• Previous Article
    Channel leadership and recycling channel in closed-loop supply chain: The case of recycling price by the recycling party
  • JIMO Home
  • This Issue
  • Next Article
    Optimal health insurance with constraints under utility of health, wealth and income
doi: 10.3934/jimo.2020087

Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes

1. 

School of Statistics, Qufu Normal University, Qufu, Shandong, 273165, China

2. 

Faculty of Business and Economics, The University of Melbourne, Melbourne, VIC 3010, Australia

* Corresponding author: Yongxia Zhao

Received  October 2019 Revised  December 2019 Published  April 2020

In the dual risk model, we study the periodic dividend problem with a non-exponential discount function which results in a time-inconsistent control problem. Viewing it within the game theoretic framework, we extend the Hamilton-Jacobi-Bellman (HJB) system of equations from the fixed terminal to the time of ruin and derive the verification theorem, and we generalize the theory of classical optimal periodic dividend. Under two special non-exponential discount functions, we obtain the closed-form expressions of equilibrium strategy and the corresponding equilibrium value function in a compound Poisson dual model. Finally, some numerical examples are presented to illustrate the impact of some parameters.

Citation: Wei Zhong, Yongxia Zhao, Ping Chen. Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020087
References:
[1]

I. Alia, A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion, Mathematical Control and Related Fields, 9 (2019), 541-570.  doi: 10.3934/mcrf.2019025.  Google Scholar

[2] D. Applebaum, Lévy processes and Stochastic Calculus, 2$^nd$ edition, Cambridge university press, 2009.  doi: 10.1017/CBO9780511755323.  Google Scholar
[3]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[4]

B. AvanziE. C. K. CheungB. Wong and J.-K. Woo, On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency, Insurance: Mathematics and Economics, 52 (2013), 98-113.  doi: 10.1016/j.insmatheco.2012.10.008.  Google Scholar

[5]

B. Avanzi and H. U. Gerber, Optimal dividends in the dual model with diffusion, ASTIN Bulletin, 38 (2008), 653-667.  doi: 10.1017/S0515036100015324.  Google Scholar

[6]

B. AvanziV. Tu and B. Wong, On optimal periodic dividend strategies in the dual model with diffusion, Insurance: Mathematics and Economics, 55 (2014), 210-224.  doi: 10.1016/j.insmatheco.2014.01.005.  Google Scholar

[7]

O. E. Barndorff-Nielsen, T. Mikosch and S. I. Resnick, Lévy Processes: Theory and Applications, Springer Science and Business Media, New York, 2012. Google Scholar

[8]

F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer Science and Business Media, London, 2008. doi: 10.1007/978-1-84628-797-8.  Google Scholar

[9]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.  Google Scholar

[10]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, Working paper, Stockholm School of Economics, 2010. Google Scholar

[11]

S. ChenZ. Li and Y. Zeng, Optimal dividend strategy for a general diffusion process with time-inconsistent preferences and ruin penalty, SIAM Journal on Financial Mathematics, 9 (2018), 274-314.  doi: 10.1137/16M1088983.  Google Scholar

[12]

S. ChenX. WangY. Deng and Y. Zeng, Optimal dividend-financing strategies in a dual risk model with time-inconsistent preferences, Insurance: Mathematics and Economics, 67 (2016), 27-37.  doi: 10.1016/j.insmatheco.2015.11.005.  Google Scholar

[13]

A. ChunxiangZ. Li and F. Wang, Optimal investment strategy under time-inconsistent preferences and high-water mark contract, Operations Research Letters, 44 (2016), 212-218.  doi: 10.1016/j.orl.2015.12.013.  Google Scholar

[14]

H. DongC. Yin and H. Dai, Spectrally negative Lévy risk model under Erlangized barrier strategy, Journal of Computational and Applied Mathematics, 351 (2019), 101-116.  doi: 10.1016/j.cam.2018.11.001.  Google Scholar

[15]

B. De Finetti, Su un'impostazione alternativa della teoria collectiva del rischio, Transactions of the 15th International Congress of Actuaries, 2 (1957), 433-443.   Google Scholar

[16]

I. Ekeland and T. A. Pirvu, Investment and consumption without commitment, Mathematics and Financial Economics, 2 (2008), 57-86.  doi: 10.1007/s11579-008-0014-6.  Google Scholar

