
-
Previous Article
Computing shadow prices with multiple Lagrange multipliers
- JIMO Home
- This Issue
-
Next Article
Optimal design of window functions for filter window bank
Tabu search and simulated annealing for resource-constrained multi-project scheduling to minimize maximal cash flow gap
1. | School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET, United Kingdom |
2. | School of management, Xi'an Jiaotong University, Xi'an 710049, China |
In reality, a contractor may implement multiple projects simultaneously and in such an environment, how to achieve a positive balance between cash outflow and inflow by scheduling is an important problem for the contractor has to tackle. For this fact, this paper investigates a resource-constrained multi-project scheduling problem with the objective of minimizing the contractor's maximal cash flow gap under the constraint of a project deadline and renewable resource. In the paper, we construct a non-linear integer programming optimization model for the studied problem at first. Then, for the NP-hardness of the problem, we design three metaheuristic algorithms to solve the model: tabu search (TS), simulated annealing (SA), and an algorithm comprising both TS and SA (SA-TS). Finally, we conduct a computational experiment on a data set coming from existing literature to evaluate the performance of the developed algorithms and analyze the effects of key parameters on the objective function. Based on the computational results, the following conclusions are drawn: Among the designed algorithms, the SA-TS with an improvement measure is the most promising for solving the problem under study. Some parameters may exert an important effect on the contractor's maximal cash flow gap.
References:
[1] |
A. Alghazi, A. Elazouni and S. Selim,
Improved genetic algorithm for finance-based scheduling, J. Comput. Civil Engineering, 27 (2013), 379-394.
doi: 10.1061/(ASCE)CP.1943-5487.0000227. |
[2] |
M. M. Ali and A. Elazouni,
Finance-based CPM/LOB scheduling of projects with repetitive non-serial activities, Construction Management Economics, 27 (2009), 839-856.
doi: 10.1080/01446190903191764. |
[3] |
M. Abido and A. Elazouni,
Multiobjective evolutionary finance-based scheduling: Entire projects' portfolio, J. Comput. Civil Engineering, 25 (2011), 85-97.
doi: 10.1061/(ASCE)CP.1943-5487.0000070. |
[4] |
S. T. Al-Shihabi and M. M. AlDurgam,
A max-min ant system for the finance-based scheduling problem, Comput. Industrial Engineering, 110 (2017), 264-276.
doi: 10.1016/j.cie.2017.06.016. |
[5] |
J. Blazewicz, J. K. Lenstra and K. A. H. G. Rinnooy,
Scheduling subject to resource constraints: Classification and complexity, Discrete Appl. Math., 5 (1983), 11-24.
doi: 10.1016/0166-218X(83)90012-4. |
[6] |
T. R. Browning and A. A. Yassine,
A random generator of resource-constrained multi-project network problems, J. Scheduling, 13 (2010), 143-161.
doi: 10.1007/s10951-009-0131-y. |
[7] |
T. R. Browning and A. A. Yassine,
Resource-constrained multi-project scheduling: Priority rule performance revised, Internat. J. Production Economics, 126 (2010), 212-228.
doi: 10.1016/j.ijpe.2010.03.009. |
[8] |
R. H. Doersch and J. H. Patterson,
Scheduling a project to maximize its present value: A zero-one programming approach, Management Science, 23 (1977), 882-889.
doi: 10.1287/mnsc.23.8.882. |
[9] |
M. Engwall and A. Jerbrant,
The resource allocation syndrome: The prime challenge of multi-project management?, Internat. J. Project Management, 21 (2003), 403-409.
doi: 10.1016/S0263-7863(02)00113-8. |
[10] |
A. M. Elazouni and A. A. Gab-Allah,
Finance-based scheduling of construction projects using integer programming, J. Construction Engineering Management, 130 (2004), 15-24.
doi: 10.1061/(ASCE)0733-9364(2004)130:1(15). |
[11] |
A. Elazouni, A. Alghazi and S. Selim,
Finance-based scheduling using meta-heuristics: Discrete versus continuous optimization problems, J. Finance Management Property Construction, 20 (2015), 85-104.
