
-
Previous Article
A combined scalarization method for multi-objective optimization problems
- JIMO Home
- This Issue
-
Next Article
Quantum-inspired satin bowerbird algorithm with Bloch spherical search for constrained structural optimization
Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces
School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa |
We propose a parallel iterative scheme with viscosity approximation method which converges strongly to a solution of the multiple-set split equality common fixed point problem for quasi-pseudocontractive mappings in real Hilbert spaces. We also give an application of our result to approximation of minimization problem from intensity-modulated radiation therapy. Finally, we present numerical examples to demonstrate the behaviour of our algorithm. This result improves and generalizes many existing results in literature in this direction.
References:
[1] |
T. O. Alakoya, L. O. Jolaoso and O. T. Mewomo, Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization, (2020), 1–30. Google Scholar |
[2] |
Q. H. Ansari and A. Rehan, Split feasibility and fixed point problems, in Nonlinear Analysis, Trends Math., Birkhäuser/Springer, New Delhi, 2014,281–322. |
[3] |
C. Byrne,
Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.
doi: 10.1088/0266-5611/18/2/310. |
[4] |
Y. Censor, T. Bortfeld, B. Martin and A. Trofimov,
A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365.
doi: 10.1088/0031-9155/51/10/001. |
[5] |
Y. Censor and T. Elfving,
A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692. |
[6] |
Y. Censor, T. Elfving, N. Kopf and T. Bortfeld,
The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017. |
[7] |
S. Chang, L. Wang and L.-J. Qin, Split equality fixed point problem for quasi-pseudo-contractive mappings with applications, Fixed Point Theory Appl., 208 (2015), 12 pp.
doi: 10.1186/s13663-015-0458-3. |
[8] |
H. Che and M. Li, A simultaneous iterative method for split equality problems of two finite families of strictly pseudononspreading mappings without prior knowledge of operator norms, Fixed Point Theory Appl., 1 (2015), 14 pp.
doi: 10.1186/1687-1812-2015-1. |
[9] |
W.-Z. Chen, Y. Xiao and J. Li, Impact of dose calculation algorithm on radiation theraphy, World J. Radiol., 6 (2014), 874-880. Google Scholar |
[10] |
A. Hanjing and S. Suantai, The split common fixed point problem for infinite families of demicontractive mappings, Fixed Point Theory Appl., (2018), Paper No. 14, 21 pp.
doi: 10.1186/s13663-018-0639-y. |
[11] |
C. Izuchukwu, G. C. Ugwunnadi, O. T. Mewomo, A. R. Khan and M. Abbas,
Proximal-type algorithms for split minimization problem in $p$-uniformly convex metric spaces, Numer. Algorithms, 82 (2019), 909-935.
doi: 10.1007/s11075-018-0633-9. |
[12] |
L. O. Jolaoso, T. O. Alakoya, A. Taiwo and O. T. Mewomo, A parallel combination extragradient method with Armijo line searching for finding common solutions of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo II. Ser, 2 (2019), 1-25. Google Scholar |
[13] |
L. O. Jolaoso, T. O. Alakoya, A. Taiwo and O. T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space, Optimization, (2020), 1–26.
doi: 10.1080/02331934.2020.1716752. |
[14] |
L. O. Jolaoso, K. O. Oyewole, C. C. Okeke and O. T. Mewomo,
A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space, Demonstr. Math., 51 (2018), 211-232.
doi: 10.1515/dema-2018-0015. |
[15] |
L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math., 39 (2020), 28 pp.
doi: 10.1007/s40314-019-1014-2. |
[16] |
P.-E. Maingé,
Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912.
doi: 10.1007/s11228-008-0102-z. |
[17] |
G. Marino and H.-K. Xu,
Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., 329 (2007), 336-346.
doi: 10.1016/j.jmaa.2006.06.055. |
[18] |
A. Moudafi,
A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal., 79 (2013), 117-121.
doi: 10.1016/j.na.2012.11.013. |
[19] |
A. Moudafi,
Alternating CQ-algorithms for convex feasibility and fixed-point problems, J. Nonlinear Convex Anal., 15 (2014), 809-818.
|
[20] |
A. Moudafi and E. Al-Shemas, Simultaneous iterative methods for split equality problems and applications, Trans. Math. Program. Appl., 1 (2013), 1-11. Google Scholar |
[21] |
S. A. Naimpally and K. L. Singh,
Extensions of some fixed point theorems of Rhoades, J. Math. Anal. Appl., 96 (1983), 437-446.
doi: 10.1016/0022-247X(83)90052-5. |
[22] |
F. U. Ogbuisi and O. T. Mewomo,
On split generalised mixed equilibrium problems and fixed-point problems with no prior knowledge of operator norm, J. Fixed Point Theory Appl., 19 (2017), 2109-2128.
