doi: 10.3934/jimo.2020083

Application of survival theory in taxation

1. 

Ulaanbaatar State University, Ulaanbaatar, Mongolia

2. 

National University of Mongolia, Ulaanbaatar, Mongolia

* Corresponding author: Enkhbat Rentsen

Received  September 2019 Revised  January 2020 Published  April 2020

Fund Project: The second author is supported by NUM grant P2019-3751

The paper deals with the application of the survival theory in economic systems. Theory and methodology of survival is used to evaluate fiscal policy. The survival of the system reduces to a problem of maximizing a radius of a cube inscribed into a polyhedral set so-called the target-oriented purpose [1-5]. We show that the survival theory can be applied to the government fiscal policy optimizing a taxation system. Numerical simulations were conducted using Mongolian statistical data for 2015.

Citation: Badam Ulemj, Enkhbat Rentsen, Batchimeg Tsendpurev. Application of survival theory in taxation. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020083
References:
[1]

L. T. Aščepkov, On the construction of the maximum cube inscribed in a given domain, Zh. Vychisl. Mat. i Mat. Fiz., 20 (1980), 510-513.   Google Scholar

[2]

L. T. Aščepkov and U. Badam, Models and methods of survival theory for controlled system, Vladivostok DalNauka, (2006). Google Scholar

[3]

U. Badam, A simple model of improving survival in economical systems, in Optimization and Optimal Control, Ser. Comput. Oper. Res., 1, World Sci. Publ., River Edge, NJ, 2003,287–295.  Google Scholar

[4]

U. Badam, Necessary optimality conditions in survival problems, Izv. Vyssh. Uchebn. Zaved. Mat., 2002 (2002), 18-22.   Google Scholar

[5]

U. Badam, Models and problems of survival theory for linear discrete system, Intellect Control, (2002), 35–50. Google Scholar

[6]

R. Enkhbat, Global optimization approach to Malfatti's problem, J. Global Optim., 65 (2016), 33-39.  doi: 10.1007/s10898-015-0372-6.  Google Scholar

[7]

R. EnkhbatM. V. Barkova and A. S. Strekalovsky, Solving Malfatti's high dimensional problem by global optimization, Numer. Algebra Control Optim., 6 (2016), 153-160.  doi: 10.3934/naco.2016005.  Google Scholar

[8] L. Ljungvist and T. J. Sargent, Recursive Macroeconomic Theory, The MIT Press, 2000.   Google Scholar
[9]

C. Malfatti, Memoria Sopra una Problema Stereotomico, Memoria di Matematica e di Fisica della Societa italiana della Scienze, 10 (1803), 235-244.   Google Scholar

show all references

References:
[1]

L. T. Aščepkov, On the construction of the maximum cube inscribed in a given domain, Zh. Vychisl. Mat. i Mat. Fiz., 20 (1980), 510-513.   Google Scholar

[2]

L. T. Aščepkov and U. Badam, Models and methods of survival theory for controlled system, Vladivostok DalNauka, (2006). Google Scholar

[3]

U. Badam, A simple model of improving survival in economical systems, in Optimization and Optimal Control, Ser. Comput. Oper. Res., 1, World Sci. Publ., River Edge, NJ, 2003,287–295.  Google Scholar

[4]

U. Badam, Necessary optimality conditions in survival problems, Izv. Vyssh. Uchebn. Zaved. Mat., 2002 (2002), 18-22.   Google Scholar

[5]

U. Badam, Models and problems of survival theory for linear discrete system, Intellect Control, (2002), 35–50. Google Scholar

[6]

R. Enkhbat, Global optimization approach to Malfatti's problem, J. Global Optim., 65 (2016), 33-39.  doi: 10.1007/s10898-015-0372-6.  Google Scholar

[7]

R. EnkhbatM. V. Barkova and A. S. Strekalovsky, Solving Malfatti's high dimensional problem by global optimization, Numer. Algebra Control Optim., 6 (2016), 153-160.  doi: 10.3934/naco.2016005.  Google Scholar

[8] L. Ljungvist and T. J. Sargent, Recursive Macroeconomic Theory, The MIT Press, 2000.   Google Scholar
[9]

C. Malfatti, Memoria Sopra una Problema Stereotomico, Memoria di Matematica e di Fisica della Societa italiana della Scienze, 10 (1803), 235-244.   Google Scholar

[1]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020036

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Charles Fefferman. Interpolation by linear programming I. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 477-492. doi: 10.3934/dcds.2011.30.477

[4]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

[5]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[6]

Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193

[7]

Yanqun Liu, Ming-Fang Ding. A ladder method for linear semi-infinite programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 397-412. doi: 10.3934/jimo.2014.10.397

[8]

Ali Tebbi, Terence Chan, Chi Wan Sung. Linear programming bounds for distributed storage codes. Advances in Mathematics of Communications, 2020, 14 (2) : 333-357. doi: 10.3934/amc.2020024

[9]

Yanqun Liu. Duality in linear programming: From trichotomy to quadrichotomy. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1003-1011. doi: 10.3934/jimo.2011.7.1003

[10]

Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial & Management Optimization, 2020, 16 (4) : 2029-2044. doi: 10.3934/jimo.2019041

[11]

Chen Li, Fajie Wei, Shenghan Zhou. Prediction method based on optimization theory and its application. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1213-1221. doi: 10.3934/dcdss.2015.8.1213

[12]

David Yang Gao, Changzhi Wu. On the triality theory for a quartic polynomial optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (1) : 229-242. doi: 10.3934/jimo.2012.8.229

[13]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[14]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019102

[15]

Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial & Management Optimization, 2008, 4 (4) : 767-782. doi: 10.3934/jimo.2008.4.767

[16]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

[17]

Songqiang Qiu, Zhongwen Chen. An adaptively regularized sequential quadratic programming method for equality constrained optimization. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2675-2701. doi: 10.3934/jimo.2019075

[18]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[19]

Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121

[20]

Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684

2019 Impact Factor: 1.366

Article outline

[Back to Top]