[1]
|
D. Bienstock, Computational study of a family of mixed-integer quadratic programming problems, Mathematical Programming, 74 (1996), 121-140.
doi: 10.1007/BF02592208.
|
[2]
|
A. Billionnet and S. Elloumi, Using a mixed integer quadratic programming solver for the unconstrained quadratic 0-1 problem, Mathematical Programming, 109 (2007), 55-68.
doi: 10.1007/s10107-005-0637-9.
|
[3]
|
A. Billionnet, S. Elloumi and A. Lambert, Extending the QCR method to general mixed-integer programs, Mathematical Programming, 131 (2012), 381-401.
doi: 10.1007/s10107-010-0381-7.
|
[4]
|
A. Billionnet, S. Elloumi and M. Plateau, Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: the QCR method, Discrete Applied Mathematics, 157 (2009), 1185-1197.
doi: 10.1016/j.dam.2007.12.007.
|
[5]
|
A. Borghetti, A. Frangioni, F. Lacalandra and C. Nucci, Lagrangian heuristics based on disaggregated bundle methods for hydrothermal unit commitment, IEEE Transactions on Power Systems, 18 (2003), 313-323.
|
[6]
|
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge university press, 2004.
doi: 10.1017/CBO9780511804441.
|
[7]
|
A. Frangioni and C. Gentile, Perspective cuts for a class of convex 0–1 mixed integer programs, Mathematical Programming, 106 (2006), 225-236.
doi: 10.1007/s10107-005-0594-3.
|
[8]
|
A. Frangioni and C. Gentile, Solving nonlinear single-unit commitment problems with ramping constraints, Operations Research, 54 (2006), 767-775.
doi: 10.1287/opre.1060.0309.
|
[9]
|
A. Frangioni and C. Gentile, SDP diagonalizations and perspective cuts for a class of nonseparable MIQP, Operations Research Letters, 35 (2007), 181-185.
doi: 10.1016/j.orl.2006.03.008.
|
[10]
|
A. Frangioni and C. Gentile, A computational comparison of reformulations of the perspective relaxation: SOCP vs. cutting planes, Operations Research Letters, 37 (2009), 206-210.
doi: 10.1016/j.orl.2009.02.003.
|
[11]
|
A. Frangioni, C. Gentile, E. Grande and A. Pacifici, Projected perspective reformulations with applications in design problems, Operations Research, 59 (2011), 1225-1232.
doi: 10.1287/opre.1110.0930.
|
[12]
|
M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming (web page and software), 2009.
|
[13]
|
O. Günlük and J. Linderoth, Perspective reformulations of mixed integer nonlinear programs with indicator variables, Mathematical Programming, 124 (2010), 183-205.
doi: 10.1007/s10107-010-0360-z.
|
[14]
|
P. Hammer and A. Rubin, Some remarks on quadratic programming with 0-1 variables, R.I.R.O., 3 (1970), 67-79.
|
[15]
|
R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, 1985.
doi: 10.1017/CBO9780511810817.
|
[16]
|
S. Kazarlis, A. Bakirtzis and V. Petridis, A genetic algorithm solution to the unit commitment problem, IEEE Transactions on Power Systems, 11 (1996), 83-92.
doi: 10.1109/59.485989.
|
[17]
|
P. Pardalos and G. Rodgers, Computational aspects of a branch and bound algorithm for quadratic zero-one programming, Computing, 45 (1990), 131-144.
doi: 10.1007/BF02247879.
|
[18]
|
L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review, 38 (1996), 49-95.
doi: 10.1137/1038003.
|
[19]
|
B. Wu, X. Sun, D. Li and X. Zheng, Quadratic convex reformulations for semicontinuous quadratic programming, SIAM Journal on Optimization, 27 (2017), 1531-1553.
doi: 10.1137/15M1012232.
|
[20]
|
X. Zheng, X. Sun and D. Li, Improving the performance of miqp solvers for quadratic programs with cardinality and minimum threshold constraints: A semidefinite program approach, INFORMS Journal on Computing, 26 (2014), 690-703.
doi: 10.1287/ijoc.2014.0592.
|