
-
Previous Article
Tabu search and simulated annealing for resource-constrained multi-project scheduling to minimize maximal cash flow gap
- JIMO Home
- This Issue
-
Next Article
Stability of a class of risk-averse multistage stochastic programs and their distributionally robust counterparts
Probabilistic robust anti-disturbance control of uncertain systems
1. | Key laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi, 214122, China |
2. | School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia, 6102, Australia |
3. | School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, GPO Box U1987, Perth, WA6845, Australia |
4. | Shenzhen Audencia Business School, WeBank Institute of Fintech, Guangdong Laboratory of Artificial Intelligence and Digital Economics (SZ), Shenzhen University, Shenzhen, 518060, China |
We propose a novel method for constructing probabilistic robust disturbance rejection control for uncertain systems in which a scenario optimization method is used to deal with the nonlinear and unbounded uncertainties. For anti-disturbance, a reduced order disturbance observer is considered and a state-feedback controller is designed. Sufficient conditions are presented to ensure that the resulting closed-loop system is stable and a prescribed $ H_{\infty} $ performance index is satisfied. A numerical example is presented to illustrate the effectiveness of the techniques proposed and analyzed.
References:
[1] |
J. Ackermann, Robust Control: The Parameter Space Approach, Springer-Verlag, London, 2002.
doi: 10.1007/978-1-4471-0207-6. |
[2] |
T. Alamo, R. Tempo, A. Luque and D. R. Ramirez,
Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms, Automatica J. IFAC, 52 (2015), 160-172.
doi: 10.1016/j.automatica.2014.11.004. |
[3] |
B. R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York, 1994. |
[4] |
S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 15, SIAM, Philadelphia, PA, 1994.
doi: 10.1137/1.9781611970777. |
[5] |
M. C. Campi, S. Garatti and and M. Prandini,
The scenario approach for systems and control design, Ann. Rev. Control, 33 (2009), 149-157.
doi: 10.1016/j.arcontrol.2009.07.001. |
[6] |
G. C. Calafiore and M. C. Campi,
The scenario approach to robust control design,, IEEE Trans. Automat. Control, 51 (2006), 742-753.
doi: 10.1109/TAC.2006.875041. |
[7] |
G. Grimm, M. J. Messina, S. E. Tuna and A. R. Teel,
Nominally robust model predictive control with state constraints, IEEE Trans. Automat. Control, 52 (2007), 1856-1870.
doi: 10.1109/TAC.2007.906187. |
[8] |
P. Gahinet,
Explicit controller formulas for LMI-based $H_{\infty}$ synthesis, Automatica J. IFAC, 32 (1996), 1007-1014.
doi: 10.1016/0005-1098(96)00033-7. |
[9] |
L. Guo and W. Chen,
Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Internat. J. Robust Nonlinear Control, 15 (2005), 109-125.
doi: 10.1002/rnc.978. |
[10] |
X. Ji, M. Ren and H. Su,
Comment on "Further enhancement on robust ${H_\infty }$ control design for discrete-time singular systems", IEEE Trans. Automat. Control, 60 (2015), 3119-3120.
doi: 10.1109/TAC.2015.2409951. |
[11] |
L. Jin, Y. Yin, K. L. Teo and F. Liu, Event-triggered mixed $H\infty$ and passive control for Markov jump systems with bounded inputs, J. Ind. Manag. Optim..
doi: 10.3934/jimo.2020024. |
[12] |
Y. Liu, Y. Yin, K. L. Teo, S. Wang and F. Liu,
Probabilistic control of Markov jump systems by scenario optimization approach, J. Ind. Manag. Optim., 15 (2019), 1447-1453.
doi: 10.3934/jimo.2018103. |
[13] |
H. Melkote, F. Khorrami, S. Jain and M. S. Mattice,
Robust adaptive control of variable reluctance stepper motors, IEEE Trans. Control Systems Tech., 7 (1999), 212-221.
doi: 10.1109/87.748147. |
[14] |
A. Nemirovski and A. Shapiro,
Convex approximations of chance constrained programs, SIAM J. Optim., 17 (2006), 969-996.
doi: 10.1137/050622328. |
[15] |
R. E. Skelton, T. Iwasaki and K. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, The Taylor & Francis Systems and Control Book Series, Taylor & Francis Group, London, 1998. |
[16] |
H. Sun and L. Guo,
Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances, IEEE Trans. Neural Networks Learning Systems, 28 (2017), 482-489.
