• Previous Article
    Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment
  • JIMO Home
  • This Issue
  • Next Article
    The optimal solution to a principal-agent problem with unknown agent ability
doi: 10.3934/jimo.2020076

Probabilistic robust anti-disturbance control of uncertain systems

1. 

Key laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi, 214122, China

2. 

School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia, 6102, Australia

3. 

School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, GPO Box U1987, Perth, WA6845, Australia

4. 

Shenzhen Audencia Business School, WeBank Institute of Fintech, Guangdong Laboratory of Artificial Intelligence and Digital Economics (SZ), Shenzhen University, Shenzhen, 518060, China

* Corresponding author: Feng Pan

Received  May 2019 Revised  October 2019 Published  April 2020

We propose a novel method for constructing probabilistic robust disturbance rejection control for uncertain systems in which a scenario optimization method is used to deal with the nonlinear and unbounded uncertainties. For anti-disturbance, a reduced order disturbance observer is considered and a state-feedback controller is designed. Sufficient conditions are presented to ensure that the resulting closed-loop system is stable and a prescribed $ H_{\infty} $ performance index is satisfied. A numerical example is presented to illustrate the effectiveness of the techniques proposed and analyzed.

Citation: Peng Cheng, Feng Pan, Yanyan Yin, Song Wang. Probabilistic robust anti-disturbance control of uncertain systems. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020076
References:
[1]

J. Ackermann, Robust Control: The Parameter Space Approach, Springer-Verlag, London, 2002. doi: 10.1007/978-1-4471-0207-6.  Google Scholar

[2]

T. AlamoR. TempoA. Luque and D. R. Ramirez, Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms, Automatica J. IFAC, 52 (2015), 160-172.  doi: 10.1016/j.automatica.2014.11.004.  Google Scholar

[3]

B. R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York, 1994. Google Scholar

[4]

S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 15, SIAM, Philadelphia, PA, 1994. doi: 10.1137/1.9781611970777.  Google Scholar

[5]

M. C. CampiS. Garatti and and M. Prandini, The scenario approach for systems and control design, Ann. Rev. Control, 33 (2009), 149-157.  doi: 10.1016/j.arcontrol.2009.07.001.  Google Scholar

[6]

G. C. Calafiore and M. C. Campi, The scenario approach to robust control design,, IEEE Trans. Automat. Control, 51 (2006), 742-753.  doi: 10.1109/TAC.2006.875041.  Google Scholar

[7]

G. GrimmM. J. MessinaS. E. Tuna and A. R. Teel, Nominally robust model predictive control with state constraints, IEEE Trans. Automat. Control, 52 (2007), 1856-1870.  doi: 10.1109/TAC.2007.906187.  Google Scholar

[8]

P. Gahinet, Explicit controller formulas for LMI-based $H_{\infty}$ synthesis, Automatica J. IFAC, 32 (1996), 1007-1014.  doi: 10.1016/0005-1098(96)00033-7.  Google Scholar

[9]

L. Guo and W. Chen, Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Internat. J. Robust Nonlinear Control, 15 (2005), 109-125.  doi: 10.1002/rnc.978.  Google Scholar

[10]

X. JiM. Ren and H. Su, Comment on "Further enhancement on robust ${H_\infty }$ control design for discrete-time singular systems", IEEE Trans. Automat. Control, 60 (2015), 3119-3120.  doi: 10.1109/TAC.2015.2409951.  Google Scholar

[11]

L. Jin, Y. Yin, K. L. Teo and F. Liu, Event-triggered mixed $H\infty$ and passive control for Markov jump systems with bounded inputs, J. Ind. Manag. Optim.. doi: 10.3934/jimo.2020024.  Google Scholar

[12]

Y. LiuY. YinK. L. TeoS. Wang and F. Liu, Probabilistic control of Markov jump systems by scenario optimization approach, J. Ind. Manag. Optim., 15 (2019), 1447-1453.  doi: 10.3934/jimo.2018103.  Google Scholar

[13]

H. MelkoteF. KhorramiS. Jain and M. S. Mattice, Robust adaptive control of variable reluctance stepper motors, IEEE Trans. Control Systems Tech., 7 (1999), 212-221.  doi: 10.1109/87.748147.  Google Scholar