[17]

C. Foucart, P. S. Li and X. Zhou, Time-changed spectrally positive Lévy processes starting from infinity, preprint, arXiv: 1901.10689. Google Scholar

[18]

S. R. Grenadier and N. Wang, Investment under uncertainty and time-inconsistent preferences, NBER Working Paper Series, (2006), 1–49. doi: 10.3386/w12042.  Google Scholar

[19]

F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 3$^{nd}$ edition, World Scientific Publishing Company, 1999. doi: 10.1142/p821.  Google Scholar

[20]

A. E. Kyprianou, Introductory Lectures on Fluctuations of Lévy Processes with Applications, Springer Science and Business Media, Berlin, 2006. doi: 10.1007/978-3-540-31343-4.  Google Scholar

[21]

Y. LiZ. Li and Y. Zeng, Equilibrium dividend strategy with non-exponential discounting in a dual model, Journal of Optimization Theory and Applications, 168 (2016), 699-722.  doi: 10.1007/s10957-015-0742-8.  Google Scholar

[22]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation, The Quarterly Journal of Economics, 107 (1992), 578-596.  doi: 10.1017/CBO9780511803475.034.  Google Scholar

[23]

E. G. J. Luttmer and T. Mariotti, Subjective discounting in an exchange economy, Journal of Political Economy, 111 (2003), 959-989.  doi: 10.1086/376954.  Google Scholar

[24]

J. L. Pérez and K. Yamazaki, On the optimality of periodic barrier strategies for a spectrally positive Lévy process, Insurance: Mathematics and Economics, 77 (2017), 1-13.  doi: 10.1016/j.insmatheco.2017.08.001.  Google Scholar

[25]

W. Schoutens, Lévy processes in Finance: Pricing Financial Derivatives, Wiley, New York, 2003. doi: 10.1002/0470870230.  Google Scholar

[26]

R. Thaler, Some empirical evidence on dynamic inconsistency, Insurance: Mathematics and Economics, 8 (1981), 201-207.  doi: 10.1016/0165-1765(81)90067-7.  Google Scholar

[27]

Y. Tian, Optimal capital structure and investment decisions under time-inconsistent preferences, Journal of Economic Dynamics and Control, 65 (2016), 83-104.  doi: 10.1016/j.jedc.2016.02.001.  Google Scholar

[28]

C. YinY. Wen and Y. Zhao, On the optimal dividend problem for a spectrally positive Lévy process, ASTIN Bulletin, 44 (2014), 635-651.  doi: 10.1017/asb.2014.12.  Google Scholar

[29]

Q. ZhaoJ. Wei and R. Wang, On dividend strategies with non-exponential discounting, Insurance: Mathematics and Economics, 58 (2014), 1-13.  doi: 10.1016/j.insmatheco.2014.06.001.  Google Scholar

[30]

Y. ZhaoP. Chen and H. Yang, Optimal periodic dividend and capital injection problem for spectrally positive Lévy processes, Insurance: Mathematics and Economics, 74 (2017), 135-146.  doi: 10.1016/j.insmatheco.2017.03.006.  Google Scholar

[31]

Y. Zhao, R. Wang and D. Yao, Optimal dividend and equity issuance in the perturbed dual model under a penalty for ruin, Communications in Statistics-Theory and Methods, 45 (2016), 365–384. doi: 10.1080/03610926.2013.810269.  Google Scholar

[32]

Y. ZhaoR. WangD. Yao and P. Chen, Optimal dividends and capital injections in the dual model with a random time horizon, Journal of Optimization Theory and Applications, 167 (2015), 272-295.  doi: 10.1007/s10957-014-0653-0.  Google Scholar

show all references

References:
[1]

I. Alia, A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion, Mathematical Control and Related Fields, 9 (2019), 541-570.  doi: 10.3934/mcrf.2019025.  Google Scholar

[2] D. Applebaum, Lévy processes and Stochastic Calculus, 2$^nd$ edition, Cambridge university press, 2009.  doi: 10.1017/CBO9780511755323.  Google Scholar
[3]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[4]

B. AvanziE. C. K. CheungB. Wong and J.-K. Woo, On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency, Insurance: Mathematics and Economics, 52 (2013), 98-113.  doi: 10.1016/j.insmatheco.2012.10.008.  Google Scholar

