-
Previous Article
Alliance strategy of construction and demolition waste recycling based on the modified shapley value under government regulation
- JIMO Home
- This Issue
-
Next Article
Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces
A combined scalarization method for multi-objective optimization problems
1. | Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, China |
2. | School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China |
In this paper, we propose a new combined scalarization method of multi-objective optimization problems by using the surplus variables and the generalized Tchebycheff norm and then use it to obtain some equivalent scalarization characterizations of (weakly, strictly, properly) efficient solutions by adjusting the range of parameters. These scalarization results do not need any convexity assumption conditions of objective functions. Furthermore, we establish some scalarization results of approximate solutions by means of the method. Moreover, we also present some examples to illustrate the main results.
References:
[1] |
F. Akbari, M. Ghaznavi and E. Khorram,
A revised Pascoletti-Serafini scalarization method for multiobjective optimization problems, Journal of Optimization Theory and Applications, 178 (2018), 560-590.
doi: 10.1007/s10957-018-1289-2. |
[2] |
H. P. Benson,
An improved definition of proper efficiency for vector maximization with respect to cones, Journal of Mathematical Analysis and Applications, 71 (1979), 232-241.
doi: 10.1016/0022-247X(79)90226-9. |
[3] |
R. S. Burachik, C. Y. Kaya and M. M. Rizvi,
A new scalarization technique to approximate Pareto fronts of problems with disconnected feasible sets, Journal of Optimization Theory and Applications, 162 (2014), 428-446.
doi: 10.1007/s10957-013-0346-0. |
[4] |
G. Y. Chen,
Necessary conditions of nondominated solutions in multicriteria decision making, Journal of Mathematical Analysis and Applications, 104 (1984), 38-46.
doi: 10.1016/0022-247X(84)90027-1. |
[5] |
E. U. Choo and D. R. Atkins,
Proper efficiency in nonconvex multicriteria programming, Mathematics of Operations Research, 8 (1983), 467-470.
|
[6] |
A. Chinchuluun and P. M. Pardalos,
A survey of recent developments in multiobjective optimization, Annals of Operations Research, 154 (2007), 29-50.
doi: 10.1007/s10479-007-0186-0. |
[7] |
Y. Collette and P. Siarry, Multiobjective Optimization. Principles and Case Studies, , Springer, Berlin, 2003. |
[8] |
J. Dutta and C. Y. Kaya,
A new scalarization and numerical method for constructing the weak pareto front of multi-objective optimization problems, Optimization, 60 (2011), 1091-1104.
doi: 10.1080/02331934.2011.587006. |
[9] |
M. Ehrgott, Multicriteria Optimization, Springer, Berlin, 2005. |
[10] |
M. Ehrgott and S. Ruzika,
Improved $\varepsilon$-constraint method for multiobjective programming, Journal of Optimization Theory and Applications, 138 (2008), 375-396.
doi: 10.1007/s10957-008-9394-2. |
[11] |
A. Engau and M. M. Wiecek,
Generating $\epsilon$-efficient solutions in multiobjective programming, European Journal of Operational Research, 177 (2007), 1566-1579.
doi: 10.1016/j.ejor.2005.10.023. |
[12] |
A. M. Geoffrion,
Proper efficiency and the theory of vector maximization, Journal of Mathematical Analysis and Applications, 22 (1968), 618-630.
doi: 10.1016/0022-247X(68)90201-1. |
[13] |
A. Ghane-Kanafi and E. Khorram,
A new scalarization method for finding the efficient frontier in non-convex multi-objective problems, Applied Mathematical Modelling, 39 (2015), 7483-7498.
doi: 10.1016/j.apm.2015.03.022. |
[14] |
B. A. Ghaznavi-ghosoni, E. Khorram and M. Soleimani-damaneh,
Scalarization for characterization of approximate strong/weak/proper efficiency in multi-objective optimization, Optimization, 62 (2013), 703-720.
doi: 10.1080/02331934.2012.668190. |
[15] |
S. M. Guu, N. J. Huang and J. Li,
Scalarization approaches for set-valued vector optimization problems and vector variational inequalities, Journal of Mathematical Analysis and Applications, 356 (2009), 564-576.
doi: 10.1016/j.jmaa.2009.03.040. |
[16] |
X. X. Huang and X. Q. Yang,
On characterizations of proper efficiency for nonconvex multiobjective optimization, Journal of Global Optimization, 23 (2002), 213-231.
doi: 10.1023/A:1016522528364. |
[17] |
R. Kasimbeyli, Z. K. Ozturk, N. Kasimbeyli and et al.,
Comparison of some scalarization methods in multiobjective optimization, Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 1875-1905.
doi: 10.1007/s40840-017-0579-4. |
[18] |
S. S. Kutateladze,
Convex $\varepsilon$-programming, Dokl. Akad. Nauk SSSR, 245 (1979), 1048-1050.