[14]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. Optim., 17 (2006), 969-996.  doi: 10.1137/050622328.  Google Scholar

[15]

R. E. Skelton, T. Iwasaki and K. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, The Taylor & Francis Systems and Control Book Series, Taylor & Francis Group, London, 1998.  Google Scholar

[16]

H. Sun and L. Guo, Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances, IEEE Trans. Neural Networks Learning Systems, 28 (2017), 482-489.  doi: 10.1109/TNNLS.2015.2511450.  Google Scholar

[17]

E. TianZ. WangL. Zou and D. Yue, Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case, Automatica J. IFAC, 107 (2019), 296-305.  doi: 10.1016/j.automatica.2019.05.039.  Google Scholar

[18]

E. TianZ. WangL. Zou and D. Yue, Probabilistic constrained filtering for a class of nonlinear systems with improved static event-triggered communication, Internat. J. Robust Nonlinear Control, 29 (2019), 1484-1498.  doi: 10.1002/rnc.4447.  Google Scholar

[19]

B. YaoM. Al-Majed and M. Tomizuka, High-performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments, IEEE/ASME Trans. Mechatronics, 2 (1997), 63-76.  doi: 10.1109/ACC.1997.611956.  Google Scholar

[20]

Y. YinP. ShiF. LiuK. L. Teo and C. C. Lim, Robust filtering for nonlinear nonhomogeneous Markov jump systems by fuzzy approximation approach, IEEE Trans on Cybernetics, 45 (2015), 1706-1716.  doi: 10.1109/TCYB.2014.2358680.  Google Scholar

[21]

Y. YinZ. LinY. Liu and K. L. Teo, Event-triggered constrained control of positive systems with input saturation, Internat. J. Robust Nonlinear Control, 28 (2018), 3532-3542.  doi: 10.1002/rnc.4097.  Google Scholar

[22]

Y. Yin and Z. Lin, Constrained control of uncertain nonhomogeneous Markovian jump systems, Internat. J. Robust Nonlinear Control, 27 (2017), 3937-3950.  doi: 10.1002/rnc.3774.  Google Scholar

[23]

J. YangB. WuS. Li and X. Yu, Design and qualitative robustness analysis of an DOBC approach for DC-DC buck converters with unmatched circuit parameter perturbations, IEEE Trans. Circuits Systems I: Regular Papers, 63 (2016), 551-560.  doi: 10.1109/TCSI.2016.2529238.  Google Scholar

show all references

References:
[1]

J. Ackermann, Robust Control: The Parameter Space Approach, Springer-Verlag, London, 2002. doi: 10.1007/978-1-4471-0207-6.  Google Scholar

[2]

T. AlamoR. TempoA. Luque and D. R. Ramirez, Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms, Automatica J. IFAC, 52 (2015), 160-172.  doi: 10.1016/j.automatica.2014.11.004.  Google Scholar

[3]

B. R. Barmish, New Tools for Robustness of Linear Systems, MacMillan, New York, 1994. Google Scholar

[4]

S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, 15, SIAM, Philadelphia, PA, 1994. doi: 10.1137/1.9781611970777.  Google Scholar

[5]

M. C. CampiS. Garatti and and M. Prandini, The scenario approach for systems and control design, Ann. Rev. Control, 33 (2009), 149-157.  doi: 10.1016/j.arcontrol.2009.07.001.  Google Scholar

[6]

G. C. Calafiore and M. C. Campi, The scenario approach to robust control design,, IEEE Trans. Automat. Control, 51 (2006), 742-753.  doi: 10.1109/TAC.2006.875041.  Google Scholar

[7]

G. GrimmM. J. MessinaS. E. Tuna and A. R. Teel, Nominally robust model predictive control with state constraints, IEEE Trans. Automat. Control, 52 (2007), 1856-1870.  doi: 10.1109/TAC.2007.906187.  Google Scholar

[8]

P. Gahinet, Explicit controller formulas for LMI-based $H_{\infty}$ synthesis, Automatica J. IFAC, 32 (1996), 1007-1014.  doi: 10.1016/0005-1098(96)00033-7.  Google Scholar

