• Previous Article
    Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism
  • JIMO Home
  • This Issue
  • Next Article
    Pricing and lot-sizing decisions for perishable products when demand changes by freshness
doi: 10.3934/jimo.2020083

Application of survival theory in taxation

1. 

Ulaanbaatar State University, Ulaanbaatar, Mongolia

2. 

National University of Mongolia, Ulaanbaatar, Mongolia

* Corresponding author: Enkhbat Rentsen

Received  September 2019 Revised  January 2020 Published  April 2020

Fund Project: The second author is supported by NUM grant P2019-3751

The paper deals with the application of the survival theory in economic systems. Theory and methodology of survival is used to evaluate fiscal policy. The survival of the system reduces to a problem of maximizing a radius of a cube inscribed into a polyhedral set so-called the target-oriented purpose [1-5]. We show that the survival theory can be applied to the government fiscal policy optimizing a taxation system. Numerical simulations were conducted using Mongolian statistical data for 2015.

Citation: Badam Ulemj, Enkhbat Rentsen, Batchimeg Tsendpurev. Application of survival theory in taxation. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020083
References:
[1]

L. T. Aščepkov, On the construction of the maximum cube inscribed in a given domain, Zh. Vychisl. Mat. i Mat. Fiz., 20 (1980), 510-513.   Google Scholar

[2]

L. T. Aščepkov and U. Badam, Models and methods of survival theory for controlled system, Vladivostok DalNauka, (2006). Google Scholar

[3]

U. Badam, A simple model of improving survival in economical systems, in Optimization and Optimal Control, Ser. Comput. Oper. Res., 1, World Sci. Publ., River Edge, NJ, 2003,287–295.  Google Scholar

[4]

U. Badam, Necessary optimality conditions in survival problems, Izv. Vyssh. Uchebn. Zaved. Mat., 2002 (2002), 18-22.   Google Scholar

[5]

U. Badam, Models and problems of survival theory for linear discrete system, Intellect Control, (2002), 35–50. Google Scholar

[6]

R. Enkhbat, Global optimization approach to Malfatti's problem, J. Global Optim., 65 (2016), 33-39.  doi: 10.1007/s10898-015-0372-6.  Google Scholar

[7]

R. EnkhbatM. V. Barkova and A. S. Strekalovsky, Solving Malfatti's high dimensional problem by global optimization, Numer. Algebra Control Optim., 6 (2016), 153-160.  doi: 10.3934/naco.2016005.  Google Scholar

[8] L. Ljungvist and T. J. Sargent, Recursive Macroeconomic Theory, The MIT Press, 2000.   Google Scholar
[9]

C. Malfatti, Memoria Sopra una Problema Stereotomico, Memoria di Matematica e di Fisica della Societa italiana della Scienze, 10 (1803), 235-244.   Google Scholar

show all references

References:
[1]

L. T. Aščepkov, On the construction of the maximum cube inscribed in a given domain, Zh. Vychisl. Mat. i Mat. Fiz., 20 (1980), 510-513.   Google Scholar

[2]

L. T. Aščepkov and U. Badam, Models and methods of survival theory for controlled system, Vladivostok DalNauka, (2006). Google Scholar

[3]

U. Badam, A simple model of improving survival in economical systems, in Optimization and Optimal Control, Ser. Comput. Oper. Res., 1, World Sci. Publ., River Edge, NJ, 2003,287–295.  Google Scholar

[4]

U. Badam, Necessary optimality conditions in survival problems, Izv. Vyssh. Uchebn. Zaved. Mat., 2002 (2002), 18-22.   Google Scholar

[5]

U. Badam, Models and problems of survival theory for linear discrete system, Intellect Control, (2002), 35–50. Google Scholar

[6]

R. Enkhbat, Global optimization approach to Malfatti's problem, J. Global Optim., 65 (2016), 33-39.  doi: 10.1007/s10898-015-0372-6.  Google Scholar

[7]

R. EnkhbatM. V. Barkova and A. S. Strekalovsky, Solving Malfatti's high dimensional problem by global optimization, Numer. Algebra Control Optim., 6 (2016), 153-160.  doi: 10.3934/naco.2016005.  Google Scholar

[8] L. Ljungvist and T. J. Sargent, Recursive Macroeconomic Theory, The MIT Press, 2000.   Google Scholar
[9]

C. Malfatti, Memoria Sopra una Problema Stereotomico, Memoria di Matematica e di Fisica della Societa italiana della Scienze, 10 (1803), 235-244.   Google Scholar

[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036

[3]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[4]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[5]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[6]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[7]

Prabhu Manyem. A note on optimization modelling of piecewise linear delay costing in the airline industry. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1809-1823. doi: 10.3934/jimo.2020047

[8]

Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[10]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[11]

Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058

[12]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[13]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021076

[14]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[15]

Sarra Delladji, Mohammed Belloufi, Badreddine Sellami. Behavior of the combination of PRP and HZ methods for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 377-389. doi: 10.3934/naco.2020032

[16]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[17]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[18]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[19]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[20]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (49)
  • HTML views (339)
  • Cited by (0)

[Back to Top]