• Previous Article
    Approach to the consistency and consensus of Pythagorean fuzzy preference relations based on their partial orders in group decision making
  • JIMO Home
  • This Issue
  • Next Article
    New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors
doi: 10.3934/jimo.2020090

Lookback option pricing problem of mean-reverting stock model in uncertain environment

1. 

School of Mathematics, Renmin University of China, Beijing 100872, China

2. 

School of Information Technology & Management, University of International, Business & Economics, Beijing 100029, China

3. 

School of Economics & Management, Beijing University of Chemical, Technology, Beijing 100029, China

* Corresponding author: Xiangfeng Yang

Received  February 2019 Revised  January 2020 Published  May 2020

Fund Project: The second author is supported by the Program for Young Excellent Talents in UIBE (No.18YQ06).

A lookback option is an exotic option that allows investors to look back at the underlying prices occurring over the life of the option, and to exercise the right at assets optimal point. This paper proposes a mean-reverting stock model to investigate the lookback option in an uncertain environment. The lookback call and put options pricing formulas of the stock model are derived, and the corresponding numerical algorithms are designed to compute the prices of these two options.

Citation: Miao Tian, Xiangfeng Yang, Yi Zhang. Lookback option pricing problem of mean-reverting stock model in uncertain environment. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020090
References:
[1]

X. Chen, Ametican option pricing formula for uncertain financial market, Int. J. Oper. Res. (Taichung), 8 (2011), 27-32.   Google Scholar

[2]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Mak., 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[3]

X. ChenY. Liu and D. A. Ralesu, Uncertain stock model with periodic dividends, Fuzzy Optim. Decis. Mak., 12 (2013), 111-123.  doi: 10.1007/s10700-012-9141-x.  Google Scholar

[4]

Y. GaoX. Yang and Z. Fu, Lookback option pricing problem of uncertain exponential Ornstein-Uhlenbeck model, Soft Computing, 22 (2018), 5647-5654.   Google Scholar

[5]

X. Ji and J. Zhou, Option pricing for an uncertain stock model with jumps, Soft Computing, 19 (2015), 3323-3329.   Google Scholar

[6]

A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin-New York, 1973.  Google Scholar

[7]

B. Liu, Uncertainty theory. An introduction to its axiomatic foundations, in Studies in Fuzziness and Soft Computing, 154, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[9]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.   Google Scholar

[10]

B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013). Google Scholar

[11]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51.   Google Scholar

[12]

J. Peng and K. Yao, A new option pricing model for stocks in uncertainty markets, Int. J. Oper. Res. (Taichung), 8 (2011), 18-26.   Google Scholar

[13]

Y. Sun and T. Su, Mean-reverting stock model with floating interest rate in uncertain environment, Fuzzy Optim. Decis. Mak., 16 (2017), 235-255.  doi: 10.1007/s10700-016-9247-7.  Google Scholar

[14]

M. TianX. Yang and Y. Zhang, Barrier option pricing problem of mean-reverting stock model in uncertain environment, Math. Comput. Simulation, 166 (2019), 126-143.  doi: 10.1016/j.matcom.2019.04.009.  Google Scholar

[15]

M. Tian, X. Yang and S. Kar, Equity warrants pricing problem of mean-reverting model in uncertain environment, Phys. A, 531 (2019), 9 pp. doi: 10.1016/j.physa.2019.121593.  Google Scholar

[16]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, J. Uncertain. Anal. Appl., 1 (2013), Art. 17. Google Scholar

[17]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826.   Google Scholar

[18]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optim. Decis. Mak., 16 (2017), 379-403.  doi: 10.1007/s10700-016-9253-9.  Google Scholar

[19]

X. YangZ. Zhang and X. Gao, Asian-barrier option pricing formulas of uncertain financial market, Chaos Solitons Fractals, 123 (2019), 79-86.  doi: 10.1016/j.chaos.2019.03.037.  Google Scholar

[20]

K. Yao, No-arbitrage determinant theorems on mean-reverting stock model in uncertain market, Knowledge Based Systems, 35 (2012), 259-263.   Google Scholar

[21]

K. Yao, Extreme values and integral of solution of uncertain differential equation, J. Uncertain. Anal. Appl., 1 (2013), Art. 2. Google Scholar

[22]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Systems, 25 (2013), 825-832.  doi: 10.3233/IFS-120688.  Google Scholar

[23]

K. Yao, Uncertain contour process and its application in stock model with floating interest rate, Fuzzy Optim. Decis. Mak., 14 (2015), 399-424.  doi: 10.1007/s10700-015-9211-y.  Google Scholar

[24]

K. Yao, Uncertain Differential Equations, Springer Uncertainty Research, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-52729-0.  Google Scholar

[25]

X. Yu, A stock model with jumps for uncertain markets, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 20 (2012), 421-432.  doi: 10.1142/S0218488512500213.  Google Scholar

