• Previous Article
    Probabilistic robust anti-disturbance control of uncertain systems
  • JIMO Home
  • This Issue
  • Next Article
    Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems
doi: 10.3934/jimo.2020084

The optimal solution to a principal-agent problem with unknown agent ability

1. 

School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Kent Street, Bentley, Perth, Western Australia 6102

2. 

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China

3. 

School of Management and Economics, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu 611731, China

* Corresponding author: Rui Li

Received  September 2019 Revised  February 2020 Published  April 2020

Fund Project: This work is supported by the National Natural Science Foundation of China (No.11871302) and the Australian Research Council for the research

We investigate a principal-agent model featured with unknown agent ability. Under the exponential utilities, the necessary and sufficient conditions of the incentive contract are derived by utilizing the martingale and variational methods, and the solutions of the optimal contracts are obtained by using the stochastic maximum principle. The ability uncertainty reduces the principal's ability of incentive provision. It is shown that as time goes by, the information about the ability accumulates, giving the agent less space for belief manipulation, and incentive provision will become easier. Namely, as the contractual time tends to infinity (long-term), the agent ability is revealed completely, the ability uncertainty disappears, and the optimal contracts under known and unknown ability become identical.

Citation: Chong Lai, Lishan Liu, Rui Li. The optimal solution to a principal-agent problem with unknown agent ability. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020084
References:
[1]

T. Adrian and M. M. Westerfield, Disagreement and learning in a dynamic contracting model, The Review of Financial Studies, 22 (2009), 3873-3906.   Google Scholar

[2]

D. Bergemann and U. Hege, Venture capital financing, moral hazard, and learning, Journal of Banking and Finance, 22 (1998), 703-735.  doi: 10.1016/S0378-4266(98)00017-X.  Google Scholar

[3]

J.-M. Bismut, Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[4]

J.-M. Bismut, Duality methods in the control of densities, SIAM Journal on Control and Optimization, 16 (1978), 771-777.  doi: 10.1137/0316052.  Google Scholar

[5]

K. ChenX. WangM. Huang and W.-K. Ching, Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent, Journal of Industrial and Management Optimization, 13 (2017), 873-899.  doi: 10.3934/jimo.2016051.  Google Scholar

[6]

J. CvitanićX. Wan and J. Zhang, Optimal compensation with hidden action and lump-sum payment in a continuous-time model, Applied Mathematics and Optimization, 59 (2009), 99-146.  doi: 10.1007/s00245-008-9050-0.  Google Scholar

[7]

D. Fudenberg and L. Rayo, Training and effort dynamics in apprenticeship, American Economic Review, 109 (2019), 3780-3812.   Google Scholar

[8]

M. FujisakiG. Kallianpur and H. Kunita, Stochastic differential equations for the non linear filtering problem, Osaka Journal of Mathematics, 9 (1972), 19-40.   Google Scholar

[9]

Y. GiatS. T. Hackman and A. Subramanian, Investment under uncertainty, heterogeneous beliefs, and agency conflicts, The Review of Financial Studies, 23 (2009), 1360-1404.   Google Scholar

[10]

Z. HeB. WeiJ. Yu and F. Gao, Optimal long-term contracting with learning, The Review of Financial Studies, 30 (2017), 2006-2065.   Google Scholar

[11]

B. Holmstrom and P. Milgrom, Aggregation and linearity in the provision of intertemporal incentives, Econometrica, 55 (1987), 303-328.  doi: 10.2307/1913238.  Google Scholar

[12]

H. A. Hopenhayn and A. Jarque, Moral hazard and persistence, Ssrn Electronic Journal, 7 (2007), 1-32.  doi: 10.2139/ssrn.2186649.  Google Scholar

[13]

J. Hörner and L. Samuelson, Incentives for experimenting agents, The RAND Journal of Economics, 44 (2013), 632-663.   Google Scholar

[14]

J. Mirlees, The optimal structure of incentives and authority within an organization, Bell Journal of Economics, 7 (1976), 105-131.  doi: 10.2307/3003192.  Google Scholar

[15]

M. Mitchell and Y. Zhang, Unemployment insurance with hidden savings, Journal of Economic Theory, 145 (2010), 2078-2107.  doi: 10.1016/j.jet.2010.03.016.  Google Scholar

[16]

J. Prat and B. Jovanovic, Dynamic contracts when the agent's quality is unknown, Theoretical Economics, 9 (2014), 865-914.  doi: 10.3982/TE1439.  Google Scholar

[17]