doi: 10.1108/JFMPC-07-2014-0013. |
[12] |
A. Elazouni,
Heuristic method for multi-project finance-based scheduling, Construction Management Economics, 27 (2009), 199-211.
doi: 10.1080/01446190802673110. |
[13] |
A. Elazouni and M. Abido,
Multiobjective evolutionary finance-based scheduling: Individual projects within a portfolio, Automat. Construction, 20 (2011), 755-766.
doi: 10.1016/j.autcon.2011.03.010. |
[14] |
M. S. El-Abbasy, A. Elazouni and T. Z. F. ASCE, Generic scheduling optimization model for multiple construction projects, J. Comput. Civil Engineering, 31 (2017).
doi: 10.1061/(ASCE)CP.1943-5487.0000659. |
[15] |
H. Fathi and A. Afshar,
GA-based multi-objective optimization of finance-based construction project scheduling, KSCE J. Civil Engineering, 14 (2010), 627-638.
doi: 10.1007/s12205-010-0849-2. |
[16] |
F. Glover,
Future path for integer programming and links to artificial intelligence, Comput. Oper. Res., 13 (1986), 533-549.
doi: 10.1016/0305-0548(86)90048-1. |
[17] |
W. S. Herroelen, P. Dommelen and E. L. Demeulemeester,
Project network models with discounted cash flows: A guided tour through recent developments, European J. Oper. Res., 100 (1997), 97-121.
doi: 10.1016/S0377-2217(96)00112-9. |
[18] |
Z. He, R. Liu and T. Jia,
Metaheuristics for multi-mode capital-constrained project payment scheduling, European J. Oper. Res., 223 (2012), 605-613.
doi: 10.1016/j.ejor.2012.07.014. |
[19] |
Z. He, H. He, R. Liu and N. Wang,
Variable neighbourhood search and tabu search for a discrete time/cost trade-off problem to minimize the maximal cash flow gap, Comput. Oper. Res., 78 (2017), 564-577.
doi: 10.1016/j.cor.2016.07.013. |
[20] |
A. Jiang, R. R. A. Issa and M. Malek,
Construction project cash flow planning using the Pareto optimality efficiency network model, J. Construction Engineering Management, 17 (2011), 510-519.
doi: 10.3846/13923730.2011.604537. |
[21] |
P. Leyman and M. Vanhoucke,
A new scheduling technique for the resource–constrained project scheduling problem with discounted cash flows, Internat. J. Prod. Res., 53 (2015), 2771-2786.
doi: 10.1080/00207543.2014.980463. |
[22] |
P. Leyman and M. Vanhoucke,
Payment models and net present value optimization for resource-constrained project scheduling, Comput. Industrial Engineering, 91 (2016), 139-153.
doi: 10.1016/j.cie.2015.11.008. |
[23] |
P. Leyman and M. Vanhoucke,
Capital- and resource-constrained project scheduling with net present value optimization, European J. Oper. Res., 256 (2017), 757-776.
doi: 10.1016/j.ejor.2016.07.019. |
[24] |
S. S. Liu and C. J. Wang,
Profit optimization for multiproject scheduling problems considering cash flow, J. Construction Engineering Management, 136 (2010), 1268-1278.
doi: 10.1061/(ASCE)CO.1943-7862.0000235. |
[25] |
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller,
Equation of state calculations by fast computing machines, J. Chemical Physics, 21 (1953), 1087-1092.
doi: 10.2172/4390578. |
[26] |
M. Ning, Z. He, T. Jia and N. Wang,
Metaheuristics for multi-mode cash flow balanced project scheduling with stochastic duration of activities, Automat. Construction, 81 (2017), 224-233.
doi: 10.1016/j.autcon.2017.06.011. |
[27] |
M. Ning, Z. He, N. Wang and R. Liu,
Metaheuristic algorithms for proactive and reactive project scheduling to minimize contractor's cash flow gap under random activity duration, IEEE Access, 6 (2018), 30547-30558.
