• Previous Article
    Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform
  • JIMO Home
  • This Issue
  • Next Article
    New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors
doi: 10.3934/jimo.2020090

Lookback option pricing problem of mean-reverting stock model in uncertain environment

1. 

School of Mathematics, Renmin University of China, Beijing 100872, China

2. 

School of Information Technology & Management, University of International, Business & Economics, Beijing 100029, China

3. 

School of Economics & Management, Beijing University of Chemical, Technology, Beijing 100029, China

* Corresponding author: Xiangfeng Yang

Received  February 2019 Revised  January 2020 Published  May 2020

Fund Project: The second author is supported by the Program for Young Excellent Talents in UIBE (No.18YQ06).

A lookback option is an exotic option that allows investors to look back at the underlying prices occurring over the life of the option, and to exercise the right at assets optimal point. This paper proposes a mean-reverting stock model to investigate the lookback option in an uncertain environment. The lookback call and put options pricing formulas of the stock model are derived, and the corresponding numerical algorithms are designed to compute the prices of these two options.

Citation: Miao Tian, Xiangfeng Yang, Yi Zhang. Lookback option pricing problem of mean-reverting stock model in uncertain environment. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020090
References:
[1]

X. Chen, Ametican option pricing formula for uncertain financial market, Int. J. Oper. Res. (Taichung), 8 (2011), 27-32.   Google Scholar

[2]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Mak., 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[3]

X. ChenY. Liu and D. A. Ralesu, Uncertain stock model with periodic dividends, Fuzzy Optim. Decis. Mak., 12 (2013), 111-123.  doi: 10.1007/s10700-012-9141-x.  Google Scholar

[4]

Y. GaoX. Yang and Z. Fu, Lookback option pricing problem of uncertain exponential Ornstein-Uhlenbeck model, Soft Computing, 22 (2018), 5647-5654.   Google Scholar

[5]

X. Ji and J. Zhou, Option pricing for an uncertain stock model with jumps, Soft Computing, 19 (2015), 3323-3329.   Google Scholar

[6]

A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin-New York, 1973.  Google Scholar

[7]

B. Liu, Uncertainty theory. An introduction to its axiomatic foundations, in Studies in Fuzziness and Soft Computing, 154, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[9]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.   Google Scholar

[10]

B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013). Google Scholar

[11]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51.   Google Scholar

[12]

J. Peng and K. Yao, A new option pricing model for stocks in uncertainty markets, Int. J. Oper. Res. (Taichung), 8 (2011), 18-26.   Google Scholar

[13]

Y. Sun and T. Su, Mean-reverting stock model with floating interest rate in uncertain environment, Fuzzy Optim. Decis. Mak., 16 (2017), 235-255.  doi: 10.1007/s10700-016-9247-7.  Google Scholar

[14]

M. TianX. Yang and Y. Zhang, Barrier option pricing problem of mean-reverting stock model in uncertain environment, Math. Comput. Simulation, 166 (2019), 126-143.  doi: 10.1016/j.matcom.2019.04.009.  Google Scholar

[15]

M. Tian, X. Yang and S. Kar, Equity warrants pricing problem of mean-reverting model in uncertain environment, Phys. A, 531 (2019), 9 pp. doi: 10.1016/j.physa.2019.121593.  Google Scholar

[16]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, J. Uncertain. Anal. Appl., 1 (2013), Art. 17. Google Scholar

[17]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826.   Google Scholar

[18]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optim. Decis. Mak., 16 (2017), 379-403.  doi: 10.1007/s10700-016-9253-9.  Google Scholar

[19]

X. YangZ. Zhang and X. Gao, Asian-barrier option pricing formulas of uncertain financial market, Chaos Solitons Fractals, 123 (2019), 79-86.  doi: 10.1016/j.chaos.2019.03.037.  Google Scholar

[20]

K. Yao, No-arbitrage determinant theorems on mean-reverting stock model in uncertain market, Knowledge Based Systems, 35 (2012), 259-263.   Google Scholar

[21]

K. Yao, Extreme values and integral of solution of uncertain differential equation, J. Uncertain. Anal. Appl., 1 (2013), Art. 2. Google Scholar

[22]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Systems, 25 (2013), 825-832.  doi: 10.3233/IFS-120688.  Google Scholar

[23]

K. Yao, Uncertain contour process and its application in stock model with floating interest rate, Fuzzy Optim. Decis. Mak., 14 (2015), 399-424.  doi: 10.1007/s10700-015-9211-y.  Google Scholar

[24]

K. Yao, Uncertain Differential Equations, Springer Uncertainty Research, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-52729-0.  Google Scholar

[25]

X. Yu, A stock model with jumps for uncertain markets, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 20 (2012), 421-432.  doi: 10.1142/S0218488512500213.  Google Scholar

[26]

Z. Zhang and W. Liu, Geometric average asian option pricing for uncertain financial market, Journal of Uncertain Systems, 8 (2014), 317-320.   Google Scholar

[27]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

show all references

References:
[1]

X. Chen, Ametican option pricing formula for uncertain financial market, Int. J. Oper. Res. (Taichung), 8 (2011), 27-32.   Google Scholar

[2]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Mak., 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[3]

X. ChenY. Liu and D. A. Ralesu, Uncertain stock model with periodic dividends, Fuzzy Optim. Decis. Mak., 12 (2013), 111-123.  doi: 10.1007/s10700-012-9141-x.  Google Scholar

[4]

Y. GaoX. Yang and Z. Fu, Lookback option pricing problem of uncertain exponential Ornstein-Uhlenbeck model, Soft Computing, 22 (2018), 5647-5654.   Google Scholar

[5]

