• Previous Article
    Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment
  • JIMO Home
  • This Issue
  • Next Article
    The optimal solution to a principal-agent problem with unknown agent ability
doi: 10.3934/jimo.2020076

Probabilistic robust anti-disturbance control of uncertain systems

1. 

Key laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi, 214122, China

2. 

School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia, 6102, Australia

3. 

School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, GPO Box U1987, Perth, WA6845, Australia

4. 

Shenzhen Audencia Business School, WeBank Institute of Fintech, Guangdong Laboratory of Artificial Intelligence and Digital Economics (SZ), Shenzhen University, Shenzhen, 518060, China

* Corresponding author: Feng Pan

Received  May 2019 Revised  October 2019 Published  April 2020

We propose a novel method for constructing probabilistic robust disturbance rejection control for uncertain systems in which a scenario optimization method is used to deal with the nonlinear and unbounded uncertainties. For anti-disturbance, a reduced order disturbance observer is considered and a state-feedback controller is designed. Sufficient conditions are presented to ensure that the resulting closed-loop system is stable and a prescribed $ H_{\infty} $ performance index is satisfied. A numerical example is presented to illustrate the effectiveness of the techniques proposed and analyzed.

Citation: Peng Cheng, Feng Pan, Yanyan Yin, Song Wang. Probabilistic robust anti-disturbance control of uncertain systems. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020076
References:
[1]

J. Ackermann, Robust Control: The Parameter Space Approach, Springer-Verlag, London, 2002. doi: 10.1007/978-1-4471-0207-6.  Google Scholar

[2]

T. AlamoR. TempoA. Luque and D. R. Ramirez, Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms, Automatica J. IFAC, 52 (2015), 160-172.  doi: 10.1016/j.automatica.2014.11.004.  Google Scholar

[3]

B. R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York, 1994. Google Scholar

[4]

S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 15, SIAM, Philadelphia, PA, 1994. doi: 10.1137/1.9781611970777.  Google Scholar

[5]

M. C. CampiS. Garatti and and M. Prandini, The scenario approach for systems and control design, Ann. Rev. Control, 33 (2009), 149-157.  doi: 10.1016/j.arcontrol.2009.07.001.  Google Scholar

[6]

G. C. Calafiore and M. C. Campi, The scenario approach to robust control design,, IEEE Trans. Automat. Control, 51 (2006), 742-753.  doi: 10.1109/TAC.2006.875041.  Google Scholar

[7]

G. GrimmM. J. MessinaS. E. Tuna and A. R. Teel, Nominally robust model predictive control with state constraints, IEEE Trans. Automat. Control, 52 (2007), 1856-1870.  doi: 10.1109/TAC.2007.906187.  Google Scholar

[8]

P. Gahinet, Explicit controller formulas for LMI-based $H_{\infty}$ synthesis, Automatica J. IFAC, 32 (1996), 1007-1014.  doi: 10.1016/0005-1098(96)00033-7.  Google Scholar

[9]

L. Guo and W. Chen, Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Internat. J. Robust Nonlinear Control, 15 (2005), 109-125.  doi: 10.1002/rnc.978.  Google Scholar

[10]

X. JiM. Ren and H. Su, Comment on "Further enhancement on robust ${H_\infty }$ control design for discrete-time singular systems", IEEE Trans. Automat. Control, 60 (2015), 3119-3120.  doi: 10.1109/TAC.2015.2409951.  Google Scholar

[11]

L. Jin, Y. Yin, K. L. Teo and F. Liu, Event-triggered mixed $H\infty$ and passive control for Markov jump systems with bounded inputs, J. Ind. Manag. Optim.. doi: 10.3934/jimo.2020024.  Google Scholar

[12]

Y. LiuY. YinK. L. TeoS. Wang and F. Liu, Probabilistic control of Markov jump systems by scenario optimization approach, J. Ind. Manag. Optim., 15 (2019), 1447-1453.  doi: 10.3934/jimo.2018103.  Google Scholar

[13]

H. MelkoteF. KhorramiS. Jain and M. S. Mattice, Robust adaptive control of variable reluctance stepper motors, IEEE Trans. Control Systems Tech., 7 (1999), 212-221.  doi: 10.1109/87.748147.  Google Scholar

[14]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. Optim., 17 (2006), 969-996.  doi: 10.1137/050622328.  Google Scholar

[15]

R. E. Skelton, T. Iwasaki and K. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, The Taylor & Francis Systems and Control Book Series, Taylor & Francis Group, London, 1998.  Google Scholar