doi: 10.1109/TNNLS.2015.2511450. |
[17] |
E. Tian, Z. Wang, L. Zou and D. Yue,
Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case, Automatica J. IFAC, 107 (2019), 296-305.
doi: 10.1016/j.automatica.2019.05.039. |
[18] |
E. Tian, Z. Wang, L. Zou and D. Yue,
Probabilistic constrained filtering for a class of nonlinear systems with improved static event-triggered communication, Internat. J. Robust Nonlinear Control, 29 (2019), 1484-1498.
doi: 10.1002/rnc.4447. |
[19] |
B. Yao, M. Al-Majed and M. Tomizuka,
High-performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments, IEEE/ASME Trans. Mechatronics, 2 (1997), 63-76.
doi: 10.1109/ACC.1997.611956. |
[20] |
Y. Yin, P. Shi, F. Liu, K. L. Teo and C. C. Lim,
Robust filtering for nonlinear nonhomogeneous Markov jump systems by fuzzy approximation approach, IEEE Trans on Cybernetics, 45 (2015), 1706-1716.
doi: 10.1109/TCYB.2014.2358680. |
[21] |
Y. Yin, Z. Lin, Y. Liu and K. L. Teo,
Event-triggered constrained control of positive systems with input saturation, Internat. J. Robust Nonlinear Control, 28 (2018), 3532-3542.
doi: 10.1002/rnc.4097. |
[22] |
Y. Yin and Z. Lin,
Constrained control of uncertain nonhomogeneous Markovian jump systems, Internat. J. Robust Nonlinear Control, 27 (2017), 3937-3950.
doi: 10.1002/rnc.3774. |
[23] |
J. Yang, B. Wu, S. Li and X. Yu,
Design and qualitative robustness analysis of an DOBC approach for DC-DC buck converters with unmatched circuit parameter perturbations, IEEE Trans. Circuits Systems I: Regular Papers, 63 (2016), 551-560.
doi: 10.1109/TCSI.2016.2529238. |
show all references
References:
[1] |
J. Ackermann, Robust Control: The Parameter Space Approach, Springer-Verlag, London, 2002.
doi: 10.1007/978-1-4471-0207-6. |
[2] |
T. Alamo, R. Tempo, A. Luque and D. R. Ramirez,
Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms, Automatica J. IFAC, 52 (2015), 160-172.
doi: 10.1016/j.automatica.2014.11.004. |
[3] |
B. R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York, 1994. |
[4] |
S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 15, SIAM, Philadelphia, PA, 1994.
doi: 10.1137/1.9781611970777. |
[5] |
M. C. Campi, S. Garatti and and M. Prandini,
The scenario approach for systems and control design, Ann. Rev. Control, 33 (2009), 149-157.
doi: 10.1016/j.arcontrol.2009.07.001. |
[6] |
G. C. Calafiore and M. C. Campi,
The scenario approach to robust control design,, IEEE Trans. Automat. Control, 51 (2006), 742-753.
doi: 10.1109/TAC.2006.875041. |
[7] |
G. Grimm, M. J. Messina, S. E. Tuna and A. R. Teel,
Nominally robust model predictive control with state constraints, IEEE Trans. Automat. Control, 52 (2007), 1856-1870.
doi: 10.1109/TAC.2007.906187. |
[8] |
P. Gahinet,
Explicit controller formulas for LMI-based $H_{\infty}$ synthesis, Automatica J. IFAC, 32 (1996), 1007-1014.
doi: 10.1016/0005-1098(96)00033-7. |
[9] |
L. Guo and W. Chen,
Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Internat. J. Robust Nonlinear Control, 15 (2005), 109-125.
doi: 10.1002/rnc.978. |
[10] |
X. Ji, M. Ren and H. Su,
Comment on "Further enhancement on robust ${H_\infty }$ control design for discrete-time singular systems", IEEE Trans. Automat. Control, 60 (2015), 3119-3120.
doi: 10.1109/TAC.2015.2409951. |
[11] |
L. Jin, Y. Yin, K. L. Teo and F. Liu, Event-triggered mixed $H\infty$ and passive control for Markov jump systems with bounded inputs, J. Ind. Manag. Optim..
doi: 10.3934/jimo.2020024. |
[12] |
Y. Liu, Y. Yin, K. L. Teo, S. Wang and F. Liu,
Probabilistic control of Markov jump systems by scenario optimization approach, J. Ind. Manag. Optim., 15 (2019), 1447-1453.