|
[19] |
P. Loridan,
$\epsilon$-solutions in vector minimization problems, Journal of Optimization Theory and Applications, 43 (1984), 265-276.
doi: 10.1007/BF00936165. |
[20] |
D. T. Luc, T. Q. Phong and M. Volle,
Scalarizing functions for generating the weakly efficient solution set in convex multiobjective problems, SIAM Journal on Optimization, 15 (2005), 987-1001.
doi: 10.1137/040603097. |
[21] |
S. Mishra and M. Noor,
Some nondifferentiable multiobjective programming problems, Journal of Mathematical Analysis and Applications, 316 (2006), 472-482.
doi: 10.1016/j.jmaa.2005.04.067. |
[22] |
N. Rastegar and E. Khorram,
A combined scalarizing method for multiobjective programming problems, European Journal of Operational Research, 236 (2014), 229-237.
doi: 10.1016/j.ejor.2013.11.020. |
[23] |
P. Ruíz-Canales and A. Rufián-Lizana,
A characterization of weakly efficient points, Mathematical Programming, 68 (1995), 205-212.
doi: 10.1007/BF01585765. |
[24] |
R. E. Steuer and E. U. Choo,
An interactive weighted {T}chebycheff procedure for multiple objective programming, Mathematical Programming, 26 (1983), 326-344.
doi: 10.1007/BF02591870. |
[25] |
Y. M. Xia, W. L. Zhang and K. Q. Zhao,
Characterizations of improvement sets via quasi interior and applications in vector optimization, Optimization Letters, 10 (2016), 769-780.
doi: 10.1007/s11590-015-0897-0. |
[26] |
P. L. Yu, Multiple-criteria Decision Making: Concepts, Techniques, and Extension, Plenum Press, New York, 1985.
doi: 10.1007/978-1-4684-8395-6.![]() ![]() |
[27] |
K. Q. Zhao and X. M. Yang,
$E$-Benson proper efficiency in vector optimization, Optimization, 64 (2015), 739-752.
doi: 10.1080/02331934.2013.798321. |
[28] |
K. Q. Zhao, X. M. Yang and J. W. Peng, Weak {$E$}-optimal solution in vector optimization, Taiwanese Journal of Mathematics, 17 (2013), 1287–1302.
doi: 10.11650/tjm.17.2013.2721. |
[29] |
C. Zopounidis and P. M. Pardalos, Handbook of Multicriteria Analysis, Springer, Berlin, 2010. Google Scholar |
show all references
References:
[1] |
F. Akbari, M. Ghaznavi and E. Khorram,
A revised Pascoletti-Serafini scalarization method for multiobjective optimization problems, Journal of Optimization Theory and Applications, 178 (2018), 560-590.
doi: 10.1007/s10957-018-1289-2. |
[2] |
H. P. Benson,
An improved definition of proper efficiency for vector maximization with respect to cones, Journal of Mathematical Analysis and Applications, 71 (1979), 232-241.
doi: 10.1016/0022-247X(79)90226-9. |
[3] |
R. S. Burachik, C. Y. Kaya and M. M. Rizvi,
A new scalarization technique to approximate Pareto fronts of problems with disconnected feasible sets, Journal of Optimization Theory and Applications, 162 (2014), 428-446.
doi: 10.1007/s10957-013-0346-0. |
[4] |
G. Y. Chen,
Necessary conditions of nondominated solutions in multicriteria decision making, Journal of Mathematical Analysis and Applications, 104 (1984), 38-46.
doi: 10.1016/0022-247X(84)90027-1. |
[5] |
E. U. Choo and D. R. Atkins,
Proper efficiency in nonconvex multicriteria programming, Mathematics of Operations Research, 8 (1983), 467-470.
|
[6] |
A. Chinchuluun and P. M. Pardalos,
A survey of recent developments in multiobjective optimization, Annals of Operations Research, 154 (2007), 29-50.
doi: 10.1007/s10479-007-0186-0. |
[7] |
Y. Collette and P. Siarry, Multiobjective Optimization. Principles and Case Studies, , Springer, Berlin, 2003. |
[8] |
J. Dutta and C. Y. Kaya,
A new scalarization and numerical method for constructing the weak pareto front of multi-objective optimization problems, Optimization, 60 (2011), 1091-1104.
doi: 10.1080/02331934.2011.587006. |
[9] |
M. Ehrgott, Multicriteria Optimization, Springer, Berlin, 2005. |
[10] |
M. Ehrgott and S. Ruzika,
Improved $\varepsilon$-constraint method for multiobjective programming, Journal of Optimization Theory and Applications, 138 (2008), 375-396.
doi: 10.1007/s10957-008-9394-2. |
[11] |
A. Engau and M. M. Wiecek,
Generating $\epsilon$-efficient solutions in multiobjective programming, European Journal of Operational Research, 177 (2007), 1566-1579.
