
-
Previous Article
A lattice method for option evaluation with regime-switching asset correlation structure
- JIMO Home
- This Issue
-
Next Article
Simultaneous optimal predictions under two seemingly unrelated linear random-effects models
Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes
1. | School of Statistics, Qufu Normal University, Qufu, Shandong, 273165, China |
2. | Faculty of Business and Economics, The University of Melbourne, Melbourne, VIC 3010, Australia |
In the dual risk model, we study the periodic dividend problem with a non-exponential discount function which results in a time-inconsistent control problem. Viewing it within the game theoretic framework, we extend the Hamilton-Jacobi-Bellman (HJB) system of equations from the fixed terminal to the time of ruin and derive the verification theorem, and we generalize the theory of classical optimal periodic dividend. Under two special non-exponential discount functions, we obtain the closed-form expressions of equilibrium strategy and the corresponding equilibrium value function in a compound Poisson dual model. Finally, some numerical examples are presented to illustrate the impact of some parameters.
References:
[1] |
I. Alia,
A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion, Mathematical Control and Related Fields, 9 (2019), 541-570.
doi: 10.3934/mcrf.2019025. |
[2] |
D. Applebaum, Lévy processes and Stochastic Calculus, 2$^nd$ edition, Cambridge university press, 2009.
doi: 10.1017/CBO9780511755323.![]() ![]() |
[3] |
S. Asmussen and M. Taksar,
Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.
doi: 10.1016/S0167-6687(96)00017-0. |
[4] |
B. Avanzi, E. C. K. Cheung, B. Wong and J.-K. Woo,
On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency, Insurance: Mathematics and Economics, 52 (2013), 98-113.
doi: 10.1016/j.insmatheco.2012.10.008. |
[5] |
B. Avanzi and H. U. Gerber,
Optimal dividends in the dual model with diffusion, ASTIN Bulletin, 38 (2008), 653-667.
doi: 10.1017/S0515036100015324. |
[6] |
B. Avanzi, V. Tu and B. Wong,
On optimal periodic dividend strategies in the dual model with diffusion, Insurance: Mathematics and Economics, 55 (2014), 210-224.
doi: 10.1016/j.insmatheco.2014.01.005. |
[7] |
O. E. Barndorff-Nielsen, T. Mikosch and S. I. Resnick, Lévy Processes: Theory and Applications, Springer Science and Business Media, New York, 2012. Google Scholar |
[8] |
F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer Science and Business Media, London, 2008.
doi: 10.1007/978-1-84628-797-8. |
[9] |
T. Björk, M. Khapko and A. Murgoci,
On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.
doi: 10.1007/s00780-017-0327-5. |
[10] |
T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, Working paper, Stockholm School of Economics, 2010. Google Scholar |
[11] |
S. Chen, Z. Li and Y. Zeng,
Optimal dividend strategy for a general diffusion process with time-inconsistent preferences and ruin penalty, SIAM Journal on Financial Mathematics, 9 (2018), 274-314.
doi: 10.1137/16M1088983. |
[12] |
S. Chen, X. Wang, Y. Deng and Y. Zeng,
Optimal dividend-financing strategies in a dual risk model with time-inconsistent preferences, Insurance: Mathematics and Economics, 67 (2016), 27-37.
doi: 10.1016/j.insmatheco.2015.11.005. |
[13] |
A. Chunxiang, Z. Li and F. Wang,
Optimal investment strategy under time-inconsistent preferences and high-water mark contract, Operations Research Letters, 44 (2016), 212-218.
doi: 10.1016/j.orl.2015.12.013. |
[14] |
H. Dong, C. Yin and H. Dai,
Spectrally negative Lévy risk model under Erlangized barrier strategy, Journal of Computational and Applied Mathematics, 351 (2019), 101-116.