doi: 10.1109/ACCESS.2018.2828037. |
[28] |
L. Özdamar and H. Dündar,
A flexible heuristic for a multi-mode capital constrained project scheduling problem with probabilistic cash inflows, Comput. Opera. Res., 24 (1997), 1187-1200.
doi: 10.1016/S0305-0548(96)00058-5. |
[29] |
L. Özdamar,
On scheduling project activities with variable expenditure rates, IIE Transactions, 30 (1998), 695-704.
doi: 10.1023/A:1007598405238. |
[30] |
C. Schwindt and J. Zimmermann, Handbook of Project Management and Scheduling, Springer International Publishing AG, Berlin, 2014.
doi: 10.1007/978-3-319-05443-8. |
[31] |
D. E. Smith-Daniels and V. L. Smith-Daniels,
Maximizing the net present value of a project subject to materials and capital constraints, J. Oper. Management, 7 (1987), 33-45.
doi: 10.1016/0272-6963(87)90005-2. |
[32] |
D. E. Smith-Daniels, R. Padman and V. L. Smith-Daniels,
Heuristic scheduling of capital constrained projects, J. Oper. Management, 14 (1996), 241-254.
doi: 10.1016/0272-6963(96)00004-6. |
show all references
References:
[1] |
A. Alghazi, A. Elazouni and S. Selim,
Improved genetic algorithm for finance-based scheduling, J. Comput. Civil Engineering, 27 (2013), 379-394.
doi: 10.1061/(ASCE)CP.1943-5487.0000227. |
[2] |
M. M. Ali and A. Elazouni,
Finance-based CPM/LOB scheduling of projects with repetitive non-serial activities, Construction Management Economics, 27 (2009), 839-856.
doi: 10.1080/01446190903191764. |
[3] |
M. Abido and A. Elazouni,
Multiobjective evolutionary finance-based scheduling: Entire projects' portfolio, J. Comput. Civil Engineering, 25 (2011), 85-97.
doi: 10.1061/(ASCE)CP.1943-5487.0000070. |
[4] |
S. T. Al-Shihabi and M. M. AlDurgam,
A max-min ant system for the finance-based scheduling problem, Comput. Industrial Engineering, 110 (2017), 264-276.
doi: 10.1016/j.cie.2017.06.016. |
[5] |
J. Blazewicz, J. K. Lenstra and K. A. H. G. Rinnooy,
Scheduling subject to resource constraints: Classification and complexity, Discrete Appl. Math., 5 (1983), 11-24.
doi: 10.1016/0166-218X(83)90012-4. |
[6] |
T. R. Browning and A. A. Yassine,
A random generator of resource-constrained multi-project network problems, J. Scheduling, 13 (2010), 143-161.
doi: 10.1007/s10951-009-0131-y. |
[7] |
T. R. Browning and A. A. Yassine,
Resource-constrained multi-project scheduling: Priority rule performance revised, Internat. J. Production Economics, 126 (2010), 212-228.
doi: 10.1016/j.ijpe.2010.03.009. |
[8] |
R. H. Doersch and J. H. Patterson,
Scheduling a project to maximize its present value: A zero-one programming approach, Management Science, 23 (1977), 882-889.
doi: 10.1287/mnsc.23.8.882. |
[9] |
M. Engwall and A. Jerbrant,
The resource allocation syndrome: The prime challenge of multi-project management?, Internat. J. Project Management, 21 (2003), 403-409.
doi: 10.1016/S0263-7863(02)00113-8. |
[10] |
A. M. Elazouni and A. A. Gab-Allah,
Finance-based scheduling of construction projects using integer programming, J. Construction Engineering Management, 130 (2004), 15-24.
doi: 10.1061/(ASCE)0733-9364(2004)130:1(15). |
[11] |
A. Elazouni, A. Alghazi and S. Selim,
Finance-based scheduling using meta-heuristics: Discrete versus continuous optimization problems, J. Finance Management Property Construction, 20 (2015), 85-104.
