• Previous Article
    Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk
  • JIMO Home
  • This Issue
  • Next Article
    Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming
doi: 10.3934/jimo.2020073

A Primal-dual algorithm for unfolding neutron energy spectrum from multiple activation foils

1. 

LESC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

2. 

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. 

School of Science, Beijing Jiaotong University, Beijing, 100044, China

4. 

School of Economics and Finance, Xian Jiaotong University, Xi'an, 710061, China

* Corresponding author: Zhouhong Wang

Received  February 2018 Revised  August 2019 Published  April 2020

Fund Project: This work was partly supported by the Chinese NSF grants (nos. 11631013, 11991021, 11971372 and 11991020) and partly supported by the CSC scholarship and Beijing Academy of Artificial Intelligence (BAAI). The authors are grateful to the editor and the referees for their valuable comments and suggestions

In this paper we propose a robust and efficient primal-dual interior-point method for a nonlinear ill-conditioned problem with associated errors which are arising in the unfolding procedure for neutron energy spectrum from multiple activation foils. Based on the maximum entropy principle and Boltzmann's entropy formula, the discrete form of the unfolding problem is equivalent to computing the analytic center of the polyhedral set $ P = \{x \in R^n \mid Ax = b, x \ge 0\} $, where the matrix $ A \in R^{m\times n} $ is ill-conditioned, and both $ A $ and $ b $ are inaccurate. By some derivations, we find a new regularization method to reformulate the problem into a well-conditioned problem which can also reduce the impact of errors in $ A $ and $ b $. Then based on the primal-dual interior-point methods for linear programming, we propose a hybrid algorithm for this ill-conditioned problem with errors. Numerical results on a set of ill-conditioned problems for academic purposes and two practical data sets for unfolding the neutron energy spectrum are presented to demonstrate the effectiveness and robustness of the proposed method.

Citation: Yu-Hong Dai, Zhouhong Wang, Fengmin Xu. A Primal-dual algorithm for unfolding neutron energy spectrum from multiple activation foils. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020073
References:
[1]

D. S. Atkinson and P. M. Vaidya, A scaling technique for finding the weighted analytic center of a polytope, Mathematical Programming, 57 (1992), 163-192.  doi: 10.1007/BF01581079.  Google Scholar

[2]

E. A. Belogorlov and V. P. Zhigunov, Interpretation of the solution to the inverse problem for the positive function and the reconstruction of neutron spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 235 (1985), 146-163.  doi: 10.1016/0168-9002(85)90256-6.  Google Scholar

[3]

D. P. Bertsekas, Necessary and sufficient conditions for a penalty method to be exact, Mathematical Programming, 9 (1975), 87-99.  doi: 10.1007/BF01681332.  Google Scholar

[4]

J. F. Bonnans and C. C. Gonzaga, Convergence of interior point algorithms for the monotone linear complementarity problem, Mathematics of Operations Research, 21 (1996), 1-25.  doi: 10.1287/moor.21.1.1.  Google Scholar

[5] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511804441.  Google Scholar
[6]

E. J. CandesJ. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489-509.  doi: 10.1109/TIT.2005.862083.  Google Scholar

[7]

X. ChenZ. Lu and T. K. Pong, Penalty methods for a class of non-lipschitz optimization problems, SIAM Journal on Optimization, 26 (2016), 1465-1492.  doi: 10.1137/15M1028054.  Google Scholar

[8]

G. Cowan, A Survey of Unfolding Methods for Particle Physics, 2002. Available from: https://www.ippp.dur.ac.uk/old/Workshops/02/statistics/proceedings/cowan.pdf. Google Scholar

[9]

F. Z. DehimiA. Seghour and S. E. H. Abaidia, Unfolding of neutron energy spectra with fisher regularisation, IEEE Transactions on Nuclear Science, 57 (2010), 768-774.  doi: 10.1109/TNS.2010.2041791.  Google Scholar

[10]

M. P. Friedlander and P. Tseng, Exact regularization of convex programs, SIAM Journal on Optimization, 18 (2008), 1326-1350.  doi: 10.1137/060675320.  Google Scholar

[11]

G. H. Golub and C. F. Van Loan, Matrix Computations, 3$^{rd}$ edition, The Johns Hopkins University Press, Baltimore, 1996.  Google Scholar

[12]

C. C. Gonzaga and R. A. Tapia, On the convergence of the Mizuno-Todd-Ye algorithm to the analytic center of the solution set, SIAM Journal on Optimization, 7 (1997), 47-65.  doi: 10.1137/S1052623493243557.  Google Scholar

[13]