doi: 10.3934/jimo.2018103. |
[13] |
H. Melkote, F. Khorrami, S. Jain and M. S. Mattice,
Robust adaptive control of variable reluctance stepper motors, IEEE Trans. Control Systems Tech., 7 (1999), 212-221.
doi: 10.1109/87.748147. |
[14] |
A. Nemirovski and A. Shapiro,
Convex approximations of chance constrained programs, SIAM J. Optim., 17 (2006), 969-996.
doi: 10.1137/050622328. |
[15] |
R. E. Skelton, T. Iwasaki and K. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, The Taylor & Francis Systems and Control Book Series, Taylor & Francis Group, London, 1998. |
[16] |
H. Sun and L. Guo,
Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances, IEEE Trans. Neural Networks Learning Systems, 28 (2017), 482-489.
doi: 10.1109/TNNLS.2015.2511450. |
[17] |
E. Tian, Z. Wang, L. Zou and D. Yue,
Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case, Automatica J. IFAC, 107 (2019), 296-305.
doi: 10.1016/j.automatica.2019.05.039. |
[18] |
E. Tian, Z. Wang, L. Zou and D. Yue,
Probabilistic constrained filtering for a class of nonlinear systems with improved static event-triggered communication, Internat. J. Robust Nonlinear Control, 29 (2019), 1484-1498.
doi: 10.1002/rnc.4447. |
[19] |
B. Yao, M. Al-Majed and M. Tomizuka,
High-performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments, IEEE/ASME Trans. Mechatronics, 2 (1997), 63-76.
doi: 10.1109/ACC.1997.611956. |
[20] |
Y. Yin, P. Shi, F. Liu, K. L. Teo and C. C. Lim,
Robust filtering for nonlinear nonhomogeneous Markov jump systems by fuzzy approximation approach, IEEE Trans on Cybernetics, 45 (2015), 1706-1716.
doi: 10.1109/TCYB.2014.2358680. |
[21] |
Y. Yin, Z. Lin, Y. Liu and K. L. Teo,
Event-triggered constrained control of positive systems with input saturation, Internat. J. Robust Nonlinear Control, 28 (2018), 3532-3542.
doi: 10.1002/rnc.4097. |
[22] |
Y. Yin and Z. Lin,
Constrained control of uncertain nonhomogeneous Markovian jump systems, Internat. J. Robust Nonlinear Control, 27 (2017), 3937-3950.
doi: 10.1002/rnc.3774. |
[23] |
J. Yang, B. Wu, S. Li and X. Yu,
Design and qualitative robustness analysis of an DOBC approach for DC-DC buck converters with unmatched circuit parameter perturbations, IEEE Trans. Circuits Systems I: Regular Papers, 63 (2016), 551-560.
doi: 10.1109/TCSI.2016.2529238. |



[1] |
Yanqing Liu, Yanyan Yin, Kok Lay Teo, Song Wang, Fei Liu. Probabilistic control of Markov jump systems by scenario optimization approach. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1447-1453. doi: 10.3934/jimo.2018103 |
[2] |
Peng Cheng, Yanqing Liu, Yanyan Yin, Song Wang, Feng Pan. Fuzzy event-triggered disturbance rejection control of nonlinear systems. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3297-3307. doi: 10.3934/jimo.2020119 |
[3] |
Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665 |
[4] |
Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial and Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016 |
[5] |
Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723 |
[6] |
Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial and Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082 |
[7] |
Lei Liu, Shaoying Lu, Cunwu Han, Chao Li, Zejin Feng. Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 367-379. doi: 10.3934/naco.2020008 |
[8] |
Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111 |
[9] |
Liqiang Jin, Yanqing Liu, Yanyan Yin, Kok Lay Teo, Fei Liu. Design of probabilistic $ l_2-l_\infty $ filter for uncertain Markov jump systems with partial information of the transition probabilities. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2335-2349. doi: 10.3934/jimo.2021070 |
[10] |
Le Viet Cuong, Thai Son Doan. Assignability of dichotomy spectra for discrete time-varying linear control systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3597-3607. doi: 10.3934/dcdsb.2020074 |
[11] |
Haijun Sun, Xinquan Zhang. Guaranteed cost control of discrete-time switched saturated systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4515-4522. doi: 10.3934/dcdsb.2020300 |
[12] |
Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial and Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175 |
[13] |
Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control and Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017 |
[14] |
Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393 |
[15] |
Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153 |
[16] |
Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277 |
[17] |
Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3013-3026. doi: 10.3934/jimo.2020105 |
[18] |
Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1583-1602. doi: 10.3934/jimo.2021034 |
[19] |
Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial and Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63 |
[20] |
Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]