doi: 10.1108/JFMPC-07-2014-0013. |
[12] |
A. Elazouni,
Heuristic method for multi-project finance-based scheduling, Construction Management Economics, 27 (2009), 199-211.
doi: 10.1080/01446190802673110. |
[13] |
A. Elazouni and M. Abido,
Multiobjective evolutionary finance-based scheduling: Individual projects within a portfolio, Automat. Construction, 20 (2011), 755-766.
doi: 10.1016/j.autcon.2011.03.010. |
[14] |
M. S. El-Abbasy, A. Elazouni and T. Z. F. ASCE, Generic scheduling optimization model for multiple construction projects, J. Comput. Civil Engineering, 31 (2017).
doi: 10.1061/(ASCE)CP.1943-5487.0000659. |
[15] |
H. Fathi and A. Afshar,
GA-based multi-objective optimization of finance-based construction project scheduling, KSCE J. Civil Engineering, 14 (2010), 627-638.
doi: 10.1007/s12205-010-0849-2. |
[16] |
F. Glover,
Future path for integer programming and links to artificial intelligence, Comput. Oper. Res., 13 (1986), 533-549.
doi: 10.1016/0305-0548(86)90048-1. |
[17] |
W. S. Herroelen, P. Dommelen and E. L. Demeulemeester,
Project network models with discounted cash flows: A guided tour through recent developments, European J. Oper. Res., 100 (1997), 97-121.
doi: 10.1016/S0377-2217(96)00112-9. |
[18] |
Z. He, R. Liu and T. Jia,
Metaheuristics for multi-mode capital-constrained project payment scheduling, European J. Oper. Res., 223 (2012), 605-613.
doi: 10.1016/j.ejor.2012.07.014. |
[19] |
Z. He, H. He, R. Liu and N. Wang,
Variable neighbourhood search and tabu search for a discrete time/cost trade-off problem to minimize the maximal cash flow gap, Comput. Oper. Res., 78 (2017), 564-577.
doi: 10.1016/j.cor.2016.07.013. |
[20] |
A. Jiang, R. R. A. Issa and M. Malek,
Construction project cash flow planning using the Pareto optimality efficiency network model, J. Construction Engineering Management, 17 (2011), 510-519.
doi: 10.3846/13923730.2011.604537. |
[21] |
P. Leyman and M. Vanhoucke,
A new scheduling technique for the resource–constrained project scheduling problem with discounted cash flows, Internat. J. Prod. Res., 53 (2015), 2771-2786.
doi: 10.1080/00207543.2014.980463. |
[22] |
P. Leyman and M. Vanhoucke,
Payment models and net present value optimization for resource-constrained project scheduling, Comput. Industrial Engineering, 91 (2016), 139-153.
doi: 10.1016/j.cie.2015.11.008. |
[23] |
P. Leyman and M. Vanhoucke,
Capital- and resource-constrained project scheduling with net present value optimization, European J. Oper. Res., 256 (2017), 757-776.
doi: 10.1016/j.ejor.2016.07.019. |
[24] |
S. S. Liu and C. J. Wang,
Profit optimization for multiproject scheduling problems considering cash flow, J. Construction Engineering Management, 136 (2010), 1268-1278.
doi: 10.1061/(ASCE)CO.1943-7862.0000235. |
[25] |
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller,
Equation of state calculations by fast computing machines, J. Chemical Physics, 21 (1953), 1087-1092.
doi: 10.2172/4390578. |
[26] |
M. Ning, Z. He, T. Jia and N. Wang,
Metaheuristics for multi-mode cash flow balanced project scheduling with stochastic duration of activities, Automat. Construction, 81 (2017), 224-233.
doi: 10.1016/j.autcon.2017.06.011. |
[27] |
M. Ning, Z. He, N. Wang and R. Liu,
Metaheuristic algorithms for proactive and reactive project scheduling to minimize contractor's cash flow gap under random activity duration, IEEE Access, 6 (2018), 30547-30558.