[5]

B. Avanzi and H. U. Gerber, Optimal dividends in the dual model with diffusion, ASTIN Bulletin, 38 (2008), 653-667.  doi: 10.1017/S0515036100015324.  Google Scholar

[6]

B. AvanziV. Tu and B. Wong, On optimal periodic dividend strategies in the dual model with diffusion, Insurance: Mathematics and Economics, 55 (2014), 210-224.  doi: 10.1016/j.insmatheco.2014.01.005.  Google Scholar

[7]

O. E. Barndorff-Nielsen, T. Mikosch and S. I. Resnick, Lévy Processes: Theory and Applications, Springer Science and Business Media, New York, 2012. Google Scholar

[8]

F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer Science and Business Media, London, 2008. doi: 10.1007/978-1-84628-797-8.  Google Scholar

[9]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.  Google Scholar

[10]

T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, Working paper, Stockholm School of Economics, 2010. Google Scholar

[11]

S. ChenZ. Li and Y. Zeng, Optimal dividend strategy for a general diffusion process with time-inconsistent preferences and ruin penalty, SIAM Journal on Financial Mathematics, 9 (2018), 274-314.  doi: 10.1137/16M1088983.  Google Scholar

[12]

S. ChenX. WangY. Deng and Y. Zeng, Optimal dividend-financing strategies in a dual risk model with time-inconsistent preferences, Insurance: Mathematics and Economics, 67 (2016), 27-37.  doi: 10.1016/j.insmatheco.2015.11.005.  Google Scholar

[13]

A. ChunxiangZ. Li and F. Wang, Optimal investment strategy under time-inconsistent preferences and high-water mark contract, Operations Research Letters, 44 (2016), 212-218.  doi: 10.1016/j.orl.2015.12.013.  Google Scholar

[14]

H. DongC. Yin and H. Dai, Spectrally negative Lévy risk model under Erlangized barrier strategy, Journal of Computational and Applied Mathematics, 351 (2019), 101-116.  doi: 10.1016/j.cam.2018.11.001.  Google Scholar

[15]

B. De Finetti, Su un'impostazione alternativa della teoria collectiva del rischio, Transactions of the 15th International Congress of Actuaries, 2 (1957), 433-443.   Google Scholar

[16]

I. Ekeland and T. A. Pirvu, Investment and consumption without commitment, Mathematics and Financial Economics, 2 (2008), 57-86.  doi: 10.1007/s11579-008-0014-6.  Google Scholar

[17]

C. Foucart, P. S. Li and X. Zhou, Time-changed spectrally positive Lévy processes starting from infinity, preprint, arXiv: 1901.10689. Google Scholar

[18]

S. R. Grenadier and N. Wang, Investment under uncertainty and time-inconsistent preferences, NBER Working Paper Series, (2006), 1–49. doi: 10.3386/w12042.  Google Scholar

[19]

F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 3$^{nd}$ edition, World Scientific Publishing Company, 1999. doi: 10.1142/p821.  Google Scholar

[20]

A. E. Kyprianou, Introductory Lectures on Fluctuations of Lévy Processes with Applications, Springer Science and Business Media, Berlin, 2006. doi: 10.1007/978-3-540-31343-4.  Google Scholar

[21]

Y. LiZ. Li and Y. Zeng, Equilibrium dividend strategy with non-exponential discounting in a dual model, Journal of Optimization Theory and Applications, 168 (2016), 699-722.  doi: 10.1007/s10957-015-0742-8.  Google Scholar

[22]

G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation, The Quarterly Journal of Economics, 107 (1992), 578-596.  doi: 10.1017/CBO9780511803475.034.  Google Scholar

[23]

E. G. J. Luttmer and T. Mariotti, Subjective discounting in an exchange economy, Journal of Political Economy, 111 (2003), 959-989.  doi: 10.1086/376954.  Google Scholar

[24]

J. L. Pérez and K. Yamazaki, On the optimality of periodic barrier strategies for a spectrally positive Lévy process, Insurance: Mathematics and Economics, 77 (2017), 1-13.  doi: 10.1016/j.insmatheco.2017.08.001.  Google Scholar

[25]