[9]

L. Guo and W. Chen, Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Internat. J. Robust Nonlinear Control, 15 (2005), 109-125.  doi: 10.1002/rnc.978.  Google Scholar

[10]

X. JiM. Ren and H. Su, Comment on "Further enhancement on robust ${H_\infty }$ control design for discrete-time singular systems", IEEE Trans. Automat. Control, 60 (2015), 3119-3120.  doi: 10.1109/TAC.2015.2409951.  Google Scholar

[11]

L. Jin, Y. Yin, K. L. Teo and F. Liu, Event-triggered mixed $H\infty$ and passive control for Markov jump systems with bounded inputs, J. Ind. Manag. Optim.. doi: 10.3934/jimo.2020024.  Google Scholar

[12]

Y. LiuY. YinK. L. TeoS. Wang and F. Liu, Probabilistic control of Markov jump systems by scenario optimization approach, J. Ind. Manag. Optim., 15 (2019), 1447-1453.  doi: 10.3934/jimo.2018103.  Google Scholar

[13]

H. MelkoteF. KhorramiS. Jain and M. S. Mattice, Robust adaptive control of variable reluctance stepper motors, IEEE Trans. Control Systems Tech., 7 (1999), 212-221.  doi: 10.1109/87.748147.  Google Scholar

[14]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. Optim., 17 (2006), 969-996.  doi: 10.1137/050622328.  Google Scholar

[15]

R. E. Skelton, T. Iwasaki and K. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, The Taylor & Francis Systems and Control Book Series, Taylor & Francis Group, London, 1998.  Google Scholar

[16]

H. Sun and L. Guo, Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances, IEEE Trans. Neural Networks Learning Systems, 28 (2017), 482-489.  doi: 10.1109/TNNLS.2015.2511450.  Google Scholar

[17]

E. TianZ. WangL. Zou and D. Yue, Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case, Automatica J. IFAC, 107 (2019), 296-305.  doi: 10.1016/j.automatica.2019.05.039.  Google Scholar

[18]

E. TianZ. WangL. Zou and D. Yue, Probabilistic constrained filtering for a class of nonlinear systems with improved static event-triggered communication, Internat. J. Robust Nonlinear Control, 29 (2019), 1484-1498.  doi: 10.1002/rnc.4447.  Google Scholar

[19]

B. YaoM. Al-Majed and M. Tomizuka, High-performance robust motion control of machine tools: An adaptive robust control approach and comparative experiments, IEEE/ASME Trans. Mechatronics, 2 (1997), 63-76.  doi: 10.1109/ACC.1997.611956.  Google Scholar

[20]

Y. YinP. ShiF. LiuK. L. Teo and C. C. Lim, Robust filtering for nonlinear nonhomogeneous Markov jump systems by fuzzy approximation approach, IEEE Trans on Cybernetics, 45 (2015), 1706-1716.  doi: 10.1109/TCYB.2014.2358680.  Google Scholar

[21]

Y. YinZ. LinY. Liu and K. L. Teo, Event-triggered constrained control of positive systems with input saturation, Internat. J. Robust Nonlinear Control, 28 (2018), 3532-3542.  doi: 10.1002/rnc.4097.  Google Scholar

[22]

Y. Yin and Z. Lin, Constrained control of uncertain nonhomogeneous Markovian jump systems, Internat. J. Robust Nonlinear Control, 27 (2017), 3937-3950.  doi: 10.1002/rnc.3774.  Google Scholar

[23]

J. YangB. WuS. Li and X. Yu, Design and qualitative robustness analysis of an DOBC approach for DC-DC buck converters with unmatched circuit parameter perturbations, IEEE Trans. Circuits Systems I: Regular Papers, 63 (2016), 551-560.  doi: 10.1109/TCSI.2016.2529238.  Google Scholar

Figure 1.  State trajectory of a-posteriori Monte-Carlo analysis
Figure 2.  Estimation of disturbance
Figure 3.  Trajectory of controlled output
[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[3]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[4]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[5]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[6]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[7]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[10]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[11]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[12]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[13]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[14]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[15]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[16]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[17]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[18]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[19]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[20]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]