[1]
|
C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.
doi: 10.1088/0266-5611/18/2/310.
|
[2]
|
Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692.
|
[3]
|
S.-S. Chang and R. P. Agarwal, Strong convergence theorems of general split equality problems for quasi-nonexpansive mappings, J. Inequal. Appl., 2014 (2014), 14pp.
doi: 10.1186/1029-242X-2014-367.
|
[4]
|
Y. Censor and T. Elfving, The multiple-sets split feasibility problem and its applicatons for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017.
|
[5]
|
Y. Censor, A. Motova and A. Segal, Perturbed projections and subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl., 327 (2007), 1244-1256.
doi: 10.1016/j.jmaa.2006.05.010.
|
[6]
|
S.-S. Chang, Some problems and results in the study of nonlinear analysis, Nonlinear Anal., 30 (1997), 4197-4208.
doi: 10.1016/S0362-546X(97)00388-X.
|
[7]
|
Y.-Z. Dang, J. Sun and H. Xu, Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., 13 (2017), 1383-1394.
doi: 10.3934/jimo.2016078.
|
[8]
|
Y.-Z. Dang, J. Sun and S. Zhang, Double projection algorithms for solving the split feasibility problems, J. Ind. Manag. Optim., 15 (2019), 2023-2034.
doi: 10.3934/jimo.2018135.
|
[9]
|
Q.-L. Dong and S. He, Self-adaptive projection algorithms for solving the split equality problems, Fixed Point Theory, 18 (2017), 191-202.
doi: 10.24193/fpt-ro.2017.1.15.
|
[10]
|
Q.-L. Dong, S. He and J. Zhao, Solving the split equality problem without prior knowledge of operator norms, Optimization, 64 (2015), 1887-1906.
doi: 10.1080/02331934.2014.895897.
|
[11]
|
Y.-Z. Dang, J. Yao and Y. Gao, Relaxed two points projection method for solving the multiple-sets split equality problem, Numer. Algorithms, 78 (2018), 263-275.
doi: 10.1007/s11075-017-0375-0.
|
[12]
|
S. Kesornprom, N. Pholasa and P. Cholamjiak, On the convergence analysis of the gradient-CQ algorithms for the split feasibility problem, Numer. Algorithms, 2019 (2019), 1-21.
doi: 10.1007/s11075-019-00790-y.
|
[13]
|
M. Li, X. Kao and H. Che, Relaxed inertial accelerated algorithms for solving split equality feasibility problem, J. Nonlinear Sci. Appl., 10 (2017), 4109-4121.
doi: 10.22436/jnsa.010.08.07.
|
[14]
|
A. Moudafi and A. Gibali, $l_1$-$l_2$ regularization of split feasibility problems, Numer. Algorithms, 78 (2018), 739-757.
doi: 10.1007/s11075-017-0398-6.
|
[15]
|
A. Moudafi, Alternating CQ-algorithms for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal., 15 (2014), 809-818.
|
[16]
|
P.-E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912.
doi: 10.1007/s11228-008-0102-z.
|
[17]
|
B. Qu, C. Wang and N. Xiu, Analysis on Newton projection method for the split feasibility problem, Comput. Optim. Appl., 67 (2017), 175-199.
doi: 10.1007/s10589-016-9884-3.
|
[18]
|
B. Qu, B. Liu and N. Zheng, On the computation of the step-size for the CQ-like algorithms for the split feasibility problem, Appl. Math. Comput., 262 (2015), 218-223.
doi: 10.1016/j.amc.2015.04.056.
|
[19]
|
B. Qu and H. Chang, Remark on the successive projection algorithm for the multiple-sets split feasibility problem, Numer. Funct. Anal. Optim., 38 (2017), 1614-1623.
doi: 10.1080/01630563.2017.1369109.
|
[20]
|
R. T. Rockafeller, Convex Analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970.
doi: 10.1515/9781400873173.
|
[21]
|
S. Suantai, S. Kesornprom and P. Cholamjiak, A new hybrid CQ algorithm for the split feasibility problem in Hilbert spaces and its applications to compressed sensing, Math., 7 (2019), 15pp.
doi: 10.3390/math7090789.
|
[22]
|
S. Suantai, N. Pholasa and P. Cholamjiak, The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Ind. Manag. Optim., 14 (2018), 1595-1615.
doi: 10.3934/jimo.2018023.
|
[23]
|
S. Suantai, N. Pholasa and P. Cholamjiak, Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 1081-1099.
doi: 10.1007/s13398-018-0535-7.
|
[24]
|
L. Shi, R. Chen and Y. Wu, An iterative algorithm for the split equality and multiple-sets split equality problem, Abstr. Appl. Anal., 2014 (2014), 5pp.
doi: 10.1155/2014/620813.
|
[25]
|
N. T. Vinh, P. Cholamjiak and S. Suantai, A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci. Soc., 42 (2019), 2517-2534.
doi: 10.1007/s40840-018-0614-0.
|
[26]
|
Y. Wu, R. Chen and L. Shi, Split equality problem and multiple-sets split equality problem for quasi-nonexpansive multi-valued mappings, J. Inequal. Appl., 2014 (2014), 8pp.
doi: 10.1186/1029-242X-2014-428.
|
[27]
|
H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), 66 (2002), 240-256.
doi: 10.1112/S0024610702003332.
|