[16]

H. Sun and L. Guo, Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances, IEEE Trans. Neural Networks Learning Systems, 28 (2017), 482-489.  doi: 10.1109/TNNLS.2015.2511450.  Google Scholar

[17]

E. TianZ. WangL. Zou and D. Yue, Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case, Automatica J. IFAC, 107 (2019), 296-305.  doi: 10.1016/j.automatica.2019.05.039.  Google Scholar

[18]

E. TianZ. WangL. Zou and D. Yue, Probabilistic constrained filtering for a class of nonlinear systems with improved static event-triggered communication, Internat. J. Robust Nonlinear Control, 29 (2019), 1484-1498.  doi: 10.1002/rnc.4447.  Google Scholar

[19]

B. YaoM. Al-Majed and M. Tomizuka, High-performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments, IEEE/ASME Trans. Mechatronics, 2 (1997), 63-76.  doi: 10.1109/ACC.1997.611956.  Google Scholar

[20]

Y. YinP. ShiF. LiuK. L. Teo and C. C. Lim, Robust filtering for nonlinear nonhomogeneous Markov jump systems by fuzzy approximation approach, IEEE Trans on Cybernetics, 45 (2015), 1706-1716.  doi: 10.1109/TCYB.2014.2358680.  Google Scholar

[21]

Y. YinZ. LinY. Liu and K. L. Teo, Event-triggered constrained control of positive systems with input saturation, Internat. J. Robust Nonlinear Control, 28 (2018), 3532-3542.  doi: 10.1002/rnc.4097.  Google Scholar

[22]

Y. Yin and Z. Lin, Constrained control of uncertain nonhomogeneous Markovian jump systems, Internat. J. Robust Nonlinear Control, 27 (2017), 3937-3950.  doi: 10.1002/rnc.3774.  Google Scholar

[23]

J. YangB. WuS. Li and X. Yu, Design and qualitative robustness analysis of an DOBC approach for DC-DC buck converters with unmatched circuit parameter perturbations, IEEE Trans. Circuits Systems I: Regular Papers, 63 (2016), 551-560.  doi: 10.1109/TCSI.2016.2529238.  Google Scholar

show all references

References:
[1]

J. Ackermann, Robust Control: The Parameter Space Approach, Springer-Verlag, London, 2002. doi: 10.1007/978-1-4471-0207-6.  Google Scholar

[2]

T. AlamoR. TempoA. Luque and D. R. Ramirez, Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms, Automatica J. IFAC, 52 (2015), 160-172.  doi: 10.1016/j.automatica.2014.11.004.  Google Scholar

[3]

B. R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York, 1994. Google Scholar

[4]

S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 15, SIAM, Philadelphia, PA, 1994. doi: 10.1137/1.9781611970777.  Google Scholar

[5]

M. C. CampiS. Garatti and and M. Prandini, The scenario approach for systems and control design, Ann. Rev. Control, 33 (2009), 149-157.  doi: 10.1016/j.arcontrol.2009.07.001.  Google Scholar

[6]

G. C. Calafiore and M. C. Campi, The scenario approach to robust control design,, IEEE Trans. Automat. Control, 51 (2006), 742-753.  doi: 10.1109/TAC.2006.875041.  Google Scholar

[7]

G. GrimmM. J. MessinaS. E. Tuna and A. R. Teel, Nominally robust model predictive control with state constraints, IEEE Trans. Automat. Control, 52 (2007), 1856-1870.  doi: 10.1109/TAC.2007.906187.  Google Scholar

[8]

P. Gahinet, Explicit controller formulas for LMI-based $H_{\infty}$ synthesis, Automatica J. IFAC, 32 (1996), 1007-1014.  doi: 10.1016/0005-1098(96)00033-7.  Google Scholar

[9]

L. Guo and W. Chen, Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Internat. J. Robust Nonlinear Control, 15 (2005), 109-125.  doi: 10.1002/rnc.978.  Google Scholar

[10]

X. JiM. Ren and H. Su, Comment on "Further enhancement on robust ${H_\infty }$ control design for discrete-time singular systems", IEEE Trans. Automat. Control, 60 (2015), 3119-3120.  doi: 10.1109/TAC.2015.2409951.  Google Scholar

[11]

L. Jin, Y. Yin, K. L. Teo and F. Liu, Event-triggered mixed $H\infty$ and passive control for Markov jump systems with bounded inputs, J. Ind. Manag. Optim.. doi: 10.3934/jimo.2020024.  Google Scholar

