
-
Previous Article
Stochastic-Lazier-Greedy Algorithm for monotone non-submodular maximization
- JIMO Home
- This Issue
-
Next Article
Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition
Relaxed successive projection algorithm with strong convergence for the multiple-sets split equality problem
1. | College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao Shandong, 266590, China |
2. | School of Mathematics and Information Science, Weifang University, Weifang Shandong, 261061, China |
The multiple-sets split equality problem is an extended form of the split feasibility problem. It has a wide range of applications in image reconstruction, signal processing, computed tomography, etc. In this paper, we propose a relaxed successive projection algorithm to solve the multiple-sets split equality problem which does not need the prior knowledge of the operator norms, and prove the strong convergence of the algorithm. The numerical examples indicate that the algorithm has good feasibility and effectiveness by comparing with other algorithm.
References:
[1] |
C. Byrne,
Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.
doi: 10.1088/0266-5611/18/2/310. |
[2] |
Y. Censor and T. Elfving,
A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692. |
[3] |
S.-S. Chang and R. P. Agarwal, Strong convergence theorems of general split equality problems for quasi-nonexpansive mappings, J. Inequal. Appl., 2014 (2014), 14pp.
doi: 10.1186/1029-242X-2014-367. |
[4] |
Y. Censor and T. Elfving,
The multiple-sets split feasibility problem and its applicatons for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017. |
[5] |
Y. Censor, A. Motova and A. Segal,
Perturbed projections and subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl., 327 (2007), 1244-1256.
doi: 10.1016/j.jmaa.2006.05.010. |
[6] |
S.-S. Chang,
Some problems and results in the study of nonlinear analysis, Nonlinear Anal., 30 (1997), 4197-4208.
doi: 10.1016/S0362-546X(97)00388-X. |
[7] |
Y.-Z. Dang, J. Sun and H. Xu,
Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., 13 (2017), 1383-1394.
doi: 10.3934/jimo.2016078. |
[8] |
Y.-Z. Dang, J. Sun and S. Zhang,
Double projection algorithms for solving the split feasibility problems, J. Ind. Manag. Optim., 15 (2019), 2023-2034.
doi: 10.3934/jimo.2018135. |
[9] |
Q.-L. Dong and S. He,
Self-adaptive projection algorithms for solving the split equality problems, Fixed Point Theory, 18 (2017), 191-202.
doi: 10.24193/fpt-ro.2017.1.15. |
[10] |
Q.-L. Dong, S. He and J. Zhao,
Solving the split equality problem without prior knowledge of operator norms, Optimization, 64 (2015), 1887-1906.
doi: 10.1080/02331934.2014.895897. |
[11] |
Y.-Z. Dang, J. Yao and Y. Gao,
Relaxed two points projection method for solving the multiple-sets split equality problem, Numer. Algorithms, 78 (2018), 263-275.
doi: 10.1007/s11075-017-0375-0. |
[12] |
S. Kesornprom, N. Pholasa and P. Cholamjiak,
On the convergence analysis of the gradient-CQ algorithms for the split feasibility problem, Numer. Algorithms, 2019 (2019), 1-21.
doi: 10.1007/s11075-019-00790-y. |
[13] |
M. Li, X. Kao and H. Che,
Relaxed inertial accelerated algorithms for solving split equality feasibility problem, J. Nonlinear Sci. Appl., 10 (2017), 4109-4121.
doi: 10.22436/jnsa.010.08.07. |
[14] |
A. Moudafi and A. Gibali,
$l_1$-$l_2$ regularization of split feasibility problems, Numer. Algorithms, 78 (2018), 739-757.
doi: 10.1007/s11075-017-0398-6. |
[15] |
A. Moudafi,
Alternating CQ-algorithms for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal., 15 (2014), 809-818.
|
[16] |
P.-E. Maingé,
Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912.
doi: 10.1007/s11228-008-0102-z. |
[17] |
B. Qu, C. Wang and N. Xiu,
Analysis on Newton projection method for the split feasibility problem, Comput. Optim. Appl., 67 (2017), 175-199.
doi: 10.1007/s10589-016-9884-3. |
[18] |
B. Qu, B. Liu and N. Zheng,
On the computation of the step-size for the CQ-like algorithms for the split feasibility problem, Appl. Math. Comput., 262 (2015), 218-223.
doi: 10.1016/j.amc.2015.04.056. |
[19] |
B. Qu and H. Chang,
Remark on the successive projection algorithm for the multiple-sets split feasibility problem, Numer. Funct. Anal. Optim., 38 (2017), 1614-1623.
doi: 10.1080/01630563.2017.1369109. |
[20] |
R. T. Rockafeller, Convex Analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970.
doi: 10.1515/9781400873173. |
[21] |
S. Suantai, S. Kesornprom and P. Cholamjiak, A new hybrid CQ algorithm for the split feasibility problem in Hilbert spaces and its applications to compressed sensing, Math., 7 (2019), 15pp.