doi: 10.1109/ACCESS.2018.2828037. |
[28] |
L. Özdamar and H. Dündar,
A flexible heuristic for a multi-mode capital constrained project scheduling problem with probabilistic cash inflows, Comput. Opera. Res., 24 (1997), 1187-1200.
doi: 10.1016/S0305-0548(96)00058-5. |
[29] |
L. Özdamar,
On scheduling project activities with variable expenditure rates, IIE Transactions, 30 (1998), 695-704.
doi: 10.1023/A:1007598405238. |
[30] |
C. Schwindt and J. Zimmermann, Handbook of Project Management and Scheduling, Springer International Publishing AG, Berlin, 2014.
doi: 10.1007/978-3-319-05443-8. |
[31] |
D. E. Smith-Daniels and V. L. Smith-Daniels,
Maximizing the net present value of a project subject to materials and capital constraints, J. Oper. Management, 7 (1987), 33-45.
doi: 10.1016/0272-6963(87)90005-2. |
[32] |
D. E. Smith-Daniels, R. Padman and V. L. Smith-Daniels,
Heuristic scheduling of capital constrained projects, J. Oper. Management, 14 (1996), 241-254.
doi: 10.1016/0272-6963(96)00004-6. |









The positive cash flow balance is taken as a constraint | The positive cash flow balance is taken as an objective | ||||
The objective is to maximize project profit | The objective is to minimize project duration | The objective is the optimal trade-off among multiple objectives | The activity durations are constants | The activity durations are stochastic variables | |
A contractor needs to implement a single project | Doersch and Patterson ([8]); Smith-Daniels and Smith-Daniels ([31]); Smith-Daniels et al. ([32]); Özdamar and Dündar ([28]); Özdamar ([29]); He et al. ([18]); Leyman and Vanhoucke ([21]); Leyman and Vanhoucke ([22]); Leyman and Vanhoucke ([23]) | Elazouni and Gab-Allah ([10]); Alghazi et al. ([1]); Ali and Elazouni ([2]); Elazouni et al. ([11]); Al-Shihabi and AlDurgam ([4]) | Fathi and Afshar ([15]) | He et al. ([19]) | Ning et al. ([26]); Ning et al. ([27]) |
A contractor needs to implement multiple projects concurrently | Liu and Wang ([24]) | Elazouni ([12]) | Elazouni and Abido ([13]); Abido and Elazouni ([3]); El-Abbasy et al. ([14]) | This paper |
The positive cash flow balance is taken as a constraint | The positive cash flow balance is taken as an objective | ||||
The objective is to maximize project profit | The objective is to minimize project duration | The objective is the optimal trade-off among multiple objectives | The activity durations are constants | The activity durations are stochastic variables | |
A contractor needs to implement a single project | Doersch and Patterson ([8]); Smith-Daniels and Smith-Daniels ([31]); Smith-Daniels et al. ([32]); Özdamar and Dündar ([28]); Özdamar ([29]); He et al. ([18]); Leyman and Vanhoucke ([21]); Leyman and Vanhoucke ([22]); Leyman and Vanhoucke ([23]) | Elazouni and Gab-Allah ([10]); Alghazi et al. ([1]); Ali and Elazouni ([2]); Elazouni et al. ([11]); Al-Shihabi and AlDurgam ([4]) | Fathi and Afshar ([15]) | He et al. ([19]) | Ning et al. ([26]); Ning et al. ([27]) |
