
-
Previous Article
Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment
- JIMO Home
- This Issue
-
Next Article
The optimal solution to a principal-agent problem with unknown agent ability
Probabilistic robust anti-disturbance control of uncertain systems
1. | Key laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi, 214122, China |
2. | School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia, 6102, Australia |
3. | School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, GPO Box U1987, Perth, WA6845, Australia |
4. | Shenzhen Audencia Business School, WeBank Institute of Fintech, Guangdong Laboratory of Artificial Intelligence and Digital Economics (SZ), Shenzhen University, Shenzhen, 518060, China |
We propose a novel method for constructing probabilistic robust disturbance rejection control for uncertain systems in which a scenario optimization method is used to deal with the nonlinear and unbounded uncertainties. For anti-disturbance, a reduced order disturbance observer is considered and a state-feedback controller is designed. Sufficient conditions are presented to ensure that the resulting closed-loop system is stable and a prescribed $ H_{\infty} $ performance index is satisfied. A numerical example is presented to illustrate the effectiveness of the techniques proposed and analyzed.
References:
[1] |
J. Ackermann, Robust Control: The Parameter Space Approach, Springer-Verlag, London, 2002.
doi: 10.1007/978-1-4471-0207-6. |
[2] |
T. Alamo, R. Tempo, A. Luque and D. R. Ramirez,
Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms, Automatica J. IFAC, 52 (2015), 160-172.
doi: 10.1016/j.automatica.2014.11.004. |
[3] |
B. R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York, 1994. Google Scholar |
[4] |
S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 15, SIAM, Philadelphia, PA, 1994.
doi: 10.1137/1.9781611970777. |
[5] |
M. C. Campi, S. Garatti and and M. Prandini,
The scenario approach for systems and control design, Ann. Rev. Control, 33 (2009), 149-157.
doi: 10.1016/j.arcontrol.2009.07.001. |
[6] |
G. C. Calafiore and M. C. Campi,
The scenario approach to robust control design,, IEEE Trans. Automat. Control, 51 (2006), 742-753.
doi: 10.1109/TAC.2006.875041. |
[7] |
G. Grimm, M. J. Messina, S. E. Tuna and A. R. Teel,
Nominally robust model predictive control with state constraints, IEEE Trans. Automat. Control, 52 (2007), 1856-1870.
doi: 10.1109/TAC.2007.906187. |
[8] |
P. Gahinet,
Explicit controller formulas for LMI-based $H_{\infty}$ synthesis, Automatica J. IFAC, 32 (1996), 1007-1014.
doi: 10.1016/0005-1098(96)00033-7. |
[9] |
L. Guo and W. Chen,
Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Internat. J. Robust Nonlinear Control, 15 (2005), 109-125.
doi: 10.1002/rnc.978. |
[10] |
X. Ji, M. Ren and H. Su,
Comment on "Further enhancement on robust ${H_\infty }$ control design for discrete-time singular systems", IEEE Trans. Automat. Control, 60 (2015), 3119-3120.
doi: 10.1109/TAC.2015.2409951. |
[11] |
L. Jin, Y. Yin, K. L. Teo and F. Liu, Event-triggered mixed $H\infty$ and passive control for Markov jump systems with bounded inputs, J. Ind. Manag. Optim..
doi: 10.3934/jimo.2020024. |
[12] |
Y. Liu, Y. Yin, K. L. Teo, S. Wang and F. Liu,
Probabilistic control of Markov jump systems by scenario optimization approach, J. Ind. Manag. Optim., 15 (2019), 1447-1453.
doi: 10.3934/jimo.2018103. |
[13] |
H. Melkote, F. Khorrami, S. Jain and M. S. Mattice,
Robust adaptive control of variable reluctance stepper motors, IEEE Trans. Control Systems Tech., 7 (1999), 212-221.
doi: 10.1109/87.748147. |
[14] |
A. Nemirovski and A. Shapiro,
Convex approximations of chance constrained programs, SIAM J. Optim., 17 (2006), 969-996.