M. D. González-LimaR. A. Tapia and F. A. Potra, On effectively computing the analytic center of the solution set by primal-dual interior-point methods, SIAM Journal on Optimization, 8 (1998), 1-25.  doi: 10.1137/S1052623495291793.  Google Scholar

[14]

S. Itoh and T. Tsunoda, Neutron spectra unfolding with maximum entropy and maximum likelihood, Journal of Nuclear Science and Technology, 26 (1989), 833-843.  doi: 10.1080/18811248.1989.9734394.  Google Scholar

[15]

M. KojimaN. Megiddo and S. Mizuno, A primal-dual infeasible-interior-point algorithm for linear programming, Mathematical Programming, 61 (1993), 263-280.  doi: 10.1007/BF01582151.  Google Scholar

[16]

M. Kojima, S. Mizuno and A. Yoshise, A primal-dual interior point algorithm for linear programming, in Progress in Mathematical Programming: Interior-Point and Related Methods (ed. N. Megiddo), Springer, New York, (1989), 29–47. doi: 10.1007/978-1-4613-9617-8_2.  Google Scholar

[17]

I. J. LustigR. E. Marsten and D. F. Shanno, On implementing Mehrotra's predictor-corrector interior-point method for linear programming, SIAM Journal on Optimization, 2 (1992), 435-449.  doi: 10.1137/0802022.  Google Scholar

[18]

M. Matzke, Propagation of uncertainties in unfolding procedures, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 230–241. doi: 10.1016/S0168-9002(01)01438-3.  Google Scholar

[19]

S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journal on Optimization, 2 (1992), 575-601.  doi: 10.1137/0802028.  Google Scholar

[20]

S. Mehrotra, Quadratic convergence in a primal-dual method, Mathematics of Operations Research, 18 (1993), 741-751.  doi: 10.1287/moor.18.3.741.  Google Scholar

[21]

S. Mizuno, Polynomiality of infeasible-interior-point algorithms for linear programming, Mathematical Programming, 67 (1994), 109-119.  doi: 10.1007/BF01582216.  Google Scholar

[22]

S. MizunoM. J. Todd and Y. Ye, On adaptive-step primal-dual interior-point algorithms for linear programming, Mathematics of Operations Research, 18 (1993), 964-981.  doi: 10.1287/moor.18.4.964.  Google Scholar

[23]

B. Mukherjee, A high-resolution neutron spectra unfolding method using the genetic algorithm technique, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 247-251.  doi: 10.1016/S0168-9002(01)01440-1.  Google Scholar

[24]

M. ReginattoP. Goldhagen and S. Neumann, Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code maxed, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 242-246.  doi: 10.1016/S0168-9002(01)01439-5.  Google Scholar

[25] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.   Google Scholar
[26]

C. Roos, T. Terlaky and J.-P. Vial, Interior Point Methods for Linear Optimization, 2$^{nd}$ edition, Springer, Berlin, 2005.  Google Scholar

[27]

V. Suman and P. Sarkar, Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 737 (2014), 76-86.  doi: 10.1016/j.nima.2013.11.012.  Google Scholar

[28]

S. TripathyC. SunilM. NandyP. SarkarD. Sharma and B. Mukherjee, Activation foils unfolding for neutron spectrometry: Comparison of different deconvolution methods, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 583 (2007), 421-425.  doi: 10.1016/j.nima.2007.09.028.  Google Scholar

[29]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

[30]

Y. Wang and Y. Yuan, Convergence and regularity of trust region methods for nonlinear ill-posed inverse problems, Inverse Problems, 21 (2005), 821-838.  doi: 10.1088/0266-5611/21/3/003.  Google Scholar

[31]

Y. WangY. Yuan and H. Zhang, A trust region-CG algorithm for deblurring problem in atmospheric image reconstruction, Science in China Series A: Mathematics, 45 (2002), 731-740.   Google Scholar

[32]

K. Weise and M. Matzke, A priori distributions from the principle of maximum entropy for the monte carlo unfolding of particle energy spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 280 (1989), 103-112.  doi: 10.1016/0168-9002(89)91277-1.  Google Scholar

[33]

M. Wright, Ill-conditioning and computational error in interior methods for nonlinear programming, SIAM Journal on Optimization, 9 (1998), 84-111.  doi: 10.1137/S1052623497322279.  Google Scholar

[34]

S. Wright, Effects of finite-precision arithmetic on interior-point methods for nonlinear programming, SIAM Journal on Optimization, 12 (2001), 36-78.  doi: 10.1137/S1052623498347438.  Google Scholar

[35]

S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1996. doi: 10.1137/1.9781611971453.  Google Scholar

[36]