[12]

Y. LiuY. YinK. L. TeoS. Wang and F. Liu, Probabilistic control of Markov jump systems by scenario optimization approach, J. Ind. Manag. Optim., 15 (2019), 1447-1453.  doi: 10.3934/jimo.2018103.  Google Scholar

[13]

H. MelkoteF. KhorramiS. Jain and M. S. Mattice, Robust adaptive control of variable reluctance stepper motors, IEEE Trans. Control Systems Tech., 7 (1999), 212-221.  doi: 10.1109/87.748147.  Google Scholar

[14]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. Optim., 17 (2006), 969-996.  doi: 10.1137/050622328.  Google Scholar

[15]

R. E. Skelton, T. Iwasaki and K. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, The Taylor & Francis Systems and Control Book Series, Taylor & Francis Group, London, 1998.  Google Scholar

[16]

H. Sun and L. Guo, Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances, IEEE Trans. Neural Networks Learning Systems, 28 (2017), 482-489.  doi: 10.1109/TNNLS.2015.2511450.  Google Scholar

[17]

E. TianZ. WangL. Zou and D. Yue, Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case, Automatica J. IFAC, 107 (2019), 296-305.  doi: 10.1016/j.automatica.2019.05.039.  Google Scholar

[18]

E. TianZ. WangL. Zou and D. Yue, Probabilistic constrained filtering for a class of nonlinear systems with improved static event-triggered communication, Internat. J. Robust Nonlinear Control, 29 (2019), 1484-1498.  doi: 10.1002/rnc.4447.  Google Scholar

[19]

B. YaoM. Al-Majed and M. Tomizuka, High-performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments, IEEE/ASME Trans. Mechatronics, 2 (1997), 63-76.  doi: 10.1109/ACC.1997.611956.  Google Scholar

[20]

Y. YinP. ShiF. LiuK. L. Teo and C. C. Lim, Robust filtering for nonlinear nonhomogeneous Markov jump systems by fuzzy approximation approach, IEEE Trans on Cybernetics, 45 (2015), 1706-1716.  doi: 10.1109/TCYB.2014.2358680.  Google Scholar

[21]

Y. YinZ. LinY. Liu and K. L. Teo, Event-triggered constrained control of positive systems with input saturation, Internat. J. Robust Nonlinear Control, 28 (2018), 3532-3542.  doi: 10.1002/rnc.4097.  Google Scholar

[22]

Y. Yin and Z. Lin, Constrained control of uncertain nonhomogeneous Markovian jump systems, Internat. J. Robust Nonlinear Control, 27 (2017), 3937-3950.  doi: 10.1002/rnc.3774.  Google Scholar

[23]

J. YangB. WuS. Li and X. Yu, Design and qualitative robustness analysis of an DOBC approach for DC-DC buck converters with unmatched circuit parameter perturbations, IEEE Trans. Circuits Systems I: Regular Papers, 63 (2016), 551-560.  doi: 10.1109/TCSI.2016.2529238.  Google Scholar

Figure 1.  State trajectory of a-posteriori Monte-Carlo analysis
Figure 2.  Estimation of disturbance
Figure 3.  Trajectory of controlled output
[1]

Yanqing Liu, Yanyan Yin, Kok Lay Teo, Song Wang, Fei Liu. Probabilistic control of Markov jump systems by scenario optimization approach. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1447-1453. doi: 10.3934/jimo.2018103

[2]

Peng Cheng, Yanqing Liu, Yanyan Yin, Song Wang, Feng Pan. Fuzzy event-triggered disturbance rejection control of nonlinear systems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020119

[3]

Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665

[4]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[5]

Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723

[6]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[7]

Lei Liu, Shaoying Lu, Cunwu Han, Chao Li, Zejin Feng. Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 367-379. doi: 10.3934/naco.2020008

[8]

Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111

[9]

Le Viet Cuong, Thai Son Doan. Assignability of dichotomy spectra for discrete time-varying linear control systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3597-3607. doi: 10.3934/dcdsb.2020074

[10]

Haijun Sun, Xinquan Zhang. Guaranteed cost control of discrete-time switched saturated systems. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020300

[11]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[12]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control & Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017

[13]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[14]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[15]

Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277

[16]

Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020105

[17]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020020

[19]

Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129

[20]

Piotr Oprocha. Chain recurrence in multidimensional time discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1039-1056. doi: 10.3934/dcds.2008.20.1039

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (31)
  • HTML views (260)
  • Cited by (0)

Other articles
by authors

[Back to Top]