-
Previous Article
The optimal solution to a principal-agent problem with unknown agent ability
- JIMO Home
- This Issue
-
Next Article
Relaxed successive projection algorithm with strong convergence for the multiple-sets split equality problem
Application of survival theory in taxation
1. | Ulaanbaatar State University, Ulaanbaatar, Mongolia |
2. | National University of Mongolia, Ulaanbaatar, Mongolia |
The paper deals with the application of the survival theory in economic systems. Theory and methodology of survival is used to evaluate fiscal policy. The survival of the system reduces to a problem of maximizing a radius of a cube inscribed into a polyhedral set so-called the target-oriented purpose [
References:
[1] |
L. T. Aščepkov,
On the construction of the maximum cube inscribed in a given domain, Zh. Vychisl. Mat. i Mat. Fiz., 20 (1980), 510-513.
|
[2] |
L. T. Aščepkov and U. Badam, Models and methods of survival theory for controlled system, Vladivostok DalNauka, (2006). |
[3] |
U. Badam, A simple model of improving survival in economical systems, in Optimization and Optimal Control, Ser. Comput. Oper. Res., 1, World Sci. Publ., River Edge, NJ, 2003,287–295. |
[4] |
U. Badam,
Necessary optimality conditions in survival problems, Izv. Vyssh. Uchebn. Zaved. Mat., 2002 (2002), 18-22.
|
[5] |
U. Badam, Models and problems of survival theory for linear discrete system, Intellect Control, (2002), 35–50. |
[6] |
R. Enkhbat,
Global optimization approach to Malfatti's problem, J. Global Optim., 65 (2016), 33-39.
doi: 10.1007/s10898-015-0372-6. |
[7] |
R. Enkhbat, M. V. Barkova and A. S. Strekalovsky,
Solving Malfatti's high dimensional problem by global optimization, Numer. Algebra Control Optim., 6 (2016), 153-160.
doi: 10.3934/naco.2016005. |
[8] |
L. Ljungvist and T. J. Sargent, Recursive Macroeconomic Theory, The MIT Press, 2000.
![]() ![]() |
[9] |
C. Malfatti,
Memoria Sopra una Problema Stereotomico, Memoria di Matematica e di Fisica della Societa italiana della Scienze, 10 (1803), 235-244.
|
show all references
References:
[1] |
L. T. Aščepkov,
On the construction of the maximum cube inscribed in a given domain, Zh. Vychisl. Mat. i Mat. Fiz., 20 (1980), 510-513.
|
[2] |
L. T. Aščepkov and U. Badam, Models and methods of survival theory for controlled system, Vladivostok DalNauka, (2006). |
[3] |
U. Badam, A simple model of improving survival in economical systems, in Optimization and Optimal Control, Ser. Comput. Oper. Res., 1, World Sci. Publ., River Edge, NJ, 2003,287–295. |
[4] |
U. Badam,
Necessary optimality conditions in survival problems, Izv. Vyssh. Uchebn. Zaved. Mat., 2002 (2002), 18-22.
|
[5] |
U. Badam, Models and problems of survival theory for linear discrete system, Intellect Control, (2002), 35–50. |
[6] |
R. Enkhbat,
Global optimization approach to Malfatti's problem, J. Global Optim., 65 (2016), 33-39.
doi: 10.1007/s10898-015-0372-6. |
[7] |
R. Enkhbat, M. V. Barkova and A. S. Strekalovsky,
Solving Malfatti's high dimensional problem by global optimization, Numer. Algebra Control Optim., 6 (2016), 153-160.
doi: 10.3934/naco.2016005. |
[8] |
L. Ljungvist and T. J. Sargent, Recursive Macroeconomic Theory, The MIT Press, 2000.
![]() ![]() |
[9] |
C. Malfatti,
Memoria Sopra una Problema Stereotomico, Memoria di Matematica e di Fisica della Societa italiana della Scienze, 10 (1803), 235-244.
|
[1] |
Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036 |
[2] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial and Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[3] |
Charles Fefferman. Interpolation by linear programming I. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477 |
[4] |
Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323 |
[5] |
Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics and Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013 |
[6] |
Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193 |
[7] |
Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397 |
[8] |
Ali Tebbi, Terence Chan, Chi Wan Sung. Linear programming bounds for distributed storage codes. Advances in Mathematics of Communications, 2020, 14 (2) : 333-357. doi: 10.3934/amc.2020024 |
[9] |
Yanqun Liu. Duality in linear programming: From trichotomy to quadrichotomy. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1003-1011. doi: 10.3934/jimo.2011.7.1003 |
[10] |
Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial and Management Optimization, 2020, 16 (4) : 2029-2044. doi: 10.3934/jimo.2019041 |
[11] |
Chen Li, Fajie Wei, Shenghan Zhou. Prediction method based on optimization theory and its application. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1213-1221. doi: 10.3934/dcdss.2015.8.1213 |
[12] |
David Yang Gao, Changzhi Wu. On the triality theory for a quartic polynomial optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (1) : 229-242. doi: 10.3934/jimo.2012.8.229 |
[13] |
Fengming Lin, Xiaolei Fang, Zheming Gao. Distributionally Robust Optimization: A review on theory and applications. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 159-212. doi: 10.3934/naco.2021057 |
[14] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[15] |
Songqiang Qiu, Zhongwen Chen. An adaptively regularized sequential quadratic programming method for equality constrained optimization. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2675-2701. doi: 10.3934/jimo.2019075 |
[16] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial and Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[17] |
Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial and Management Optimization, 2008, 4 (4) : 767-782. doi: 10.3934/jimo.2008.4.767 |
[18] |
Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial and Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177 |
[19] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[20] |
Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]