X. Ji and J. Zhou, Option pricing for an uncertain stock model with jumps, Soft Computing, 19 (2015), 3323-3329.   Google Scholar

[6]

A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin-New York, 1973.  Google Scholar

[7]

B. Liu, Uncertainty theory. An introduction to its axiomatic foundations, in Studies in Fuzziness and Soft Computing, 154, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-39987-2.  Google Scholar

[8]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[9]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.   Google Scholar

[10]

B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013). Google Scholar

[11]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51.   Google Scholar

[12]

J. Peng and K. Yao, A new option pricing model for stocks in uncertainty markets, Int. J. Oper. Res. (Taichung), 8 (2011), 18-26.   Google Scholar

[13]

Y. Sun and T. Su, Mean-reverting stock model with floating interest rate in uncertain environment, Fuzzy Optim. Decis. Mak., 16 (2017), 235-255.  doi: 10.1007/s10700-016-9247-7.  Google Scholar

[14]

M. TianX. Yang and Y. Zhang, Barrier option pricing problem of mean-reverting stock model in uncertain environment, Math. Comput. Simulation, 166 (2019), 126-143.  doi: 10.1016/j.matcom.2019.04.009.  Google Scholar

[15]

M. Tian, X. Yang and S. Kar, Equity warrants pricing problem of mean-reverting model in uncertain environment, Phys. A, 531 (2019), 9 pp. doi: 10.1016/j.physa.2019.121593.  Google Scholar

[16]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, J. Uncertain. Anal. Appl., 1 (2013), Art. 17. Google Scholar

[17]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826.   Google Scholar

[18]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optim. Decis. Mak., 16 (2017), 379-403.  doi: 10.1007/s10700-016-9253-9.  Google Scholar

[19]

X. YangZ. Zhang and X. Gao, Asian-barrier option pricing formulas of uncertain financial market, Chaos Solitons Fractals, 123 (2019), 79-86.  doi: 10.1016/j.chaos.2019.03.037.  Google Scholar

[20]

K. Yao, No-arbitrage determinant theorems on mean-reverting stock model in uncertain market, Knowledge Based Systems, 35 (2012), 259-263.   Google Scholar

[21]

K. Yao, Extreme values and integral of solution of uncertain differential equation, J. Uncertain. Anal. Appl., 1 (2013), Art. 2. Google Scholar

[22]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Systems, 25 (2013), 825-832.  doi: 10.3233/IFS-120688.  Google Scholar

[23]

K. Yao, Uncertain contour process and its application in stock model with floating interest rate, Fuzzy Optim. Decis. Mak., 14 (2015), 399-424.  doi: 10.1007/s10700-015-9211-y.  Google Scholar

[24]

K. Yao, Uncertain Differential Equations, Springer Uncertainty Research, Springer-Verlag, Berlin, 2016. doi: 10.1007/978-3-662-52729-0.  Google Scholar

[25]

X. Yu, A stock model with jumps for uncertain markets, Internat. J. Uncertain. Fuzziness Knowledge-Based Systems, 20 (2012), 421-432.  doi: 10.1142/S0218488512500213.  Google Scholar

[26]

Z. Zhang and W. Liu, Geometric average asian option pricing for uncertain financial market, Journal of Uncertain Systems, 8 (2014), 317-320.   Google Scholar

[27]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

Figure 1.  Lookback call option price $ f_{call} $ with different parameters
Figure 2.  Lookback put option price $ f_{put} $ with different parameters
[1]

Weiwei Wang, Ping Chen. A mean-reverting currency model with floating interest rates in uncertain environment. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1921-1936. doi: 10.3934/jimo.2018129

[2]

Edward Allen. Environmental variability and mean-reverting processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2073-2089. doi: 10.3934/dcdsb.2016037

[3]

Hoi Tin Kong, Qing Zhang. An optimal trading rule of a mean-reverting asset. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1403-1417. doi: 10.3934/dcdsb.2010.14.1403

[4]

Yanqing Hu, Zaiming Liu, Jinbiao Wu. Optimal impulse control of a mean-reverting inventory with quadratic costs. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1685-1700. doi: 10.3934/jimo.2018027

[5]

Qihong Chen. Recovery of local volatility for financial assets with mean-reverting price processes. Mathematical Control & Related Fields, 2018, 8 (3&4) : 625-635. doi: 10.3934/mcrf.2018026

[6]

Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial & Management Optimization, 2020, 16 (1) : 387-396. doi: 10.3934/jimo.2018158

[7]

Yin Li, Xuerong Mao, Yazhi Song, Jian Tao. Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020143

[8]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial & Management Optimization, 2018, 14 (3) : 857-876. doi: 10.3934/jimo.2017079

[9]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4-5) : 969-969. doi: 10.3934/dcdss.2019065

[10]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control & Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[11]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[12]

Zhimin Liu, Shaojian Qu, Hassan Raza, Zhong Wu, Deqiang Qu, Jianhui Du. Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020094

[13]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[14]

Michael Grinfeld, Harbir Lamba, Rod Cross. A mesoscopic stock market model with hysteretic agents. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 403-415. doi: 10.3934/dcdsb.2013.18.403

[15]

Sergey A. Suslov. Two-equation model of mean flow resonances in subcritical flow systems. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 165-176. doi: 10.3934/dcdss.2008.1.165

[16]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the Kuramoto model on graphs Ⅰ. The mean field equation and transition point formulas. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 131-155. doi: 10.3934/dcds.2019006

[17]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063

[18]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[19]

Xiangfeng Yang, Yaodong Ni. Extreme values problem of uncertain heat equation. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1995-2008. doi: 10.3934/jimo.2018133

[20]

Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]