doi: 10.1016/j.cam.2018.11.001. |
[15] |
B. De Finetti, Su un'impostazione alternativa della teoria collectiva del rischio, Transactions of the 15th International Congress of Actuaries, 2 (1957), 433-443. Google Scholar |
[16] |
I. Ekeland and T. A. Pirvu,
Investment and consumption without commitment, Mathematics and Financial Economics, 2 (2008), 57-86.
doi: 10.1007/s11579-008-0014-6. |
[17] |
C. Foucart, P. S. Li and X. Zhou, Time-changed spectrally positive Lévy processes starting from infinity, preprint, arXiv: 1901.10689. Google Scholar |
[18] |
S. R. Grenadier and N. Wang, Investment under uncertainty and time-inconsistent preferences, NBER Working Paper Series, (2006), 1–49.
doi: 10.3386/w12042. |
[19] |
F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 3$^{nd}$ edition, World Scientific Publishing Company, 1999.
doi: 10.1142/p821. |
[20] |
A. E. Kyprianou, Introductory Lectures on Fluctuations of Lévy Processes with Applications, Springer Science and Business Media, Berlin, 2006.
doi: 10.1007/978-3-540-31343-4. |
[21] |
Y. Li, Z. Li and Y. Zeng,
Equilibrium dividend strategy with non-exponential discounting in a dual model, Journal of Optimization Theory and Applications, 168 (2016), 699-722.
doi: 10.1007/s10957-015-0742-8. |
[22] |
G. Loewenstein and D. Prelec,
Anomalies in intertemporal choice: Evidence and an interpretation, The Quarterly Journal of Economics, 107 (1992), 578-596.
doi: 10.1017/CBO9780511803475.034. |
[23] |
E. G. J. Luttmer and T. Mariotti,
Subjective discounting in an exchange economy, Journal of Political Economy, 111 (2003), 959-989.
doi: 10.1086/376954. |
[24] |
J. L. Pérez and K. Yamazaki,
On the optimality of periodic barrier strategies for a spectrally positive Lévy process, Insurance: Mathematics and Economics, 77 (2017), 1-13.
doi: 10.1016/j.insmatheco.2017.08.001. |
[25] |
W. Schoutens, Lévy processes in Finance: Pricing Financial Derivatives, Wiley, New York, 2003.
doi: 10.1002/0470870230. |
[26] |
R. Thaler,
Some empirical evidence on dynamic inconsistency, Insurance: Mathematics and Economics, 8 (1981), 201-207.
doi: 10.1016/0165-1765(81)90067-7. |
[27] |
Y. Tian,
Optimal capital structure and investment decisions under time-inconsistent preferences, Journal of Economic Dynamics and Control, 65 (2016), 83-104.
doi: 10.1016/j.jedc.2016.02.001. |
[28] |
C. Yin, Y. Wen and Y. Zhao,
On the optimal dividend problem for a spectrally positive Lévy process, ASTIN Bulletin, 44 (2014), 635-651.
doi: 10.1017/asb.2014.12. |
[29] |
Q. Zhao, J. Wei and R. Wang,
On dividend strategies with non-exponential discounting, Insurance: Mathematics and Economics, 58 (2014), 1-13.
doi: 10.1016/j.insmatheco.2014.06.001. |
[30] |
Y. Zhao, P. Chen and H. Yang,
Optimal periodic dividend and capital injection problem for spectrally positive Lévy processes, Insurance: Mathematics and Economics, 74 (2017), 135-146.
doi: 10.1016/j.insmatheco.2017.03.006. |
[31] |
Y. Zhao, R. Wang and D. Yao, Optimal dividend and equity issuance in the perturbed dual model under a penalty for ruin, Communications in Statistics-Theory and Methods, 45 (2016), 365–384.
doi: 10.1080/03610926.2013.810269. |
[32] |
Y. Zhao, R. Wang, D. Yao and P. Chen,
Optimal dividends and capital injections in the dual model with a random time horizon, Journal of Optimization Theory and Applications, 167 (2015), 272-295.