doi: 10.1007/s11784-016-0397-6. |
[23] |
F. U. Ogbuisi and O. T. Mewomo,
Iterative solution of split variational inclusion problem in a real Banach spaces, Afr. Mat., 28 (2017), 295-309.
doi: 10.1007/s13370-016-0450-z. |
[24] |
F. U. Ogbuisi and O. T. Mewomo,
Convergence analysis of common solution of certain nonlinear problems, Fixed Point Theory, 19 (2018), 335-358.
doi: 10.24193/fpt-ro.2018.1.26. |
[25] |
Y. Shehu and O. T. Mewomo,
Further investigation into split common fixed point problem for demicontractive operators, Acta Math. Sin. (Engl. Ser.), 32 (2016), 1357-1376.
doi: 10.1007/s10114-016-5548-6. |
[26] |
A. Taiwo, L. O. Jolaoso and O. T. Mewomo, A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces, Comput. Appl. Math., 38 (2019), 28 pp.
doi: 10.1007/s40314-019-0841-5. |
[27] |
A. Taiwo, L. O. Jolaoso and O. T. Mewomo,
Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems, Bull. Malays. Math. Sci. Soc., 43 (2020), 1893-1918.
doi: 10.1007/s40840-019-00781-1. |
[28] |
A. Taiwo, L. O. Jolaoso and O. T. Mewomo, General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces, Ricerche Mat., (2019), 1–25.
doi: 10.1007/s11587-019-00460-0. |
[29] |
Y. Wang and X. Fang,
Viscosity approximation methods for the multiple-set split equality common fixed-point problems of demicontractive mappings, J. Nonlinear Sci. Appl., 10 (2017), 4254-4268.
doi: 10.22436/jnsa.010.08.20. |
[30] |
H.-K. Xu,
Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65 (2002), 109-113.
doi: 10.1017/S0004972700020116. |
[31] |
I. Yamada,
The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. Inherently parallel algorithm for feasibility and optimization and their applications, Stud. Comput. Math., 8 (2001), 473-504.
doi: 10.1016/S1570-579X(01)80028-8. |
[32] |
H. Zegeye and N. Shahzad,
Convergence of Mann's type iteration method for generalized asymptotically nonexpansive mappings, Comput. Math. Appl., 62 (2011), 4007-4014.
doi: 10.1016/j.camwa.2011.09.018. |
[33] |
J. Zhao,
Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms, Optimization, 64 (2015), 2619-2630.
doi: 10.1080/02331934.2014.883515. |
[34] |
J. Zhao and S. Wang,
Mixed iterative algorithms for the multiple-set split equality common fixed-point problems without prior knowledge of operator norms, Optimization, 65 (2016), 1069-1083.
doi: 10.1080/02331934.2015.1072716. |
[35] |
J. Zhao and S. Wang,
Viscosity approximation methods for the split equality common fixed point problem of quasi-nonexpansive operators, Acta Math. Sci. Ser. B (Engl. Ed.), 36 (2016), 1474-1486.
doi: 10.1016/S0252-9602(16)30083-2. |
[36] |
J. Zhao and H. Zong, Solving the multiple-set split equality common fixed-point problem of firmly non-expansive operators, J. Inequal. Appl., (2018), Paper No. 83, 18 pp.
doi: 10.1186/s13660-018-1668-0. |
show all references
References:
[1] |
T. O. Alakoya, L. O. Jolaoso and O. T. Mewomo, Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization, (2020), 1–30. Google Scholar |
[2] |
Q. H. Ansari and A. Rehan, Split feasibility and fixed point problems, in Nonlinear Analysis, Trends Math., Birkhäuser/Springer, New Delhi, 2014,281–322. |
[3] |
C. Byrne,
Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.
doi: 10.1088/0266-5611/18/2/310. |
[4] |
Y. Censor, T. Bortfeld, B. Martin and A. Trofimov,
A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365.
doi: 10.1088/0031-9155/51/10/001. |
[5] |
Y. Censor and T. Elfving,
A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692. |
[6] |
Y. Censor, T. Elfving, N. Kopf and T. Bortfeld,
The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017. |
[7] |
S. Chang, L. Wang and L.-J. Qin, Split equality fixed point problem for quasi-pseudo-contractive mappings with applications, Fixed Point Theory Appl., 208 (2015), 12 pp.
doi: 10.1186/s13663-015-0458-3. |
[8] |
H. Che and M. Li, A simultaneous iterative method for split equality problems of two finite families of strictly pseudononspreading mappings without prior knowledge of operator norms, Fixed Point Theory Appl., 1 (2015), 14 pp.