A contractor needs to implement multiple projects concurrently | Liu and Wang ([24]) | Elazouni ([12]) | Elazouni and Abido ([13]); Abido and Elazouni ([3]); El-Abbasy et al. ([14]) | This paper |
Project 1 | Project 2 | |||||||
Cash outflow | Cash inflow | Cash outflow | Cash inflow | |||||
Cash flows under the |
||||||||
0 | 4 | / | / | / | 4 | 0 | 4 | |
2 | 4 | 8 | 0 | 8 | ||||
3 | 2 | 5.4 | 10 | 5.4 | 4.6 | |||
4 | 2 | 5 | 5.1 | 17 | 10.5 | 6.5 | ||
5 | 3 | 5.4 | 20 | 15.9 | 4.1 | |||
7 | 2.55 | 20 | 18.45 | 1.55 | ||||
9 | 6.2 | 20 | 24.65 | –4.65 | ||||
10 | 6.35 | 20 | 31 | –11 | ||||
Cash flows under the |
||||||||
0 | 6 | 6 | 0 | 6 | ||||
2 | 7 | 13 | 0 | 13 | ||||
3 | 2 | 8.1 | 15 | 8.1 | 6.9 | |||
4 | 2 | 5.1 | 17 | 13.2 | 3.8 | |||
5 | 3 | 2.7 | 20 | 15.9 | 4.1 | |||
7 | 2.55 | 20 | 18.45 | 1.55 | ||||
8 | 6.35 | 20 | 24.8 | –4.8 | ||||
9 | 6.2 | 20 | 31 | –11 |
Project 1 | Project 2 | |||||||
Cash outflow | Cash inflow | Cash outflow | Cash inflow | |||||
Cash flows under the |
||||||||
0 | 4 | / | / | / | 4 | 0 | 4 | |
2 | 4 | 8 | 0 | 8 | ||||
3 | 2 | 5.4 | 10 | 5.4 | 4.6 | |||
4 | 2 | 5 | 5.1 | 17 | 10.5 | 6.5 | ||
5 | 3 | 5.4 | 20 | 15.9 | 4.1 | |||
7 | 2.55 | 20 | 18.45 | 1.55 | ||||
9 | 6.2 | 20 | 24.65 | –4.65 | ||||
10 | 6.35 | 20 | 31 | –11 | ||||
Cash flows under the |
||||||||
0 | 6 | 6 | 0 | 6 | ||||
2 | 7 | 13 | 0 | 13 | ||||
3 | 2 | 8.1 | 15 | 8.1 | 6.9 | |||
4 | 2 | 5.1 | 17 | 13.2 | 3.8 | |||
5 | 3 | 2.7 | 20 | 15.9 | 4.1 | |||
7 | 2.55 | 20 | 18.45 | 1.55 | ||||
8 | 6.35 | 20 | 24.8 | –4.8 | ||||
9 | 6.2 | 20 | 31 | –11 |
Parameter | Setting |
Number of projects, |
3 |
Number of non-dummy activities in projects, |
20 |
Network complexity of multiple projects, |
LLL, HLL, HHL, HHH, where "L" and "H" represent the network complexity of an individual project. "L" means that the network complexity of the project equals 0.14 while "H" implies it is 0.69 |
Number of resource types, |
4 |
Normalized average resource loading factor, |
–2, 0, 2 |
Modified average utilization factor, |
0.8, 1.0, 1.2 |
Variance in |
0, 0.25 |
Cost of activities, |
Randomly selected from U[1, 9] |
Earned value of activities, |
|
Number of milestone activities, |
4, 5, 6, where the dummy end activity must be a milestone activity while other milestone activities are randomly selected from all the non-dummy activities |
Compensation proportion of projects, |
0.7, 0.8, 0.9 |
Earliest start time of projects, |
Randomly selected from U[1, 5] |
Deadline of projects, |
1.1 |
Parameter | Setting |
Number of projects, |
3 |
Number of non-dummy activities in projects, |
20 |
Network complexity of multiple projects, |