doi: 10.1137/050622328. |
[15] |
R. E. Skelton, T. Iwasaki and K. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, The Taylor & Francis Systems and Control Book Series, Taylor & Francis Group, London, 1998. |
[16] |
H. Sun and L. Guo,
Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances, IEEE Trans. Neural Networks Learning Systems, 28 (2017), 482-489.
doi: 10.1109/TNNLS.2015.2511450. |
[17] |
E. Tian, Z. Wang, L. Zou and D. Yue,
Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case, Automatica J. IFAC, 107 (2019), 296-305.
doi: 10.1016/j.automatica.2019.05.039. |
[18] |
E. Tian, Z. Wang, L. Zou and D. Yue,
Probabilistic constrained filtering for a class of nonlinear systems with improved static event-triggered communication, Internat. J. Robust Nonlinear Control, 29 (2019), 1484-1498.
doi: 10.1002/rnc.4447. |
[19] |
B. Yao, M. Al-Majed and M. Tomizuka,
High-performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments, IEEE/ASME Trans. Mechatronics, 2 (1997), 63-76.
doi: 10.1109/ACC.1997.611956. |
[20] |
Y. Yin, P. Shi, F. Liu, K. L. Teo and C. C. Lim,
Robust filtering for nonlinear nonhomogeneous Markov jump systems by fuzzy approximation approach, IEEE Trans on Cybernetics, 45 (2015), 1706-1716.
doi: 10.1109/TCYB.2014.2358680. |
[21] |
Y. Yin, Z. Lin, Y. Liu and K. L. Teo,
Event-triggered constrained control of positive systems with input saturation, Internat. J. Robust Nonlinear Control, 28 (2018), 3532-3542.
doi: 10.1002/rnc.4097. |
[22] |
Y. Yin and Z. Lin,
Constrained control of uncertain nonhomogeneous Markovian jump systems, Internat. J. Robust Nonlinear Control, 27 (2017), 3937-3950.
doi: 10.1002/rnc.3774. |
[23] |
J. Yang, B. Wu, S. Li and X. Yu,
Design and qualitative robustness analysis of an DOBC approach for DC-DC buck converters with unmatched circuit parameter perturbations, IEEE Trans. Circuits Systems I: Regular Papers, 63 (2016), 551-560.
doi: 10.1109/TCSI.2016.2529238. |
show all references
References:
[1] |
J. Ackermann, Robust Control: The Parameter Space Approach, Springer-Verlag, London, 2002.
doi: 10.1007/978-1-4471-0207-6. |
[2] |
T. Alamo, R. Tempo, A. Luque and D. R. Ramirez,
Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms, Automatica J. IFAC, 52 (2015), 160-172.
doi: 10.1016/j.automatica.2014.11.004. |
[3] |
B. R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York, 1994. Google Scholar |
[4] |
S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 15, SIAM, Philadelphia, PA, 1994.
doi: 10.1137/1.9781611970777. |
[5] |
M. C. Campi, S. Garatti and and M. Prandini,
The scenario approach for systems and control design, Ann. Rev. Control, 33 (2009), 149-157.
doi: 10.1016/j.arcontrol.2009.07.001. |
[6] |
G. C. Calafiore and M. C. Campi,
The scenario approach to robust control design,, IEEE Trans. Automat. Control, 51 (2006), 742-753.
doi: 10.1109/TAC.2006.875041. |
[7] |
G. Grimm, M. J. Messina, S. E. Tuna and A. R. Teel,
Nominally robust model predictive control with state constraints, IEEE Trans. Automat. Control, 52 (2007), 1856-1870.
doi: 10.1109/TAC.2007.906187. |
[8] |
P. Gahinet,
Explicit controller formulas for LMI-based $H_{\infty}$ synthesis, Automatica J. IFAC, 32 (1996), 1007-1014.