doi: 10.3390/math7090789. |
[22] |
S. Suantai, N. Pholasa and P. Cholamjiak,
The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Ind. Manag. Optim., 14 (2018), 1595-1615.
doi: 10.3934/jimo.2018023. |
[23] |
S. Suantai, N. Pholasa and P. Cholamjiak,
Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 1081-1099.
doi: 10.1007/s13398-018-0535-7. |
[24] |
L. Shi, R. Chen and Y. Wu, An iterative algorithm for the split equality and multiple-sets split equality problem, Abstr. Appl. Anal., 2014 (2014), 5pp.
doi: 10.1155/2014/620813. |
[25] |
N. T. Vinh, P. Cholamjiak and S. Suantai,
A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci. Soc., 42 (2019), 2517-2534.
doi: 10.1007/s40840-018-0614-0. |
[26] |
Y. Wu, R. Chen and L. Shi, Split equality problem and multiple-sets split equality problem for quasi-nonexpansive multi-valued mappings, J. Inequal. Appl., 2014 (2014), 8pp.
doi: 10.1186/1029-242X-2014-428. |
[27] |
H.-K. Xu,
Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), 66 (2002), 240-256.
doi: 10.1112/S0024610702003332. |
show all references
References:
[1] |
C. Byrne,
Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.
doi: 10.1088/0266-5611/18/2/310. |
[2] |
Y. Censor and T. Elfving,
A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692. |
[3] |
S.-S. Chang and R. P. Agarwal, Strong convergence theorems of general split equality problems for quasi-nonexpansive mappings, J. Inequal. Appl., 2014 (2014), 14pp.
doi: 10.1186/1029-242X-2014-367. |
[4] |
Y. Censor and T. Elfving,
The multiple-sets split feasibility problem and its applicatons for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017. |
[5] |
Y. Censor, A. Motova and A. Segal,
Perturbed projections and subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl., 327 (2007), 1244-1256.
doi: 10.1016/j.jmaa.2006.05.010. |
[6] |
S.-S. Chang,
Some problems and results in the study of nonlinear analysis, Nonlinear Anal., 30 (1997), 4197-4208.
doi: 10.1016/S0362-546X(97)00388-X. |
[7] |
Y.-Z. Dang, J. Sun and H. Xu,
Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., 13 (2017), 1383-1394.
doi: 10.3934/jimo.2016078. |
[8] |
Y.-Z. Dang, J. Sun and S. Zhang,
Double projection algorithms for solving the split feasibility problems, J. Ind. Manag. Optim., 15 (2019), 2023-2034.
doi: 10.3934/jimo.2018135. |
[9] |
Q.-L. Dong and S. He,
Self-adaptive projection algorithms for solving the split equality problems, Fixed Point Theory, 18 (2017), 191-202.
doi: 10.24193/fpt-ro.2017.1.15. |
[10] |
Q.-L. Dong, S. He and J. Zhao,
Solving the split equality problem without prior knowledge of operator norms, Optimization, 64 (2015), 1887-1906.
doi: 10.1080/02331934.2014.895897. |
[11] |
Y.-Z. Dang, J. Yao and Y. Gao,
Relaxed two points projection method for solving the multiple-sets split equality problem, Numer. Algorithms, 78 (2018), 263-275.
doi: 10.1007/s11075-017-0375-0. |
[12] |
S. Kesornprom, N. Pholasa and P. Cholamjiak,
On the convergence analysis of the gradient-CQ algorithms for the split feasibility problem, Numer. Algorithms, 2019 (2019), 1-21.
doi: 10.1007/s11075-019-00790-y. |
[13] |
M. Li, X. Kao and H. Che,
Relaxed inertial accelerated algorithms for solving split equality feasibility problem, J. Nonlinear Sci. Appl., 10 (2017), 4109-4121.
doi: 10.22436/jnsa.010.08.07. |
[14] |
A. Moudafi and A. Gibali,
$l_1$-$l_2$ regularization of split feasibility problems, Numer. Algorithms, 78 (2018), 739-757.
doi: 10.1007/s11075-017-0398-6. |
[15] |
A. Moudafi,
Alternating CQ-algorithms for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal., 15 (2014), 809-818.
|
[16] |
P.-E. Maingé,
Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912.
doi: 10.1007/s11228-008-0102-z. |
[17] |
B. Qu, C. Wang and N. Xiu,
Analysis on Newton projection method for the split feasibility problem, Comput. Optim. Appl., 67 (2017), 175-199.
doi: 10.1007/s10589-016-9884-3. |
[18] |
B. Qu, B. Liu and N. Zheng,
On the computation of the step-size for the CQ-like algorithms for the split feasibility problem, Appl. Math. Comput., 262 (2015), 218-223.
doi: 10.1016/j.amc.2015.04.056. |
[19] |
B. Qu and H. Chang,
Remark on the successive projection algorithm for the multiple-sets split feasibility problem, Numer. Funct. Anal. Optim., 38 (2017), 1614-1623.
