In this paper, a differentiable vector optimization problem with the multiple interval-valued objective function and with both inequality and equality constraints is considered. The Karush-Kuhn-Tucker necessary optimality conditions are established for such a differentiable interval-valued multiobjective programming problem. Further, a new approach, called $ F $-objective function method, is introduced for solving the considered differentiable vector optimization problem with the multiple interval-valued objective function. In this method, its associated vector optimization problem with the multiple interval-valued $ F $-objective function is constructed. Their equivalence is established under $ F $-convexity assumptions. It is shown that the introduced approach can be used to solve a nonlinear nonconvex interval-valued optimization problem. By using the introduced approximation method, it is also presented in some cases that a nonlinear nonconvex interval-valued optimization problem can be solved by the help of methods for solving linear interval-valued optimization problems.
Citation: |
[1] |
I. Ahmad, D. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybernet., 44 (2015), 19-45.
![]() ![]() |
[2] |
I. Ahmad, D. Singh and B. A. Dar, Optimality conditions for invex interval valued nonlinear programming problems involving generalized $H$-derivative, Filomat, 30 (2016), 2121-2138.
doi: 10.2298/FIL1608121A.![]() ![]() ![]() |
[3] |
G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, Inc.
[Harcourt Brace Jovanovich, Publishers], New York, 1983.
doi: doi.![]() ![]() ![]() |
[4] |
M. Allahdadi and H. M. Nehi, The optimal solution set of the interval linear programming problems, Optim. Lett., 7 (2013), 1893-1911.
doi: 10.1007/s11590-012-0530-4.![]() ![]() ![]() |
[5] |
T. Antczak, A new approach to multiobjective programming with a modified objective function, J. Global Optim., 27 (2003), 485-495.
doi: 10.1023/A:1026080604790.![]() ![]() ![]() |
[6] |
T. Antczak, An $\eta $-approximation method in vector optimization, Nonlinear Anal., 63 (2005), 225-236.
doi: 10.1016/j.na.2005.05.008.![]() ![]() ![]() |
[7] |
A. K. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Method Oper. Res., 76 (2012), 273-288.
doi: 10.1007/s00186-012-0399-0.![]() ![]() ![]() |
[8] |
Y. Chalco-Cano, W. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Mak., 12 (2013), 305-322.
doi: 10.1007/s10700-013-9156-y.![]() ![]() ![]() |
[9] |
S. Chanas and D. Kuchta, Multiobjective programming in optimization of interval objective functions - A generalized approach, European J. Oper. Res., 94 (1996), 594-598.
doi: 10.1016/0377-2217(95)00055-0.![]() ![]() |
[10] |
J. W. Chinneck and K. Ramadan, Linear programming with interval coefficients, JORS, 51 (1996), 209-220.
![]() |
[11] |
M. Ehrgott, Multicriteria Optimization, 2nd edition, Springer-Verlag, Berlin, 2005.
![]() ![]() |
[12] |
G. Eichfelder, Adaptive Scalarization Methods in Multiobjective Optimization, Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-79159-1.![]() ![]() ![]() |
[13] |
M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, J. Inform. Optim. Sci., 3 (1982), 25-32.
doi: 10.1080/02522667.1982.10698716.![]() ![]() ![]() |
[14] |
M. Hladik, Interval Linear Programming: A Survey. Linear Programming-New Frontiers in Theory and Applications, Nova Science Publishers, New York, 2011.
doi: 10.1016/j.ejor.2009.04.019.![]() ![]() ![]() |
[15] |
E. Hosseinzade and H. Hassanpour, The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems, J. Appl. Math. Inform., 29 (2011), 1157-1165.
![]() ![]() |
[16] |
M. Inuiguchi and Y. Kume, Minimax regret in linear programming problems with an interval objective function, in Multiple Criteria Decision Making, Springer-Verlag, New York, 1994, 65–74.
doi: 10.1007/978-1-4612-2666-6_8.![]() ![]() |
[17] |
M. Inuiguchi and M. Sakawa, Minimax regret solution to linear programming problems with an interval objective function, European J. Oper. Res., 86 (1995), 526-536.
doi: 10.1016/0377-2217(94)00092-Q.![]() ![]() |
[18] |
H. Ishihuchi and M. Tanaka, Multiobjective programming in optimization of the interval objective function, European J. Oper. Res., 48 (1990), 219-225.
![]() |
[19] |
J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004.
doi: 10.1007/978-3-540-24828-6.![]() ![]() ![]() |
[20] |
M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 1 (2014), 71-85.