doi: 10.1016/0005-1098(96)00033-7. |
[9] |
L. Guo and W. Chen,
Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Internat. J. Robust Nonlinear Control, 15 (2005), 109-125.
doi: 10.1002/rnc.978. |
[10] |
X. Ji, M. Ren and H. Su,
Comment on "Further enhancement on robust ${H_\infty }$ control design for discrete-time singular systems", IEEE Trans. Automat. Control, 60 (2015), 3119-3120.
doi: 10.1109/TAC.2015.2409951. |
[11] |
L. Jin, Y. Yin, K. L. Teo and F. Liu, Event-triggered mixed $H\infty$ and passive control for Markov jump systems with bounded inputs, J. Ind. Manag. Optim..
doi: 10.3934/jimo.2020024. |
[12] |
Y. Liu, Y. Yin, K. L. Teo, S. Wang and F. Liu,
Probabilistic control of Markov jump systems by scenario optimization approach, J. Ind. Manag. Optim., 15 (2019), 1447-1453.
doi: 10.3934/jimo.2018103. |
[13] |
H. Melkote, F. Khorrami, S. Jain and M. S. Mattice,
Robust adaptive control of variable reluctance stepper motors, IEEE Trans. Control Systems Tech., 7 (1999), 212-221.
doi: 10.1109/87.748147. |
[14] |
A. Nemirovski and A. Shapiro,
Convex approximations of chance constrained programs, SIAM J. Optim., 17 (2006), 969-996.
doi: 10.1137/050622328. |
[15] |
R. E. Skelton, T. Iwasaki and K. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, The Taylor & Francis Systems and Control Book Series, Taylor & Francis Group, London, 1998. |
[16] |
H. Sun and L. Guo,
Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances, IEEE Trans. Neural Networks Learning Systems, 28 (2017), 482-489.
doi: 10.1109/TNNLS.2015.2511450. |
[17] |
E. Tian, Z. Wang, L. Zou and D. Yue,
Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case, Automatica J. IFAC, 107 (2019), 296-305.
doi: 10.1016/j.automatica.2019.05.039. |
[18] |
E. Tian, Z. Wang, L. Zou and D. Yue,
Probabilistic constrained filtering for a class of nonlinear systems with improved static event-triggered communication, Internat. J. Robust Nonlinear Control, 29 (2019), 1484-1498.
doi: 10.1002/rnc.4447. |
[19] |
B. Yao, M. Al-Majed and M. Tomizuka,
High-performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments, IEEE/ASME Trans. Mechatronics, 2 (1997), 63-76.
doi: 10.1109/ACC.1997.611956. |
[20] |
Y. Yin, P. Shi, F. Liu, K. L. Teo and C. C. Lim,
Robust filtering for nonlinear nonhomogeneous Markov jump systems by fuzzy approximation approach, IEEE Trans on Cybernetics, 45 (2015), 1706-1716.
doi: 10.1109/TCYB.2014.2358680. |
[21] |
Y. Yin, Z. Lin, Y. Liu and K. L. Teo,
Event-triggered constrained control of positive systems with input saturation, Internat. J. Robust Nonlinear Control, 28 (2018), 3532-3542.
doi: 10.1002/rnc.4097. |
[22] |
Y. Yin and Z. Lin,
Constrained control of uncertain nonhomogeneous Markovian jump systems, Internat. J. Robust Nonlinear Control, 27 (2017), 3937-3950.
doi: 10.1002/rnc.3774. |
[23] |
J. Yang, B. Wu, S. Li and X. Yu,
Design and qualitative robustness analysis of an DOBC approach for DC-DC buck converters with unmatched circuit parameter perturbations, IEEE Trans. Circuits Systems I: Regular Papers, 63 (2016), 551-560.
doi: 10.1109/TCSI.2016.2529238. |



[1] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[2] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[3] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[4] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[5] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[6] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[7] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[8] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[9] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[10] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020375 |
[11] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[12] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[13] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[14] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[15] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[16] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[17] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[18] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[19] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
[20] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]