[26]

Z. Zhang and W. Liu, Geometric average asian option pricing for uncertain financial market, Journal of Uncertain Systems, 8 (2014), 317-320.   Google Scholar

[27]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

show all references

References:
[1]

X. Chen, Ametican option pricing formula for uncertain financial market, Int. J. Oper. Res. (Taichung), 8 (2011), 27-32.   Google Scholar

[2]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Mak., 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[3]

X. ChenY. Liu and D. A. Ralesu, Uncertain stock model with periodic dividends, Fuzzy Optim. Decis. Mak., 12 (2013), 111-123.  doi: 10.1007/s10700-012-9141-x.  Google Scholar

[4]

Y. GaoX. Yang and Z. Fu, Lookback option pricing problem of uncertain exponential Ornstein-Uhlenbeck model, Soft Computing, 22 (2018), 5647-5654.   Google Scholar

[5]

X. Ji and J. Zhou, Option pricing for an uncertain stock model with jumps, Soft Computing, 19 (2015), 3323-3329.   Google Scholar

[6]

A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin-New York, 1973.  Google Scholar

[7]

B. Liu, Uncertainty theory. An introduction to its axiomatic foundations, in Studies in Fuzziness and Soft Computing, 154, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[9]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.   Google Scholar

[10]

B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013). Google Scholar

[11]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51.   Google Scholar

[12]

J. Peng and K. Yao, A new option pricing model for stocks in uncertainty markets, Int. J. Oper. Res. (Taichung), 8 (2011), 18-26.   Google Scholar

[13]

Y. Sun and T. Su, Mean-reverting stock model with floating interest rate in uncertain environment, Fuzzy Optim. Decis. Mak., 16 (2017), 235-255.  doi: 10.1007/s10700-016-9247-7.  Google Scholar

[14]

M. TianX. Yang and Y. Zhang, Barrier option pricing problem of mean-reverting stock model in uncertain environment, Math. Comput. Simulation, 166 (2019), 126-143.  doi: 10.1016/j.matcom.2019.04.009.  Google Scholar

[15]

M. Tian, X. Yang and S. Kar, Equity warrants pricing problem of mean-reverting model in uncertain environment, Phys. A, 531 (2019), 9 pp. doi: 10.1016/j.physa.2019.121593.  Google Scholar

[16]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, J. Uncertain. Anal. Appl., 1 (2013), Art. 17. Google Scholar

[17]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826.   Google Scholar

[18]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optim. Decis. Mak., 16 (2017), 379-403.  doi: 10.1007/s10700-016-9253-9.  Google Scholar

[19]

X. YangZ. Zhang and X. Gao, Asian-barrier option pricing formulas of uncertain financial market, Chaos Solitons Fractals, 123 (2019), 79-86.  doi: 10.1016/j.chaos.2019.03.037.  Google Scholar

[20]

K. Yao, No-arbitrage determinant theorems on mean-reverting stock model in uncertain market, Knowledge Based Systems, 35 (2012), 259-263.   Google Scholar

[21]

K. Yao, Extreme values and integral of solution of uncertain differential equation, J. Uncertain. Anal. Appl., 1 (2013), Art. 2. Google Scholar

[22]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Systems, 25 (2013), 825-832.  doi: 10.3233/IFS-120688.  Google Scholar

[23]

K. Yao, Uncertain contour process and its application in stock model with floating interest rate, Fuzzy Optim. Decis. Mak., 14 (2015), 399-424.  doi: 10.1007/s10700-015-9211-y.  Google Scholar

[24]

K. Yao, Uncertain Differential Equations, Springer Uncertainty Research, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-52729-0.  Google Scholar

[25]

X. Yu, A stock model with jumps for uncertain markets, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 20 (2012), 421-432.  doi: 10.1142/S0218488512500213.  Google Scholar

[26]

Z. Zhang and W. Liu, Geometric average asian option pricing for uncertain financial market, Journal of Uncertain Systems, 8 (2014), 317-320.   Google Scholar

[27]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

Figure 1.  Lookback call option price $ f_{call} $ with different parameters
Figure 2.  Lookback put option price $ f_{put} $ with different parameters
[1]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021057

[2]

Lifen Jia, Wei Dai. Uncertain spring vibration equation. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021073

[3]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[4]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

[7]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[8]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[9]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[10]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[11]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[12]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[13]

Qing-Qing Yang, Wai-Ki Ching, Wan-Hua He, Na Song. Effect of institutional deleveraging on option valuation problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2097-2118. doi: 10.3934/jimo.2020060

[14]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036

[17]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[19]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[20]

Chong Wang, Xu Chen. Fresh produce price-setting newsvendor with bidirectional option contracts. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021052

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (139)
  • HTML views (318)
  • Cited by (1)

Other articles
by authors

[Back to Top]