![]() |
[21] |
A. Jayswal, I. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.
doi: 10.1016/j.amc.2011.09.041.![]() ![]() ![]() |
[22] |
C. Jiang, X. Han, G. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, European J. Oper. Res., 188 (2008), 1-13.
doi: 10.1016/j.ejor.2007.03.031.![]() ![]() ![]() |
[23] |
S. Karmakar and K. Bhunia, An alternative optimization technique for interval objective constrained optimization problems via multiobjective programming, J. Egypt. Math. Soc., 22 (2014), 292-303.
doi: 10.1016/j.joems.2013.07.002.![]() ![]() ![]() |
[24] |
D. S. Kim, Generalized convexity and duality for multiobjective optimization problems, J. Inform. Optim. Sci., 13 (1992), 383-390.
doi: 10.1080/02522667.1992.10699123.![]() ![]() ![]() |
[25] |
L. Li, S. Liu and J. Zhang, On interval-valued invex mappings and optimality conditions for interval-valued optimization problems, J. Inequal. Appl., (2015), No. 179, 19 pp.
doi: 10.1186/s13660-015-0692-6.![]() ![]() ![]() |
[26] |
J. Lin, Maximal vectors and multi-objective optimization, J. Optim. Theory Appl., 18 (1976), 41-64.
doi: 10.1007/BF00933793.![]() ![]() ![]() |
[27] |
D. V. Luu and T. T. Mai, Optimality and duality in constrained interval-valued optimization, 4OR-Q J Oper Res., 16 (2018), 311-337.
doi: 10.1007/s10288-017-0369-8.![]() ![]() ![]() |
[28] |
O. L. Mangasarian, Nonlinear Programming, McGraw-Hill Book Co., New York-London-Sydney, 1969.
![]() ![]() |
[29] |
K. Miettinen, Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, Vol. 12, Kluwer Academic Publishers, Boston, MA, 2004.
![]() ![]() |
[30] |
R. E. Moore, Method and Applications of Interval Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1979.
![]() ![]() |
[31] |
R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.
doi: 10.1137/1.9780898717716.![]() ![]() ![]() |
[32] |
F. Mráz, Calculating the exact bounds of optimal values in LP with interval coefficients, Ann. Oper. Res., 81 (1998), 51-62.
doi: 10.1023/A:1018985914065.![]() ![]() ![]() |
[33] |
C. Oliveira and C. H. Antunes, Multiple objective linear programming models with interval coefficients - an illustrated overview, European J. Oper. Res., 181 (2007), 1434-1463.
doi: 10.1016/j.ejor.2005.12.042.![]() ![]() |
[34] |
R. Osuna-Gómez, B. Hernández-Jiménez, Y. Chalco-Cano and G. Ruiz-Garzón, New efficiency conditions for multiobjective interval - valued programming problems, Inform. Sci., 420 (2017), 235-248.
doi: 10.1016/j.ins.2017.08.022.![]() ![]() |
[35] |
V. Preda, On efficiency and duality for multiobjective programs, J. Math. Anal. Appl., 166 (1992), 365-377.
doi: 10.1016/0022-247X(92)90303-U.![]() ![]() ![]() |
[36] |
S. Ruzika and M. M. Wiecek, Approximation methods in multiobjective programming, J. Optim. Theory Appl., 126 (2005), 473-501.
doi: 10.1007/s10957-005-5494-4.![]() ![]() ![]() |
[37] |
D. Singh, B. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonlinear Anal. Optim., 5 (2014), 91-103.
![]() ![]() |
[38] |
D. Singh, B. A. Dar and D. S. Kim, KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions, European J. Oper. Res., 254 (2016), 29-39.
doi: 10.1016/j.ejor.2016.03.042.![]() ![]() ![]() |
[39] |
R. E. Steuer, Algorithms for linear programming problems with interval objective function coefficients, Math. Oper. Res., 6 (1981), 333-348.
doi: 10.1287/moor.6.3.333.![]() ![]() ![]() |
[40] |
H. Suprajitno and I. bin Mohd, Linear programming with interval arithmetic, Int. J. Contemp. Math. Sci., 5 (2010), 323-332.
![]() ![]() |
[41] |
B. Urli and R. Nadeau, An interactive method to multiobjective linear programming problems with interval coefficients, INFOR: Information Systems and Operational Research, 30 (1992), 127-137.
doi: 10.1080/03155986.1992.11732189.![]() ![]() |
[42] |
H.-C. Wu, On interval-valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.
doi: 10.1016/j.jmaa.2007.05.023.![]() ![]() ![]() |
[43] |
H.-C. Wu, The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions, European J. Oper. Res., 196 (2009), 49-60.
doi: 10.1016/j.ejor.2008.03.012.![]() ![]() ![]() |
[44] |
J. Zhang, S. Liu, L. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.
doi: 10.1007/s11590-012-0601-6.![]() ![]() ![]() |
[45] |
H.-C. Zhou and Y-J. Wang, Optimality condition and mixed duality for interval-valued optimization, in Fuzzy Information and Engineering, Vol. 2, Springer, Berlin, Heidelberg, 2009, 1315–1323.
doi: 10.1007/978-3-642-03664-4_140.![]() ![]() |