• Previous Article
    Optimal ordering and pricing models of a two-echelon supply chain under multipletimes ordering
  • JIMO Home
  • This Issue
  • Next Article
    Two penalized mixed–integer nonlinear programming approaches to tackle multicollinearity and outliers effects in linear regression models
doi: 10.3934/jimo.2020093

The $ F $-objective function method for differentiable interval-valued vector optimization problems

Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland

Received  July 2019 Revised  January 2020 Published  May 2020

In this paper, a differentiable vector optimization problem with the multiple interval-valued objective function and with both inequality and equality constraints is considered. The Karush-Kuhn-Tucker necessary optimality conditions are established for such a differentiable interval-valued multiobjective programming problem. Further, a new approach, called $ F $-objective function method, is introduced for solving the considered differentiable vector optimization problem with the multiple interval-valued objective function. In this method, its associated vector optimization problem with the multiple interval-valued $ F $-objective function is constructed. Their equivalence is established under $ F $-convexity assumptions. It is shown that the introduced approach can be used to solve a nonlinear nonconvex interval-valued optimization problem. By using the introduced approximation method, it is also presented in some cases that a nonlinear nonconvex interval-valued optimization problem can be solved by the help of methods for solving linear interval-valued optimization problems.

Citation: Tadeusz Antczak. The $ F $-objective function method for differentiable interval-valued vector optimization problems. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020093
References:
[1]

I. AhmadD. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybernet., 44 (2015), 19-45.   Google Scholar

[2]

I. AhmadD. Singh and B. A. Dar, Optimality conditions for invex interval valued nonlinear programming problems involving generalized $H$-derivative, Filomat, 30 (2016), 2121-2138.  doi: 10.2298/FIL1608121A.  Google Scholar

[3]

G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. doi: doi.  Google Scholar

[4]

M. Allahdadi and H. M. Nehi, The optimal solution set of the interval linear programming problems, Optim. Lett., 7 (2013), 1893-1911.  doi: 10.1007/s11590-012-0530-4.  Google Scholar

[5]

T. Antczak, A new approach to multiobjective programming with a modified objective function, J. Global Optim., 27 (2003), 485-495.  doi: 10.1023/A:1026080604790.  Google Scholar

[6]

T. Antczak, An $\eta $-approximation method in vector optimization, Nonlinear Anal., 63 (2005), 225-236.  doi: 10.1016/j.na.2005.05.008.  Google Scholar

[7]

A. K. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Method Oper. Res., 76 (2012), 273-288.  doi: 10.1007/s00186-012-0399-0.  Google Scholar

[8]

Y. Chalco-CanoW. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Mak., 12 (2013), 305-322.  doi: 10.1007/s10700-013-9156-y.  Google Scholar

[9]

S. Chanas and D. Kuchta, Multiobjective programming in optimization of interval objective functions - A generalized approach, European J. Oper. Res., 94 (1996), 594-598.  doi: 10.1016/0377-2217(95)00055-0.  Google Scholar

[10]

J. W. Chinneck and K. Ramadan, Linear programming with interval coefficients, JORS, 51 (1996), 209-220.   Google Scholar

[11]

M. Ehrgott, Multicriteria Optimization, 2nd edition, Springer-Verlag, Berlin, 2005.  Google Scholar

[12]

G. Eichfelder, Adaptive Scalarization Methods in Multiobjective Optimization, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-79159-1.  Google Scholar

[13]

M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, J. Inform. Optim. Sci., 3 (1982), 25-32.  doi: 10.1080/02522667.1982.10698716.  Google Scholar

[14]

M. Hladik, Interval Linear Programming: A Survey. Linear Programming-New Frontiers in Theory and Applications, Nova Science Publishers, New York, 2011. doi: 10.1016/j.ejor.2009.04.019.  Google Scholar

[15]

E. Hosseinzade and H. Hassanpour, The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems, J. Appl. Math. Inform., 29 (2011), 1157-1165.   Google Scholar

[16]

M. Inuiguchi and Y. Kume, Minimax regret in linear programming problems with an interval objective function, in Multiple Criteria Decision Making, Springer-Verlag, New York, 1994, 65–74. doi: 10.1007/978-1-4612-2666-6_8.  Google Scholar

[17]

M. Inuiguchi and M. Sakawa, Minimax regret solution to linear programming problems with an interval objective function, European J. Oper. Res., 86 (1995), 526-536.  doi: 10.1016/0377-2217(94)00092-Q.  Google Scholar

[18]

H. Ishihuchi and M. Tanaka, Multiobjective programming in optimization of the interval objective function, European J. Oper. Res., 48 (1990), 219-225.   Google Scholar

[19]

J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[20]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 1 (2014), 71-85.   Google Scholar

[21]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.  doi: 10.1016/j.amc.2011.09.041.  Google Scholar

[22]

C. JiangX. HanG. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, European J. Oper. Res., 188 (2008), 1-13.  doi: 10.1016/j.ejor.2007.03.031.  Google Scholar

[23]

S. Karmakar and K. Bhunia, An alternative optimization technique for interval objective constrained optimization problems via multiobjective programming, J. Egypt. Math. Soc., 22 (2014), 292-303.  doi: 10.1016/j.joems.2013.07.002.  Google Scholar

[24]

D. S. Kim, Generalized convexity and duality for multiobjective optimization problems, J. Inform. Optim. Sci., 13 (1992), 383-390.  doi: 10.1080/02522667.1992.10699123.  Google Scholar

[25]