doi: 10.1186/1687-1812-2015-1. |
[9] |
W.-Z. Chen, Y. Xiao and J. Li, Impact of dose calculation algorithm on radiation theraphy, World J. Radiol., 6 (2014), 874-880. Google Scholar |
[10] |
A. Hanjing and S. Suantai, The split common fixed point problem for infinite families of demicontractive mappings, Fixed Point Theory Appl., (2018), Paper No. 14, 21 pp.
doi: 10.1186/s13663-018-0639-y. |
[11] |
C. Izuchukwu, G. C. Ugwunnadi, O. T. Mewomo, A. R. Khan and M. Abbas,
Proximal-type algorithms for split minimization problem in $p$-uniformly convex metric spaces, Numer. Algorithms, 82 (2019), 909-935.
doi: 10.1007/s11075-018-0633-9. |
[12] |
L. O. Jolaoso, T. O. Alakoya, A. Taiwo and O. T. Mewomo, A parallel combination extragradient method with Armijo line searching for finding common solutions of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo II. Ser, 2 (2019), 1-25. Google Scholar |
[13] |
L. O. Jolaoso, T. O. Alakoya, A. Taiwo and O. T. Mewomo, Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space, Optimization, (2020), 1–26.
doi: 10.1080/02331934.2020.1716752. |
[14] |
L. O. Jolaoso, K. O. Oyewole, C. C. Okeke and O. T. Mewomo,
A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space, Demonstr. Math., 51 (2018), 211-232.
doi: 10.1515/dema-2018-0015. |
[15] |
L. O. Jolaoso, A. Taiwo, T. O. Alakoya and O. T. Mewomo, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math., 39 (2020), 28 pp.
doi: 10.1007/s40314-019-1014-2. |
[16] |
P.-E. Maingé,
Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912.
doi: 10.1007/s11228-008-0102-z. |
[17] |
G. Marino and H.-K. Xu,
Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., 329 (2007), 336-346.
doi: 10.1016/j.jmaa.2006.06.055. |
[18] |
A. Moudafi,
A relaxed alternating CQ-algorithm for convex feasibility problems, Nonlinear Anal., 79 (2013), 117-121.
doi: 10.1016/j.na.2012.11.013. |
[19] |
A. Moudafi,
Alternating CQ-algorithms for convex feasibility and fixed-point problems, J. Nonlinear Convex Anal., 15 (2014), 809-818.
|
[20] |
A. Moudafi and E. Al-Shemas, Simultaneous iterative methods for split equality problems and applications, Trans. Math. Program. Appl., 1 (2013), 1-11. Google Scholar |
[21] |
S. A. Naimpally and K. L. Singh,
Extensions of some fixed point theorems of Rhoades, J. Math. Anal. Appl., 96 (1983), 437-446.
doi: 10.1016/0022-247X(83)90052-5. |
[22] |
F. U. Ogbuisi and O. T. Mewomo,
On split generalised mixed equilibrium problems and fixed-point problems with no prior knowledge of operator norm, J. Fixed Point Theory Appl., 19 (2017), 2109-2128.
doi: 10.1007/s11784-016-0397-6. |
[23] |
F. U. Ogbuisi and O. T. Mewomo,
Iterative solution of split variational inclusion problem in a real Banach spaces, Afr. Mat., 28 (2017), 295-309.
doi: 10.1007/s13370-016-0450-z. |
[24] |
F. U. Ogbuisi and O. T. Mewomo,
Convergence analysis of common solution of certain nonlinear problems, Fixed Point Theory, 19 (2018), 335-358.
doi: 10.24193/fpt-ro.2018.1.26. |
[25] |
Y. Shehu and O. T. Mewomo,
Further investigation into split common fixed point problem for demicontractive operators, Acta Math. Sin. (Engl. Ser.), 32 (2016), 1357-1376.
doi: 10.1007/s10114-016-5548-6. |
[26] |
A. Taiwo, L. O. Jolaoso and O. T. Mewomo, A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces, Comput. Appl. Math., 38 (2019), 28 pp.
doi: 10.1007/s40314-019-0841-5. |
[27] |
A. Taiwo, L. O. Jolaoso and O. T. Mewomo,
Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems, Bull. Malays. Math. Sci. Soc., 43 (2020), 1893-1918.
doi: 10.1007/s40840-019-00781-1. |
[28] |
A. Taiwo, L. O. Jolaoso and O. T. Mewomo, General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces, Ricerche Mat., (2019), 1–25.
doi: 10.1007/s11587-019-00460-0. |
[29] |
Y. Wang and X. Fang,
Viscosity approximation methods for the multiple-set split equality common fixed-point problems of demicontractive mappings, J. Nonlinear Sci. Appl., 10 (2017), 4254-4268.