Y. Sannikov, A continuous-time version of the principal-agent problem, The Review of Economic Studies, 75 (2008), 957-984.  doi: 10.1111/j.1467-937X.2008.00486.x.  Google Scholar

[18]

H. Schättler and J. Sung, The first-order approach to the continuous-time principal–agent problem with exponential utility, Journal of Economic Theory, 61 (1993), 331-371.  doi: 10.1006/jeth.1993.1072.  Google Scholar

[19]

K. Uğurlu, Dynamic optimal contract under parameter uncertainty with risk-averse agent and principal, Turkish Journal of Mathematics, 42 (2018), 977-992.  doi: 10.3906/mat-1703-102.  Google Scholar

[20]

C. Wang and Y. Yang, Optimal self-enforcement and termination, Journal of Economic Dynamics and Control, 101 (2019), 161-186.  doi: 10.1016/j.jedc.2018.12.010.  Google Scholar

[21]

X. WangY. Lan and W. Tang, An uncertain wage contract model for risk-averse worker under bilateral moral hazard, Journal of Industrial and Management Optimization, 13 (2017), 1815-1840.  doi: 10.3934/jimo.2017020.  Google Scholar

[22]

N. Williams, On dynamic principal-agent problems in continuous time, working paper, University of Wisconsin, Madison, (2009). Google Scholar

[23]

N. Williams, A solvable continuous time dynamic principal–agent model, Journal of Economic Theory, 159 (2015), 989-1015.  doi: 10.1016/j.jet.2015.07.006.  Google Scholar

[24]

T.-Y. Wong, Dynamic agency and endogenous risk-taking, Management Science, 65 (2019), 4032-4048.   Google Scholar

[25]

J. Yong and X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, vol. 43, Springer Science and Business Media, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

show all references

References:
[1]

T. Adrian and M. M. Westerfield, Disagreement and learning in a dynamic contracting model, The Review of Financial Studies, 22 (2009), 3873-3906.   Google Scholar

[2]

D. Bergemann and U. Hege, Venture capital financing, moral hazard, and learning, Journal of Banking and Finance, 22 (1998), 703-735.  doi: 10.1016/S0378-4266(98)00017-X.  Google Scholar

[3]

J.-M. Bismut, Conjugate convex functions in optimal stochastic control, Journal of Mathematical Analysis and Applications, 44 (1973), 384-404.  doi: 10.1016/0022-247X(73)90066-8.  Google Scholar

[4]

J.-M. Bismut, Duality methods in the control of densities, SIAM Journal on Control and Optimization, 16 (1978), 771-777.  doi: 10.1137/0316052.  Google Scholar

[5]

K. ChenX. WangM. Huang and W.-K. Ching, Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent, Journal of Industrial and Management Optimization, 13 (2017), 873-899.  doi: 10.3934/jimo.2016051.  Google Scholar

[6]

J. CvitanićX. Wan and J. Zhang, Optimal compensation with hidden action and lump-sum payment in a continuous-time model, Applied Mathematics and Optimization, 59 (2009), 99-146.  doi: 10.1007/s00245-008-9050-0.  Google Scholar

[7]

D. Fudenberg and L. Rayo, Training and effort dynamics in apprenticeship, American Economic Review, 109 (2019), 3780-3812.   Google Scholar

[8]

M. FujisakiG. Kallianpur and H. Kunita, Stochastic differential equations for the non linear filtering problem, Osaka Journal of Mathematics, 9 (1972), 19-40.   Google Scholar

[9]

Y. GiatS. T. Hackman and A. Subramanian, Investment under uncertainty, heterogeneous beliefs, and agency conflicts, The Review of Financial Studies, 23 (2009), 1360-1404.   Google Scholar

[10]

Z. HeB. WeiJ. Yu and F. Gao, Optimal long-term contracting with learning, The Review of Financial Studies, 30 (2017), 2006-2065.   Google Scholar

[11]

B. Holmstrom and P. Milgrom, Aggregation and linearity in the provision of intertemporal incentives, Econometrica, 55 (1987), 303-328.  doi: 10.2307/1913238.  Google Scholar

[12]

H. A. Hopenhayn and A. Jarque, Moral hazard and persistence, Ssrn Electronic Journal, 7 (2007), 1-32.  doi: 10.2139/ssrn.2186649.  Google Scholar

[13]

J. Hörner and L. Samuelson, Incentives for experimenting agents, The RAND Journal of Economics, 44 (2013), 632-663.   Google Scholar

[14]