LLL, HLL, HHL, HHH, where "L" and "H" represent the network complexity of an individual project. "L" means that the network complexity of the project equals 0.14 while "H" implies it is 0.69 |
Number of resource types, |
4 |
Normalized average resource loading factor, |
–2, 0, 2 |
Modified average utilization factor, |
0.8, 1.0, 1.2 |
Variance in |
0, 0.25 |
Cost of activities, |
Randomly selected from U[1, 9] |
Earned value of activities, |
|
Number of milestone activities, |
4, 5, 6, where the dummy end activity must be a milestone activity while other milestone activities are randomly selected from all the non-dummy activities |
Compensation proportion of projects, |
0.7, 0.8, 0.9 |
Earliest start time of projects, |
Randomly selected from U[1, 5] |
Deadline of projects, |
1.1 |
Parameter | Value | SA- |
SA- |
||||
LLL | 8.26 | 3.30 | 7.36 | 2.18 | 6.23 | 1.46 | |
HLL | 7.57 | 2.63 | 7.15 | 2.04 | 6.10 | 1.35 | |
HHL | 7.13 | 2.47 | 6.84 | 1.91 | 5.41 | 1.40 | |
HHH | 6.28 | 1.77 | 5.97 | 1.67 | 5.13 | 1.23 | |
–2 | 7.06 | 2.36 | 6.62 | 1.80 | 5.55 | 1.24 | |
0 | 7.38 | 2.61 | 6.70 | 1.90 | 5.75 | 1.39 | |
2 | 7.49 | 2.65 | 7.18 | 2.16 | 5.86 | 1.45 | |
0.8 | 8.20 | 3.00 | 7.57 | 2.46 | 6.23 | 1.52 | |
1.0 | 7.33 | 2.70 | 6.74 | 1.88 | 5.67 | 1.35 | |
1.2 | 6.41 | 1.93 | 6.18 | 1.51 | 5.26 | 1.20 | |
0 | 7.13 | 2.42 | 6.71 | 1.89 | 5.54 | 1.19 | |
0.25 | 7.49 | 2.67 | 6.94 | 2.01 | 5.90 | 1.53 | |
1.1 |
6.05 | 1.84 | 5.85 | 1.54 | 5.07 | 1.13 | |
1.3 |
7.25 | 2.45 | 6.76 | 1.96 | 5.61 | 1.35 | |
1.5 |
8.63 | 3.33 | 7.89 | 2.35 | 6.47 | 1.60 |
Parameter | Value | SA- |
SA- |
||||
LLL | 8.26 | 3.30 | 7.36 | 2.18 | 6.23 | 1.46 | |
HLL | 7.57 | 2.63 | 7.15 | 2.04 | 6.10 | 1.35 | |
HHL | 7.13 | 2.47 | 6.84 | 1.91 | 5.41 | 1.40 | |
HHH | 6.28 | 1.77 | 5.97 | 1.67 | 5.13 | 1.23 | |
–2 | 7.06 | 2.36 | 6.62 | 1.80 | 5.55 | 1.24 | |
0 | 7.38 | 2.61 | 6.70 | 1.90 | 5.75 | 1.39 | |
2 | 7.49 | 2.65 | 7.18 | 2.16 | 5.86 | 1.45 | |
0.8 | 8.20 | 3.00 | 7.57 | 2.46 | 6.23 | 1.52 | |
1.0 | 7.33 | 2.70 | 6.74 | 1.88 | 5.67 | 1.35 | |
1.2 | 6.41 | 1.93 | 6.18 | 1.51 | 5.26 | 1.20 | |
0 | 7.13 | 2.42 | 6.71 | 1.89 | 5.54 | 1.19 | |
0.25 | 7.49 | 2.67 | 6.94 | 2.01 | 5.90 | 1.53 | |
1.1 |
6.05 | 1.84 | 5.85 | 1.54 | 5.07 | 1.13 | |
1.3 |
7.25 | 2.45 | 6.76 | 1.96 | 5.61 | 1.35 | |
1.5 |
8.63 | 3.33 | 7.89 | 2.35 | 6.47 | 1.60 |
Parameter | Value | Parameter | Value | ||
LLL | 66.06 | 0 | 70.37 | ||
HLL | 67.34 | 0.25 | 66.86 | ||
HHL | 69.66 | 4 | 81.48 | ||
HHH | 71.43 | 5 | 67.12 | ||
–2 | 70.63 | 6 | 57.26 | ||
0 | 68.51 | 0.7 | 83.76 | ||
2 | 66.73 | 0.8 | 68.73 | ||
0.8 | 65.57 | 0.9 | 53.36 | ||
1.0 | 68.44 | 1.1 |
72.88 | ||
1.2 | 71.86 | 1.3 |
67.66 | ||
1.5 |
65.33 |
Parameter | Value | Parameter | Value | ||
LLL | 66.06 | 0 | 70.37 | ||
HLL | 67.34 | 0.25 | 66.86 | ||
HHL | 69.66 | 4 | 81.48 | ||
HHH | 71.43 | 5 | 67.12 | ||
–2 | 70.63 | 6 | 57.26 | ||
0 | 68.51 | 0.7 | 83.76 | ||