doi: 10.22436/jnsa.010.08.20. |
[30] |
H.-K. Xu,
Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc., 65 (2002), 109-113.
doi: 10.1017/S0004972700020116. |
[31] |
I. Yamada,
The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. Inherently parallel algorithm for feasibility and optimization and their applications, Stud. Comput. Math., 8 (2001), 473-504.
doi: 10.1016/S1570-579X(01)80028-8. |
[32] |
H. Zegeye and N. Shahzad,
Convergence of Mann's type iteration method for generalized asymptotically nonexpansive mappings, Comput. Math. Appl., 62 (2011), 4007-4014.
doi: 10.1016/j.camwa.2011.09.018. |
[33] |
J. Zhao,
Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms, Optimization, 64 (2015), 2619-2630.
doi: 10.1080/02331934.2014.883515. |
[34] |
J. Zhao and S. Wang,
Mixed iterative algorithms for the multiple-set split equality common fixed-point problems without prior knowledge of operator norms, Optimization, 65 (2016), 1069-1083.
doi: 10.1080/02331934.2015.1072716. |
[35] |
J. Zhao and S. Wang,
Viscosity approximation methods for the split equality common fixed point problem of quasi-nonexpansive operators, Acta Math. Sci. Ser. B (Engl. Ed.), 36 (2016), 1474-1486.
doi: 10.1016/S0252-9602(16)30083-2. |
[36] |
J. Zhao and H. Zong, Solving the multiple-set split equality common fixed-point problem of firmly non-expansive operators, J. Inequal. Appl., (2018), Paper No. 83, 18 pp.
doi: 10.1186/s13660-018-1668-0. |



Algorithm 3.2 | Algorithm 1.1 | ||
Case Ⅰ | No of Iter. | 18 | 44 |
CPU time (sec) | 7.7529 | 9.7706 | |
Case Ⅱ | No of Iter. | 9 | 19 |
CPU time (sec) | 5.2116 | 8.8849 | |
Case Ⅲ | No of Iter. | 10 | 26 |
CPU time (sec) | 7.7204 | 12.7338 | |
Case Ⅳ | No of Iter. | 9 | 22 |
CPU time (sec) | 5.6424 | 7.1538 |
Algorithm 3.2 | Algorithm 1.1 | ||
Case Ⅰ | No of Iter. | 18 | 44 |
CPU time (sec) | 7.7529 | 9.7706 | |
Case Ⅱ | No of Iter. | 9 | 19 |
CPU time (sec) | 5.2116 | 8.8849 | |
Case Ⅲ | No of Iter. | 10 | 26 |
CPU time (sec) | 7.7204 | 12.7338 | |
Case Ⅳ | No of Iter. | 9 | 22 |
CPU time (sec) | 5.6424 | 7.1538 |
Alg. (8) | Alg. Algorithm 3.2 | ||
Case IIa | CPU time (sec) | 0.0019 | 8.8698e-4 |
No of Iter. | 75 | 16 | |
Case IIb | CPU time (sec) | 0.0020 | 8.6745e-4 |
No. of Iter. | 75 | 16 | |
Case IIc | CPU time (sec) | 0.0018 | 8.5652e-4 |
No of Iter. | 81 | 17 | |
Case IId | CPU time (sec) | 0.0019 | 8.9216e-4 |
No of Iter. | 74 | 16 |
Alg. (8) | Alg. Algorithm 3.2 | ||
Case IIa | CPU time (sec) | 0.0019 | 8.8698e-4 |
No of Iter. | 75 | 16 | |
Case IIb | CPU time (sec) | 0.0020 | 8.6745e-4 |
No. of Iter. | 75 | 16 | |
Case IIc | CPU time (sec) | 0.0018 | 8.5652e-4 |
No of Iter. | 81 | 17 | |
Case IId | CPU time (sec) | 0.0019 | 8.9216e-4 |
No of Iter. | 74 | 16 |
Alg. (8) | Alg. 3.2 | ||
Case IIa* | CPU time (sec) | 0.0020 | 8.8533e-4 |
No of Iter. | 95 | 17 | |
Case IIc* | CPU time (sec) | 0.0021 | 8.6149e-4 |
No of Iter. | 103 | 18 |
Alg. (8) | Alg. 3.2 | ||
Case IIa* | CPU time (sec) | 0.0020 | 8.8533e-4 |
No of Iter. | 95 | 17 | |
Case IIc* | CPU time (sec) | 0.0021 | 8.6149e-4 |
No of Iter. | 103 | 18 |
[1] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[2] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[3] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[4] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[5] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[6] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[7] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[8] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001 |
[9] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[10] |
Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020389 |
[11] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[12] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[13] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[14] |
Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146 |
[15] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[16] |
Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048 |
[17] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
[18] |
Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021023 |
[19] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[20] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]