doi: 10.1080/01630563.2017.1369109. |
[20] |
R. T. Rockafeller, Convex Analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, NJ, 1970.
doi: 10.1515/9781400873173. |
[21] |
S. Suantai, S. Kesornprom and P. Cholamjiak, A new hybrid CQ algorithm for the split feasibility problem in Hilbert spaces and its applications to compressed sensing, Math., 7 (2019), 15pp.
doi: 10.3390/math7090789. |
[22] |
S. Suantai, N. Pholasa and P. Cholamjiak,
The modified inertial relaxed CQ algorithm for solving the split feasibility problems, J. Ind. Manag. Optim., 14 (2018), 1595-1615.
doi: 10.3934/jimo.2018023. |
[23] |
S. Suantai, N. Pholasa and P. Cholamjiak,
Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113 (2019), 1081-1099.
doi: 10.1007/s13398-018-0535-7. |
[24] |
L. Shi, R. Chen and Y. Wu, An iterative algorithm for the split equality and multiple-sets split equality problem, Abstr. Appl. Anal., 2014 (2014), 5pp.
doi: 10.1155/2014/620813. |
[25] |
N. T. Vinh, P. Cholamjiak and S. Suantai,
A new CQ algorithm for solving split feasibility problems in Hilbert spaces, Bull. Malays. Math. Sci. Soc., 42 (2019), 2517-2534.
doi: 10.1007/s40840-018-0614-0. |
[26] |
Y. Wu, R. Chen and L. Shi, Split equality problem and multiple-sets split equality problem for quasi-nonexpansive multi-valued mappings, J. Inequal. Appl., 2014 (2014), 8pp.
doi: 10.1186/1029-242X-2014-428. |
[27] |
H.-K. Xu,
Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), 66 (2002), 240-256.
doi: 10.1112/S0024610702003332. |




Init. | |
RSPA | |
RTPP | |
Init. | |
RSPA | |
RTPP | |
Init. | |
RSPA | |
RTPP | |
Init. | |
RSPA | |
RTPP | |
Init. | |
RSPA | |
RTPP | |
Init. | |
RSPA | |
RTPP | |
RSPA | RTPP | |||||||
1370 | 0.078588 | |||||||
Case 1 | 40 | 30 | 40 | 14 | 0.002048 | 20842 | 3.989155 | |
60 | 60 | 60 | 15 | 0.002840 | 24600 | 10.765349 | ||
15 | 0.001523 | 9573 | 0.669758 | |||||
Case 2 | 40 | 30 | 40 | 17 | 0.002967 | 21674 | 4.326832 | |
60 | 60 | 60 | 18 | 0.003256 | 23970 | 12.725284 | ||
16 | 0.001644 | 1338 | 0.078992 | |||||
Case 3 | 40 | 30 | 40 | 17 | 0.001897 | 21237 | 4.291747 | |
60 | 60 | 60 | 18 | 0.003552 | 24110 | 10.261271 | ||
15 | 0.001891 | 9573 | 0.528336 | |||||
Case 4 | 40 | 30 | 40 | 17 | 0.002379 | 21674 | 4.199953 | |
60 | 60 | 60 | 18 | 0.002865 | 23970 | 10.365368 |
RSPA | RTPP | |||||||
1370 | 0.078588 | |||||||
Case 1 | 40 | 30 | 40 | 14 | 0.002048 | 20842 | 3.989155 | |
60 | 60 | 60 | 15 | 0.002840 | 24600 | 10.765349 | ||
15 | 0.001523 | 9573 | 0.669758 | |||||
Case 2 | 40 | 30 | 40 | 17 | 0.002967 | 21674 | 4.326832 | |
60 | 60 | 60 | 18 | 0.003256 | 23970 | 12.725284 | ||
16 | 0.001644 | 1338 | 0.078992 | |||||
Case 3 | 40 | 30 | 40 | 17 | 0.001897 | 21237 | 4.291747 | |
60 | 60 | 60 | 18 | 0.003552 | 24110 | 10.261271 | ||
15 | 0.001891 | 9573 | 0.528336 | |||||
Case 4 | 40 | 30 | 40 | 17 | 0.002379 | 21674 | 4.199953 | |
60 | 60 | 60 | 18 | 0.002865 | 23970 | 10.365368 |
[1] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[2] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[3] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[4] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[5] |
Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 |
[6] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[7] |
Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227 |
[8] |
Liqun Qi, Shenglong Hu, Yanwei Xu. Spectral norm and nuclear norm of a third order tensor. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021010 |
[9] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020353 |
[10] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[11] |
Jesús A. Álvarez López, Ramón Barral Lijó, John Hunton, Hiraku Nozawa, John R. Parker. Chaotic Delone sets. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021016 |
[12] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[13] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[14] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[15] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[16] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[17] |
Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021002 |
[18] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[19] |
Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249 |
[20] |
Ferenc Weisz. Dual spaces of mixed-norm martingale Hardy spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]