2 | 66.73 | 0.8 | 68.73 | ||
0.8 | 65.57 | 0.9 | 53.36 | ||
1.0 | 68.44 | 1.1 |
72.88 | ||
1.2 | 71.86 | 1.3 |
67.66 | ||
1.5 |
65.33 |
|
|||||||||||
0.8 | LLL | 61.8 | 0.8 | –2 | 66.96 | 0.8 | 0 | 66.67 | 0.8 | 1.1 |
71.33 |
HLL | 64.29 | 0 | 65.46 | 0.25 | 64.46 | 1.3 |
64.61 | ||||
HHL | 66.6 | 2 | 64.28 | 1.0 | 0 | 69.99 | 1.5 |
60.78 | |||
HHH | 69.58 | 1.0 | –2 | 70.3 | 0.25 | 66.88 | 1.0 | 1.1 |
72.2 | ||
1.0 | LLL | 66.08 | 0 | 68.33 | 1.2 | 0 | 74.46 | 1.3 |
67.46 | ||
HLL | 67.16 | 2 | 66.7 | 0.25 | 69.25 | 1.5 |
65.65 | ||||
HHL | 69.48 | 1.2 | –2 | 74.62 | 1.2 | 1.1 |
75.12 | ||||
HHH | 71.05 | 0 | 71.75 | 1.3 |
70.9 | ||||||
1.2 | LLL | 70.3 | 2 | 69.21 | 1.5 |
69.57 | |||||
HLL | 70.58 | ||||||||||
HHL | 72.9 | ||||||||||
HHH | 73.67 |
|
|||||||||||
0.8 | LLL | 61.8 | 0.8 | –2 | 66.96 | 0.8 | 0 | 66.67 | 0.8 | 1.1 |
71.33 |
HLL | 64.29 | 0 | 65.46 | 0.25 | 64.46 | 1.3 |
64.61 | ||||
HHL | 66.6 | 2 | 64.28 | 1.0 | 0 | 69.99 | 1.5 |
60.78 | |||
HHH | 69.58 | 1.0 | –2 | 70.3 | 0.25 | 66.88 | 1.0 | 1.1 |
72.2 | ||
1.0 | LLL | 66.08 | 0 | 68.33 | 1.2 | 0 | 74.46 | 1.3 |
67.46 | ||
HLL | 67.16 | 2 | 66.7 | 0.25 | 69.25 | 1.5 |
65.65 | ||||
HHL | 69.48 | 1.2 | –2 | 74.62 | 1.2 | 1.1 |
75.12 | ||||
HHH | 71.05 | 0 | 71.75 | 1.3 |
70.9 | ||||||
1.2 | LLL | 70.3 | 2 | 69.21 | 1.5 |
69.57 | |||||
HLL | 70.58 | ||||||||||
HHL | 72.9 | ||||||||||
HHH | 73.67 |
[1] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[2] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[3] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[4] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
[5] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[6] |
Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128 |
[7] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[8] |
Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047 |
[9] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[10] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[11] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[12] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[13] |
Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020158 |
[14] |
Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020174 |
[15] |
Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021001 |
[16] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[17] |
Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278 |
[18] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[19] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[20] |
Editorial Office. Retraction: Jinling Wei, Jinming Zhang, Meishuang Dong, Fan Zhang, Yunmo Chen, Sha Jin and Zhike Han, Applications of mathematics to maritime search. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 957-957. doi: 10.3934/dcdss.2019064 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]