J. Mirlees, The optimal structure of incentives and authority within an organization, Bell Journal of Economics, 7 (1976), 105-131.  doi: 10.2307/3003192.  Google Scholar

[15]

M. Mitchell and Y. Zhang, Unemployment insurance with hidden savings, Journal of Economic Theory, 145 (2010), 2078-2107.  doi: 10.1016/j.jet.2010.03.016.  Google Scholar

[16]

J. Prat and B. Jovanovic, Dynamic contracts when the agent's quality is unknown, Theoretical Economics, 9 (2014), 865-914.  doi: 10.3982/TE1439.  Google Scholar

[17]

Y. Sannikov, A continuous-time version of the principal-agent problem, The Review of Economic Studies, 75 (2008), 957-984.  doi: 10.1111/j.1467-937X.2008.00486.x.  Google Scholar

[18]

H. Schättler and J. Sung, The first-order approach to the continuous-time principal–agent problem with exponential utility, Journal of Economic Theory, 61 (1993), 331-371.  doi: 10.1006/jeth.1993.1072.  Google Scholar

[19]

K. Uğurlu, Dynamic optimal contract under parameter uncertainty with risk-averse agent and principal, Turkish Journal of Mathematics, 42 (2018), 977-992.  doi: 10.3906/mat-1703-102.  Google Scholar

[20]

C. Wang and Y. Yang, Optimal self-enforcement and termination, Journal of Economic Dynamics and Control, 101 (2019), 161-186.  doi: 10.1016/j.jedc.2018.12.010.  Google Scholar

[21]

X. WangY. Lan and W. Tang, An uncertain wage contract model for risk-averse worker under bilateral moral hazard, Journal of Industrial and Management Optimization, 13 (2017), 1815-1840.  doi: 10.3934/jimo.2017020.  Google Scholar

[22]

N. Williams, On dynamic principal-agent problems in continuous time, working paper, University of Wisconsin, Madison, (2009). Google Scholar

[23]

N. Williams, A solvable continuous time dynamic principal–agent model, Journal of Economic Theory, 159 (2015), 989-1015.  doi: 10.1016/j.jet.2015.07.006.  Google Scholar

[24]

T.-Y. Wong, Dynamic agency and endogenous risk-taking, Management Science, 65 (2019), 4032-4048.   Google Scholar

[25]

J. Yong and X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, vol. 43, Springer Science and Business Media, 1999. doi: 10.1007/978-1-4612-1466-3.  Google Scholar

Figure 1.  (a) The evolution of the agent's consumption over time $ t $ (b) Reduction in the principal's dividend over time $ t $
Table 1.  Comparison of the optimal consumption and dividend under known and unknown ability
Known ability Unknown ability
Consumption $ c^N=\mu M-\frac{1}{\lambda}\left[\ln k+\ln(-q)\right] $ $ c^{un}=\mu M-\frac{1}{\lambda}\big[\ln {k^T(t)}+\ln(-q)\big] $
Dividend $ d^N=ry-\frac{1}{\lambda}\big[K(t)+\ln r -\ln(-q)\big] $ $ d^{un}=ry-\frac{1}{\lambda}\big[K_1(t)+\ln r -\ln(-q)\big] $
Known ability Unknown ability
Consumption $ c^N=\mu M-\frac{1}{\lambda}\left[\ln k+\ln(-q)\right] $ $ c^{un}=\mu M-\frac{1}{\lambda}\big[\ln {k^T(t)}+\ln(-q)\big] $
Dividend $ d^N=ry-\frac{1}{\lambda}\big[K(t)+\ln r -\ln(-q)\big] $ $ d^{un}=ry-\frac{1}{\lambda}\big[K_1(t)+\ln r -\ln(-q)\big] $
[1]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[2]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[3]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[4]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[5]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[6]

Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242

[7]

Ana Rita Nogueira, João Gama, Carlos Abreu Ferreira. Causal discovery in machine learning: Theories and applications. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021008

[8]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[9]

Chong Wang, Xu Chen. Fresh produce price-setting newsvendor with bidirectional option contracts. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021052

[10]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[11]

Shan-Shan Lin. Due-window assignment scheduling with learning and deterioration effects. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021081

[12]

José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005

[13]

Wei Wang, Yang Shen, Linyi Qian, Zhixin Yang. Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021072

[14]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[15]

Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021039

[16]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[17]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[18]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[19]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[20]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (69)
  • HTML views (352)
  • Cited by (0)

Other articles
by authors

[Back to Top]