Y. YeO. GülerR. A. Tapia and Y. Zhang, A quadratically convergent $o(\sqrt{n}l)$-iteration algorithm for linear programming, Mathematical Programming, 59 (1993), 151-162.  doi: 10.1007/BF01581242.  Google Scholar

[37]

Y. Ye, Interior Point Algorithms: Theory and Analysis, John Wiley & Sons, New Jersey, NJ, 1997. doi: 10.1002/9781118032701.  Google Scholar

[38]

Y. Zhang and R. A. Tapia, On the Convergence of Interior-Point Methods to the Center of Solution Set in Linear Programming, Technical Report TR91-30, Dept. Mathematical Sciences, Rice University, Houston, TX, 1991. Available from: https://www.researchgate.net/publication/235075603_On_the_Convergence_of_Interior-Point_Methods_to_the_Center_of_the_Solution_Set_in_Linear_Programming. doi: 10.1007/BF01581087.  Google Scholar

[39]

Y. Zhang, On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem, SIAM Journal on Optimization, 4 (1994), 208-227.  doi: 10.1137/0804012.  Google Scholar

[40]

Y. Zhang, Solving large-scale linear programs by interior-point methods under the matlab environment, Optimization Methods and Software, 10 (1998), 1–31. doi: 10.1080/10556789808805699.  Google Scholar

[41]

Y. Zhangsun, Unfolding Method Based on Entropy Theory for the Determination of Neutron Spectrum (in Chinese), Master's thesis, Northwest Institute of Nuclear Technology, Xi'an, Shanxi, P. R. China, 2015. Google Scholar

show all references

References:
[1]

D. S. Atkinson and P. M. Vaidya, A scaling technique for finding the weighted analytic center of a polytope, Mathematical Programming, 57 (1992), 163-192.  doi: 10.1007/BF01581079.  Google Scholar

[2]

E. A. Belogorlov and V. P. Zhigunov, Interpretation of the solution to the inverse problem for the positive function and the reconstruction of neutron spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 235 (1985), 146-163.  doi: 10.1016/0168-9002(85)90256-6.  Google Scholar

[3]

D. P. Bertsekas, Necessary and sufficient conditions for a penalty method to be exact, Mathematical Programming, 9 (1975), 87-99.  doi: 10.1007/BF01681332.  Google Scholar

[4]

J. F. Bonnans and C. C. Gonzaga, Convergence of interior point algorithms for the monotone linear complementarity problem, Mathematics of Operations Research, 21 (1996), 1-25.  doi: 10.1287/moor.21.1.1.  Google Scholar

[5] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511804441.  Google Scholar
[6]

E. J. CandesJ. Romberg and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52 (2006), 489-509.  doi: 10.1109/TIT.2005.862083.  Google Scholar

[7]

X. ChenZ. Lu and T. K. Pong, Penalty methods for a class of non-lipschitz optimization problems, SIAM Journal on Optimization, 26 (2016), 1465-1492.  doi: 10.1137/15M1028054.  Google Scholar

[8]

G. Cowan, A Survey of Unfolding Methods for Particle Physics, 2002. Available from: https://www.ippp.dur.ac.uk/old/Workshops/02/statistics/proceedings/cowan.pdf. Google Scholar

[9]

F. Z. DehimiA. Seghour and S. E. H. Abaidia, Unfolding of neutron energy spectra with fisher regularisation, IEEE Transactions on Nuclear Science, 57 (2010), 768-774.  doi: 10.1109/TNS.2010.2041791.  Google Scholar

[10]

M. P. Friedlander and P. Tseng, Exact regularization of convex programs, SIAM Journal on Optimization, 18 (2008), 1326-1350.  doi: 10.1137/060675320.  Google Scholar

[11]

G. H. Golub and C. F. Van Loan, Matrix Computations, 3$^{rd}$ edition, The Johns Hopkins University Press, Baltimore, 1996.  Google Scholar

[12]

C. C. Gonzaga and R. A. Tapia, On the convergence of the Mizuno-Todd-Ye algorithm to the analytic center of the solution set, SIAM Journal on Optimization, 7 (1997), 47-65.  doi: 10.1137/S1052623493243557.  Google Scholar

[13]

M. D. González-LimaR. A. Tapia and F. A. Potra, On effectively computing the analytic center of the solution set by primal-dual interior-point methods, SIAM Journal on Optimization, 8 (1998), 1-25.  doi: 10.1137/S1052623495291793.  Google Scholar

[14]

S. Itoh and T. Tsunoda, Neutron spectra unfolding with maximum entropy and maximum likelihood, Journal of Nuclear Science and Technology, 26 (1989), 833-843.  doi: 10.1080/18811248.1989.9734394.  Google Scholar

