25.2937 |
5000 | 5000 | 101.1437 |
5000 | 10000 | 102.1762 |
5000 | 20000 | 106.8786 |
5000 | 50000 | 107.3515 |
Vertices | Elements | ||||||||
0.0000 | 1.6118 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4939 | 0.0000 | 0.0000 | |
0.0000 | 2.1057 | 0.4939 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
0.0000 | 3.0834 | 0.0000 | 0.0000 | 0.1352 | 0.0000 | 0.0000 | 0.6957 | 0.0000 | |
0.0000 | 3.4207 | 0.0000 | 0.0000 | 0.0026 | 0.0000 | 0.0064 | 0.7603 | 0.1801 | |
0.0000 | 5.7145 | 0.0000 | 0.0000 | 3.1147 | 2.5431 | 3.6277 | 0.0000 | 0.0000 | |
0.0000 | 7.1430 | 0.0000 | 4.9601 | 0.9637 | 0.0000 | 1.9331 | 0.0000 | 0.0000 | |
0.0000 | 7.2983 | 0.0000 | 0.0000 | 0.0000 | 1.7188 | 3.3700 | 0.0000 | 2.6128 | |
0.0000 | 7.5898 | 0.0000 | 4.3192 | 0.0000 | 0.0000 | 2.0493 | 0.0000 | 1.0416 | |
0.0000 | 7.7043 | 2.9184 | 0.0000 | 2.4098 | 1.9675 | 0.0000 | 0.0000 | 0.0000 | |
0.0000 | 8.1361 | 1.7390 | 4.2912 | 0.8338 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
0.0000 | 8.5707 | 1.8287 | 3.7067 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8939 | |
0.0000 | 8.8386 | 2.7554 | 0.0000 | 0.0000 | 1.3515 | 0.0000 | 0.0000 | 2.0545 | |
0.0000 | 9.0761 | 0.0000 | 3.0271 | 0.9637 | 0.0000 | 0.0000 | 1.9331 | 0.0000 | |
0.0000 | 9.1971 | 0.0000 | 0.0000 | 1.9422 | 1.1568 | 0.0000 | 2.7039 | 0.0000 | |
0.0000 | 9.6392 | 0.0000 | 2.2699 | 0.0000 | 0.0000 | 0.0000 | 2.0493 | 1.0416 | |
0.0000 | 10.0534 | 0.0000 | 0.0000 | 0.0000 | 0.6918 | 0.0000 | 2.5809 | 1.6740 | |
0.0000 | 3.4315 | 0.0050 | 0.0000 | 0.0027 | 0.0000 | 0.0000 | 0.7627 | 0.1807 | |
0.6494 | 10.2980 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2.4700 | 1.5827 | |
1.0475 | 9.6669 | 0.0000 | 0.0000 | 1.7714 | 0.0000 | 0.0000 | 2.5142 | 0.0000 | |
1.2187 | 9.3956 | 2.5332 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.8526 | |
1.5166 | 8.1461 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.0317 | 0.0000 | 2.3055 | |
1.6981 | 8.6358 | 2.5864 | 0.0000 | 2.0798 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
2.1242 | 7.1628 | 0.0000 | 0.0000 | 2.6016 | 0.0000 | 3.1114 | 0.0000 | 0.0000 |
Vertices | Elements | ||||||||
0.0000 | 1.6118 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.4939 | 0.0000 | 0.0000 | |
0.0000 | 2.1057 | 0.4939 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
0.0000 | 3.0834 | 0.0000 | 0.0000 | 0.1352 | 0.0000 | 0.0000 | 0.6957 | 0.0000 | |
0.0000 | 3.4207 | 0.0000 | 0.0000 | 0.0026 | 0.0000 | 0.0064 | 0.7603 | 0.1801 | |
0.0000 | 5.7145 | 0.0000 | 0.0000 | 3.1147 | 2.5431 | 3.6277 | 0.0000 | 0.0000 | |
0.0000 | 7.1430 | 0.0000 | 4.9601 | 0.9637 | 0.0000 | 1.9331 | 0.0000 | 0.0000 | |
0.0000 | 7.2983 | 0.0000 | 0.0000 | 0.0000 | 1.7188 | 3.3700 | 0.0000 | 2.6128 | |
0.0000 | 7.5898 | 0.0000 | 4.3192 | 0.0000 | 0.0000 | 2.0493 | 0.0000 | 1.0416 | |
0.0000 | 7.7043 | 2.9184 | 0.0000 | 2.4098 | 1.9675 | 0.0000 | 0.0000 | 0.0000 | |
0.0000 | 8.1361 | 1.7390 | 4.2912 | 0.8338 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
0.0000 | 8.5707 | 1.8287 | 3.7067 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.8939 | |
0.0000 | 8.8386 | 2.7554 | 0.0000 | 0.0000 | 1.3515 | 0.0000 | 0.0000 | 2.0545 | |
0.0000 | 9.0761 | 0.0000 | 3.0271 | 0.9637 | 0.0000 | 0.0000 | 1.9331 | 0.0000 | |
0.0000 | 9.1971 | 0.0000 | 0.0000 | 1.9422 | 1.1568 | 0.0000 | 2.7039 | 0.0000 | |
0.0000 | 9.6392 | 0.0000 | 2.2699 | 0.0000 | 0.0000 | 0.0000 | 2.0493 | 1.0416 | |
0.0000 | 10.0534 | 0.0000 | 0.0000 | 0.0000 | 0.6918 | 0.0000 | 2.5809 | 1.6740 | |
0.0000 | 3.4315 | 0.0050 | 0.0000 | 0.0027 | 0.0000 | 0.0000 | 0.7627 | 0.1807 | |
0.6494 | 10.2980 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2.4700 | 1.5827 | |
1.0475 | 9.6669 | 0.0000 | 0.0000 | 1.7714 | 0.0000 | 0.0000 | 2.5142 | 0.0000 | |
1.2187 | 9.3956 | 2.5332 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1.8526 | |
1.5166 | 8.1461 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.0317 | 0.0000 | 2.3055 | |
1.6981 | 8.6358 | 2.5864 | 0.0000 | 2.0798 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
2.1242 | 7.1628 | 0.0000 | 0.0000 | 2.6016 | 0.0000 | 3.1114 | 0.0000 | 0.0000 |
[1] |
Jie-Wen He, Chi-Chon Lei, Chen-Yang Shi, Seak-Weng Vong. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 353-362. doi: 10.3934/naco.2020030 |
[2] |
Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055 |
[3] |
Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006 |
[4] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[5] |
Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021082 |
[6] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[7] |
Paul E. Anderson, Timothy P. Chartier, Amy N. Langville, Kathryn E. Pedings-Behling. The rankability of weighted data from pairwise comparisons. Foundations of Data Science, 2021, 3 (1) : 1-26. doi: 10.3934/fods.2021002 |
[8] |
John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023 |
[9] |
Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021012 |
[10] |
Guiyang Zhu. Optimal pricing and ordering policy for defective items under temporary price reduction with inspection errors and price sensitive demand. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021060 |
[11] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021035 |
[12] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[13] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[14] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[15] |
Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022 |
[16] |
Chong Wang, Xu Chen. Fresh produce price-setting newsvendor with bidirectional option contracts. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021052 |
[17] |
Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058 |
[18] |
Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021061 |
[19] |
Kai Cai, Guangyue Han. An optimization approach to the Langberg-Médard multiple unicast conjecture. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021001 |
[20] |
Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]