W. Schoutens, Lévy processes in Finance: Pricing Financial Derivatives, Wiley, New York, 2003. doi: 10.1002/0470870230.  Google Scholar

[26]

R. Thaler, Some empirical evidence on dynamic inconsistency, Insurance: Mathematics and Economics, 8 (1981), 201-207.  doi: 10.1016/0165-1765(81)90067-7.  Google Scholar

[27]

Y. Tian, Optimal capital structure and investment decisions under time-inconsistent preferences, Journal of Economic Dynamics and Control, 65 (2016), 83-104.  doi: 10.1016/j.jedc.2016.02.001.  Google Scholar

[28]

C. YinY. Wen and Y. Zhao, On the optimal dividend problem for a spectrally positive Lévy process, ASTIN Bulletin, 44 (2014), 635-651.  doi: 10.1017/asb.2014.12.  Google Scholar

[29]

Q. ZhaoJ. Wei and R. Wang, On dividend strategies with non-exponential discounting, Insurance: Mathematics and Economics, 58 (2014), 1-13.  doi: 10.1016/j.insmatheco.2014.06.001.  Google Scholar

[30]

Y. ZhaoP. Chen and H. Yang, Optimal periodic dividend and capital injection problem for spectrally positive Lévy processes, Insurance: Mathematics and Economics, 74 (2017), 135-146.  doi: 10.1016/j.insmatheco.2017.03.006.  Google Scholar

[31]

Y. Zhao, R. Wang and D. Yao, Optimal dividend and equity issuance in the perturbed dual model under a penalty for ruin, Communications in Statistics-Theory and Methods, 45 (2016), 365–384. doi: 10.1080/03610926.2013.810269.  Google Scholar

[32]

Y. ZhaoR. WangD. Yao and P. Chen, Optimal dividends and capital injections in the dual model with a random time horizon, Journal of Optimization Theory and Applications, 167 (2015), 272-295.  doi: 10.1007/s10957-014-0653-0.  Google Scholar

Figure 1.  Influence of parameters $ \rho_1 $ and $ \rho_2 $ to equilibrium value function and equilibrium dividend barrier
Figure 2.  Contour plot of $ c $ as a function of $ \beta $ and $ \lambda $
Figure 3.  Influence of parameters $ \eta $ and $ c $ to equilibrium value function
Table 1.  Influences of $ \beta $ and $ \lambda $ on $ b $
$ c=0.7 $ $ \gamma=1 $ $ \omega_1=0.7 $ $ \rho_1=0.1 $ $ \rho_2=0.3 $
$ \beta=1.5 $ $ \lambda=1.5 $
$ \lambda $$ \uparrow $ 1.3 1.8 $ \mathit{\boldsymbol{2.1920}} $ 3 $ \beta $$ \uparrow $ 0.8 1 1.3 1.7
$ b $$ \curvearrowright $ 0.5606 1.5520 $ \mathit{\boldsymbol{1.6794}} $ 1.5256 $ \downarrow $ 2.2197 1.9983 1.5353 0.6472
$ c=0.7 $ $ \gamma=1 $ $ \omega_1=0.7 $ $ \rho_1=0.1 $ $ \rho_2=0.3 $
$ \beta=1.5 $ $ \lambda=1.5 $
$ \lambda $$ \uparrow $ 1.3 1.8 $ \mathit{\boldsymbol{2.1920}} $ 3 $ \beta $$ \uparrow $ 0.8 1 1.3 1.7
$ b $$ \curvearrowright $ 0.5606 1.5520 $ \mathit{\boldsymbol{1.6794}} $ 1.5256 $ \downarrow $ 2.2197 1.9983 1.5353 0.6472
[1]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[2]

Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021103

[3]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[4]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[5]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[6]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[7]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[8]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[9]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[10]

Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021127

[11]

Mingshang Hu, Shige Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 1-22. doi: 10.3934/puqr.2021001

[12]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[13]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[14]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[15]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[16]

Abdeslem Hafid Bentbib, Smahane El-Halouy, El Mostafa Sadek. Extended Krylov subspace methods for solving Sylvester and Stein tensor equations. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021026

[17]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[18]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[19]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[20]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (69)
  • HTML views (366)
  • Cited by (0)

Other articles
by authors

[Back to Top]