doi: 10.1007/s10957-014-0653-0. |
show all references
References:
[1] |
I. Alia,
A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion, Mathematical Control and Related Fields, 9 (2019), 541-570.
doi: 10.3934/mcrf.2019025. |
[2] |
D. Applebaum, Lévy processes and Stochastic Calculus, 2$^nd$ edition, Cambridge university press, 2009.
doi: 10.1017/CBO9780511755323.![]() ![]() |
[3] |
S. Asmussen and M. Taksar,
Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.
doi: 10.1016/S0167-6687(96)00017-0. |
[4] |
B. Avanzi, E. C. K. Cheung, B. Wong and J.-K. Woo,
On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency, Insurance: Mathematics and Economics, 52 (2013), 98-113.
doi: 10.1016/j.insmatheco.2012.10.008. |
[5] |
B. Avanzi and H. U. Gerber,
Optimal dividends in the dual model with diffusion, ASTIN Bulletin, 38 (2008), 653-667.
doi: 10.1017/S0515036100015324. |
[6] |
B. Avanzi, V. Tu and B. Wong,
On optimal periodic dividend strategies in the dual model with diffusion, Insurance: Mathematics and Economics, 55 (2014), 210-224.
doi: 10.1016/j.insmatheco.2014.01.005. |
[7] |
O. E. Barndorff-Nielsen, T. Mikosch and S. I. Resnick, Lévy Processes: Theory and Applications, Springer Science and Business Media, New York, 2012. Google Scholar |
[8] |
F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer Science and Business Media, London, 2008.
doi: 10.1007/978-1-84628-797-8. |
[9] |
T. Björk, M. Khapko and A. Murgoci,
On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.
doi: 10.1007/s00780-017-0327-5. |
[10] |
T. Björk and A. Murgoci, A General Theory of Markovian Time Inconsistent Stochastic Control Problems, Working paper, Stockholm School of Economics, 2010. Google Scholar |
[11] |
S. Chen, Z. Li and Y. Zeng,
Optimal dividend strategy for a general diffusion process with time-inconsistent preferences and ruin penalty, SIAM Journal on Financial Mathematics, 9 (2018), 274-314.
doi: 10.1137/16M1088983. |
[12] |
S. Chen, X. Wang, Y. Deng and Y. Zeng,
Optimal dividend-financing strategies in a dual risk model with time-inconsistent preferences, Insurance: Mathematics and Economics, 67 (2016), 27-37.
doi: 10.1016/j.insmatheco.2015.11.005. |
[13] |
A. Chunxiang, Z. Li and F. Wang,
Optimal investment strategy under time-inconsistent preferences and high-water mark contract, Operations Research Letters, 44 (2016), 212-218.
doi: 10.1016/j.orl.2015.12.013. |
[14] |
H. Dong, C. Yin and H. Dai,
Spectrally negative Lévy risk model under Erlangized barrier strategy, Journal of Computational and Applied Mathematics, 351 (2019), 101-116.
doi: 10.1016/j.cam.2018.11.001. |
[15] |
B. De Finetti, Su un'impostazione alternativa della teoria collectiva del rischio, Transactions of the 15th International Congress of Actuaries, 2 (1957), 433-443. Google Scholar |
[16] |
I. Ekeland and T. A. Pirvu,
Investment and consumption without commitment, Mathematics and Financial Economics, 2 (2008), 57-86.
doi: 10.1007/s11579-008-0014-6. |
[17] |
C. Foucart, P. S. Li and X. Zhou, Time-changed spectrally positive Lévy processes starting from infinity, preprint, arXiv: 1901.10689. Google Scholar |
[18] |
S. R. Grenadier and N. Wang, Investment under uncertainty and time-inconsistent preferences, NBER Working Paper Series, (2006), 1–49.
doi: 10.3386/w12042. |
[19] |
F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 3$^{nd}$ edition, World Scientific Publishing Company, 1999.