[15]

M. KojimaN. Megiddo and S. Mizuno, A primal-dual infeasible-interior-point algorithm for linear programming, Mathematical Programming, 61 (1993), 263-280.  doi: 10.1007/BF01582151.  Google Scholar

[16]

M. Kojima, S. Mizuno and A. Yoshise, A primal-dual interior point algorithm for linear programming, in Progress in Mathematical Programming: Interior-Point and Related Methods (ed. N. Megiddo), Springer, New York, (1989), 29–47. doi: 10.1007/978-1-4613-9617-8_2.  Google Scholar

[17]

I. J. LustigR. E. Marsten and D. F. Shanno, On implementing Mehrotra's predictor-corrector interior-point method for linear programming, SIAM Journal on Optimization, 2 (1992), 435-449.  doi: 10.1137/0802022.  Google Scholar

[18]

M. Matzke, Propagation of uncertainties in unfolding procedures, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 230–241. doi: 10.1016/S0168-9002(01)01438-3.  Google Scholar

[19]

S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journal on Optimization, 2 (1992), 575-601.  doi: 10.1137/0802028.  Google Scholar

[20]

S. Mehrotra, Quadratic convergence in a primal-dual method, Mathematics of Operations Research, 18 (1993), 741-751.  doi: 10.1287/moor.18.3.741.  Google Scholar

[21]

S. Mizuno, Polynomiality of infeasible-interior-point algorithms for linear programming, Mathematical Programming, 67 (1994), 109-119.  doi: 10.1007/BF01582216.  Google Scholar

[22]

S. MizunoM. J. Todd and Y. Ye, On adaptive-step primal-dual interior-point algorithms for linear programming, Mathematics of Operations Research, 18 (1993), 964-981.  doi: 10.1287/moor.18.4.964.  Google Scholar

[23]

B. Mukherjee, A high-resolution neutron spectra unfolding method using the genetic algorithm technique, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 247-251.  doi: 10.1016/S0168-9002(01)01440-1.  Google Scholar

[24]

M. ReginattoP. Goldhagen and S. Neumann, Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code maxed, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 476 (2002), 242-246.  doi: 10.1016/S0168-9002(01)01439-5.  Google Scholar

[25] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.   Google Scholar
[26]

C. Roos, T. Terlaky and J.-P. Vial, Interior Point Methods for Linear Optimization, 2$^{nd}$ edition, Springer, Berlin, 2005.  Google Scholar

[27]

V. Suman and P. Sarkar, Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 737 (2014), 76-86.  doi: 10.1016/j.nima.2013.11.012.  Google Scholar

[28]

S. TripathyC. SunilM. NandyP. SarkarD. Sharma and B. Mukherjee, Activation foils unfolding for neutron spectrometry: Comparison of different deconvolution methods, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 583 (2007), 421-425.  doi: 10.1016/j.nima.2007.09.028.  Google Scholar

[29]

A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.  Google Scholar

[30]

Y. Wang and Y. Yuan, Convergence and regularity of trust region methods for nonlinear ill-posed inverse problems, Inverse Problems, 21 (2005), 821-838.  doi: 10.1088/0266-5611/21/3/003.  Google Scholar

[31]

Y. WangY. Yuan and H. Zhang, A trust region-CG algorithm for deblurring problem in atmospheric image reconstruction, Science in China Series A: Mathematics, 45 (2002), 731-740.   Google Scholar

[32]

K. Weise and M. Matzke, A priori distributions from the principle of maximum entropy for the monte carlo unfolding of particle energy spectra, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 280 (1989), 103-112.  doi: 10.1016/0168-9002(89)91277-1.  Google Scholar

[33]

M. Wright, Ill-conditioning and computational error in interior methods for nonlinear programming, SIAM Journal on Optimization, 9 (1998), 84-111.  doi: 10.1137/S1052623497322279.  Google Scholar

[34]

S. Wright, Effects of finite-precision arithmetic on interior-point methods for nonlinear programming, SIAM Journal on Optimization, 12 (2001), 36-78.  doi: 10.1137/S1052623498347438.  Google Scholar

[35]

S. J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1996. doi: 10.1137/1.9781611971453.  Google Scholar

[36]

Y. YeO. GülerR. A. Tapia and Y. Zhang, A quadratically convergent $o(\sqrt{n}l)$-iteration algorithm for linear programming, Mathematical Programming, 59 (1993), 151-162.  doi: 10.1007/BF01581242.  Google Scholar

[37]

Y. Ye, Interior Point Algorithms: Theory and Analysis, John Wiley & Sons, New Jersey, NJ, 1997. doi: 10.1002/9781118032701.  Google Scholar