doi: 10.1016/j.ejor.2005.10.023. |
[12] |
A. M. Geoffrion,
Proper efficiency and the theory of vector maximization, Journal of Mathematical Analysis and Applications, 22 (1968), 618-630.
doi: 10.1016/0022-247X(68)90201-1. |
[13] |
A. Ghane-Kanafi and E. Khorram,
A new scalarization method for finding the efficient frontier in non-convex multi-objective problems, Applied Mathematical Modelling, 39 (2015), 7483-7498.
doi: 10.1016/j.apm.2015.03.022. |
[14] |
B. A. Ghaznavi-ghosoni, E. Khorram and M. Soleimani-damaneh,
Scalarization for characterization of approximate strong/weak/proper efficiency in multi-objective optimization, Optimization, 62 (2013), 703-720.
doi: 10.1080/02331934.2012.668190. |
[15] |
S. M. Guu, N. J. Huang and J. Li,
Scalarization approaches for set-valued vector optimization problems and vector variational inequalities, Journal of Mathematical Analysis and Applications, 356 (2009), 564-576.
doi: 10.1016/j.jmaa.2009.03.040. |
[16] |
X. X. Huang and X. Q. Yang,
On characterizations of proper efficiency for nonconvex multiobjective optimization, Journal of Global Optimization, 23 (2002), 213-231.
doi: 10.1023/A:1016522528364. |
[17] |
R. Kasimbeyli, Z. K. Ozturk, N. Kasimbeyli and et al.,
Comparison of some scalarization methods in multiobjective optimization, Bulletin of the Malaysian Mathematical Sciences Society, 42 (2019), 1875-1905.
doi: 10.1007/s40840-017-0579-4. |
[18] |
S. S. Kutateladze,
Convex $\varepsilon$-programming, Dokl. Akad. Nauk SSSR, 245 (1979), 1048-1050.
|
[19] |
P. Loridan,
$\epsilon$-solutions in vector minimization problems, Journal of Optimization Theory and Applications, 43 (1984), 265-276.
doi: 10.1007/BF00936165. |
[20] |
D. T. Luc, T. Q. Phong and M. Volle,
Scalarizing functions for generating the weakly efficient solution set in convex multiobjective problems, SIAM Journal on Optimization, 15 (2005), 987-1001.
doi: 10.1137/040603097. |
[21] |
S. Mishra and M. Noor,
Some nondifferentiable multiobjective programming problems, Journal of Mathematical Analysis and Applications, 316 (2006), 472-482.
doi: 10.1016/j.jmaa.2005.04.067. |
[22] |
N. Rastegar and E. Khorram,
A combined scalarizing method for multiobjective programming problems, European Journal of Operational Research, 236 (2014), 229-237.
doi: 10.1016/j.ejor.2013.11.020. |
[23] |
P. Ruíz-Canales and A. Rufián-Lizana,
A characterization of weakly efficient points, Mathematical Programming, 68 (1995), 205-212.
doi: 10.1007/BF01585765. |
[24] |
R. E. Steuer and E. U. Choo,
An interactive weighted {T}chebycheff procedure for multiple objective programming, Mathematical Programming, 26 (1983), 326-344.
doi: 10.1007/BF02591870. |
[25] |
Y. M. Xia, W. L. Zhang and K. Q. Zhao,
Characterizations of improvement sets via quasi interior and applications in vector optimization, Optimization Letters, 10 (2016), 769-780.
doi: 10.1007/s11590-015-0897-0. |
[26] |
P. L. Yu, Multiple-criteria Decision Making: Concepts, Techniques, and Extension, Plenum Press, New York, 1985.
doi: 10.1007/978-1-4684-8395-6.![]() ![]() |
[27] |
K. Q. Zhao and X. M. Yang,
$E$-Benson proper efficiency in vector optimization, Optimization, 64 (2015), 739-752.
doi: 10.1080/02331934.2013.798321. |
[28] |
K. Q. Zhao, X. M. Yang and J. W. Peng, Weak {$E$}-optimal solution in vector optimization, Taiwanese Journal of Mathematics, 17 (2013), 1287–1302.
doi: 10.11650/tjm.17.2013.2721. |
[29] |
C. Zopounidis and P. M. Pardalos, Handbook of Multicriteria Analysis, Springer, Berlin, 2010. Google Scholar |
[1] |
Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021051 |
[2] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[3] |
Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033 |
[4] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[5] |
Andrea Scapin. Electrocommunication for weakly electric fish. Inverse Problems & Imaging, 2020, 14 (1) : 97-115. doi: 10.3934/ipi.2019065 |
[6] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[7] |
Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021094 |
[8] |
Yuta Tanoue. Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 53-60. doi: 10.3934/puqr.2021003 |
[9] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[10] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[11] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021081 |
[12] |
K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038 |
[13] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[14] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[15] |
Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021019 |
[16] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
[17] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[18] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[19] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021099 |
[20] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]