doi: 10.1142/p821. |
[20] |
A. E. Kyprianou, Introductory Lectures on Fluctuations of Lévy Processes with Applications, Springer Science and Business Media, Berlin, 2006.
doi: 10.1007/978-3-540-31343-4. |
[21] |
Y. Li, Z. Li and Y. Zeng,
Equilibrium dividend strategy with non-exponential discounting in a dual model, Journal of Optimization Theory and Applications, 168 (2016), 699-722.
doi: 10.1007/s10957-015-0742-8. |
[22] |
G. Loewenstein and D. Prelec,
Anomalies in intertemporal choice: Evidence and an interpretation, The Quarterly Journal of Economics, 107 (1992), 578-596.
doi: 10.1017/CBO9780511803475.034. |
[23] |
E. G. J. Luttmer and T. Mariotti,
Subjective discounting in an exchange economy, Journal of Political Economy, 111 (2003), 959-989.
doi: 10.1086/376954. |
[24] |
J. L. Pérez and K. Yamazaki,
On the optimality of periodic barrier strategies for a spectrally positive Lévy process, Insurance: Mathematics and Economics, 77 (2017), 1-13.
doi: 10.1016/j.insmatheco.2017.08.001. |
[25] |
W. Schoutens, Lévy processes in Finance: Pricing Financial Derivatives, Wiley, New York, 2003.
doi: 10.1002/0470870230. |
[26] |
R. Thaler,
Some empirical evidence on dynamic inconsistency, Insurance: Mathematics and Economics, 8 (1981), 201-207.
doi: 10.1016/0165-1765(81)90067-7. |
[27] |
Y. Tian,
Optimal capital structure and investment decisions under time-inconsistent preferences, Journal of Economic Dynamics and Control, 65 (2016), 83-104.
doi: 10.1016/j.jedc.2016.02.001. |
[28] |
C. Yin, Y. Wen and Y. Zhao,
On the optimal dividend problem for a spectrally positive Lévy process, ASTIN Bulletin, 44 (2014), 635-651.
doi: 10.1017/asb.2014.12. |
[29] |
Q. Zhao, J. Wei and R. Wang,
On dividend strategies with non-exponential discounting, Insurance: Mathematics and Economics, 58 (2014), 1-13.
doi: 10.1016/j.insmatheco.2014.06.001. |
[30] |
Y. Zhao, P. Chen and H. Yang,
Optimal periodic dividend and capital injection problem for spectrally positive Lévy processes, Insurance: Mathematics and Economics, 74 (2017), 135-146.
doi: 10.1016/j.insmatheco.2017.03.006. |
[31] |
Y. Zhao, R. Wang and D. Yao, Optimal dividend and equity issuance in the perturbed dual model under a penalty for ruin, Communications in Statistics-Theory and Methods, 45 (2016), 365–384.
doi: 10.1080/03610926.2013.810269. |
[32] |
Y. Zhao, R. Wang, D. Yao and P. Chen,
Optimal dividends and capital injections in the dual model with a random time horizon, Journal of Optimization Theory and Applications, 167 (2015), 272-295.
doi: 10.1007/s10957-014-0653-0. |

1.3 | 1.8 | 3 | 0.8 | 1 | 1.3 | 1.7 | ||||
0.5606 | 1.5520 | 1.5256 | 2.2197 | 1.9983 | 1.5353 | 0.6472 |
1.3 | 1.8 | 3 | 0.8 | 1 | 1.3 | 1.7 | ||||
0.5606 | 1.5520 | 1.5256 | 2.2197 | 1.9983 | 1.5353 | 0.6472 |
[1] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[2] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020179 |
[3] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[4] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[5] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[6] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[7] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[8] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[9] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[10] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[11] |
Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2021, 11 (1) : 1-22. doi: 10.3934/mcrf.2020024 |
[12] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[13] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[14] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[15] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[16] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[17] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[18] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[19] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[20] |
Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]