[38]

Y. Zhang and R. A. Tapia, On the Convergence of Interior-Point Methods to the Center of Solution Set in Linear Programming, Technical Report TR91-30, Dept. Mathematical Sciences, Rice University, Houston, TX, 1991. Available from: https://www.researchgate.net/publication/235075603_On_the_Convergence_of_Interior-Point_Methods_to_the_Center_of_the_Solution_Set_in_Linear_Programming. doi: 10.1007/BF01581087.  Google Scholar

[39]

Y. Zhang, On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity problem, SIAM Journal on Optimization, 4 (1994), 208-227.  doi: 10.1137/0804012.  Google Scholar

[40]

Y. Zhang, Solving large-scale linear programs by interior-point methods under the matlab environment, Optimization Methods and Software, 10 (1998), 1–31. doi: 10.1080/10556789808805699.  Google Scholar

[41]

Y. Zhangsun, Unfolding Method Based on Entropy Theory for the Determination of Neutron Spectrum (in Chinese), Master's thesis, Northwest Institute of Nuclear Technology, Xi'an, Shanxi, P. R. China, 2015. Google Scholar

Figure 1.  The standard spectrum and the spectrum solved by PDUP for "data1" in logarithmic coordinates
Figure 2.  The spectrums solved by SAND-II and PDUP for "data2" in logarithmic coordinates
Table 1.  Numerical Results for $ A_m = [H_m, H_m], b = H_m e $
m Algo. No. $ f $ $ g $ Opt. Time(s)
10 linprog-1 6 $ +\infty $ 4.110e-07 Y 0.235
linprog-2 5 $ +\infty $ 1.421e-09 Y 0.243
fmincon 39 13.863 1.286e-13 Y 1.392
PDUP 11 13.863 8.674e-09 Y 0.071
20 linprog-1 1001 N 0.285
linprog-2 5 $ +\infty $ 1.101e-08 Y 0.266
fmincon 15 27.726 1.528e-13 Y 0.763
PDUP 13 27.726 3.589e-11 Y 0.092
50 linprog-1 1001 N 0.820
linprog-2 6 $ +\infty $ 6.305e-08 Y 0.241
fmincon 14 69.315 2.336e-13 Y 1.021
PDUP 16 69.315 1.780e-10 Y 0.127
100 linprog-1 337 N 1.062
linprog-2 5 $ +\infty $ 1.299e-07 Y 0.246
fmincon 13 138.629 1.483e-13 Y 1.117
PDUP 18 138.629 1.096e-10 Y 0.390
300 linprog-1 1001 N 41.905
linprog-2 19 N 1.401
fmincon 156 415.888 3.855e-13 N 166.530
PDUP 22 415.888 2.379e-11 Y 3.600
500 linprog-1 676 N 149.613
linprog-2 8 N 3.548
fmincon 77 693.147 6.652e-13 P 385.377
PDUP 24 693.147 6.288e-11 Y 11.828
m Algo. No. $ f $ $ g $ Opt. Time(s)
10 linprog-1 6 $ +\infty $ 4.110e-07 Y 0.235
linprog-2 5 $ +\infty $ 1.421e-09 Y 0.243
fmincon 39 13.863 1.286e-13 Y 1.392
PDUP 11 13.863 8.674e-09 Y 0.071
20 linprog-1 1001 N 0.285
linprog-2 5 $ +\infty $ 1.101e-08 Y 0.266
fmincon 15 27.726 1.528e-13 Y 0.763
PDUP 13 27.726 3.589e-11 Y 0.092
50 linprog-1 1001 N 0.820
linprog-2 6 $ +\infty $ 6.305e-08 Y 0.241
fmincon 14 69.315 2.336e-13 Y 1.021
PDUP 16 69.315 1.780e-10 Y 0.127
100 linprog-1 337 N 1.062
linprog-2 5 $ +\infty $ 1.299e-07 Y 0.246
fmincon 13 138.629 1.483e-13 Y 1.117
PDUP 18 138.629 1.096e-10 Y 0.390
300 linprog-1 1001 N 41.905
linprog-2 19 N 1.401
fmincon 156 415.888 3.855e-13 N 166.530
PDUP 22 415.888 2.379e-11 Y 3.600
500 linprog-1 676 N 149.613
linprog-2 8 N 3.548
fmincon 77 693.147 6.652e-13 P 385.377
PDUP 24 693.147 6.288e-11 Y 11.828
[1]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[4]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[5]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[6]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[7]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[8]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[9]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[10]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[11]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[12]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[13]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[14]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[15]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[16]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[17]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[18]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[19]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[20]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]