L. Li, S. Liu and J. Zhang, On interval-valued invex mappings and optimality conditions for interval-valued optimization problems, J. Inequal. Appl., (2015), No. 179, 19 pp. doi: 10.1186/s13660-015-0692-6.  Google Scholar

[26]

J. Lin, Maximal vectors and multi-objective optimization, J. Optim. Theory Appl., 18 (1976), 41-64.  doi: 10.1007/BF00933793.  Google Scholar

[27]

D. V. Luu and T. T. Mai, Optimality and duality in constrained interval-valued optimization, 4OR-Q J Oper Res., 16 (2018), 311-337.  doi: 10.1007/s10288-017-0369-8.  Google Scholar

[28]

O. L. Mangasarian, Nonlinear Programming, McGraw-Hill Book Co., New York-London-Sydney, 1969.  Google Scholar

[29]

K. Miettinen, Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, Vol. 12, Kluwer Academic Publishers, Boston, MA, 2004.  Google Scholar

[30]

R. E. Moore, Method and Applications of Interval Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1979.  Google Scholar

[31]

R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898717716.  Google Scholar

[32]

F. Mráz, Calculating the exact bounds of optimal values in LP with interval coefficients, Ann. Oper. Res., 81 (1998), 51-62.  doi: 10.1023/A:1018985914065.  Google Scholar

[33]

C. Oliveira and C. H. Antunes, Multiple objective linear programming models with interval coefficients - an illustrated overview, European J. Oper. Res., 181 (2007), 1434-1463.  doi: 10.1016/j.ejor.2005.12.042.  Google Scholar

[34]

R. Osuna-GómezB. Hernández-JiménezY. Chalco-Cano and G. Ruiz-Garzón, New efficiency conditions for multiobjective interval - valued programming problems, Inform. Sci., 420 (2017), 235-248.  doi: 10.1016/j.ins.2017.08.022.  Google Scholar

[35]

V. Preda, On efficiency and duality for multiobjective programs, J. Math. Anal. Appl., 166 (1992), 365-377.  doi: 10.1016/0022-247X(92)90303-U.  Google Scholar

[36]

S. Ruzika and M. M. Wiecek, Approximation methods in multiobjective programming, J. Optim. Theory Appl., 126 (2005), 473-501.  doi: 10.1007/s10957-005-5494-4.  Google Scholar

[37]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonlinear Anal. Optim., 5 (2014), 91-103.   Google Scholar

[38]

D. SinghB. A. Dar and D. S. Kim, KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions, European J. Oper. Res., 254 (2016), 29-39.  doi: 10.1016/j.ejor.2016.03.042.  Google Scholar

[39]

R. E. Steuer, Algorithms for linear programming problems with interval objective function coefficients, Math. Oper. Res., 6 (1981), 333-348.  doi: 10.1287/moor.6.3.333.  Google Scholar

[40]

H. Suprajitno and I. bin Mohd, Linear programming with interval arithmetic, Int. J. Contemp. Math. Sci., 5 (2010), 323-332.   Google Scholar

[41]

B. Urli and R. Nadeau, An interactive method to multiobjective linear programming problems with interval coefficients, INFOR: Information Systems and Operational Research, 30 (1992), 127-137.  doi: 10.1080/03155986.1992.11732189.  Google Scholar

[42]

H.-C. Wu, On interval-valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.  doi: 10.1016/j.jmaa.2007.05.023.  Google Scholar

[43]

H.-C. Wu, The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions, European J. Oper. Res., 196 (2009), 49-60.  doi: 10.1016/j.ejor.2008.03.012.  Google Scholar

[44]

J. ZhangS. LiuL. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.  doi: 10.1007/s11590-012-0601-6.  Google Scholar

[45]

H.-C. Zhou and Y-J. Wang, Optimality condition and mixed duality for interval-valued optimization, in Fuzzy Information and Engineering, Vol. 2, Springer, Berlin, Heidelberg, 2009, 1315–1323. doi: 10.1007/978-3-642-03664-4_140.  Google Scholar

show all references

References:
[1]

I. AhmadD. Singh and B. A. Dar, Optimality conditions in multiobjective programming problems with interval valued objective functions, Control Cybernet., 44 (2015), 19-45.   Google Scholar

[2]

I. AhmadD. Singh and B. A. Dar, Optimality conditions for invex interval valued nonlinear programming problems involving generalized $H$-derivative, Filomat, 30 (2016), 2121-2138.  doi: 10.2298/FIL1608121A.  Google Scholar

[3]

G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. doi: doi.  Google Scholar

[4]

M. Allahdadi and H. M. Nehi, The optimal solution set of the interval linear programming problems, Optim. Lett., 7 (2013), 1893-1911.  doi: 10.1007/s11590-012-0530-4.  Google Scholar

[5]

T. Antczak, A new approach to multiobjective programming with a modified objective function, J. Global Optim., 27 (2003), 485-495.  doi: 10.1023/A:1026080604790.  Google Scholar

[6]

T. Antczak, An $\eta $-approximation method in vector optimization, Nonlinear Anal., 63 (2005), 225-236.  doi: 10.1016/j.na.2005.05.008.  Google Scholar

[7]

A. K. Bhurjee and G. Panda, Efficient solution of interval optimization problem, Math. Method Oper. Res., 76 (2012), 273-288.  doi: 10.1007/s00186-012-0399-0.  Google Scholar

[8]

Y. Chalco-CanoW. A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Mak., 12 (2013), 305-322.  doi: 10.1007/s10700-013-9156-y.  Google Scholar

[9]

S. Chanas and D. Kuchta, Multiobjective programming in optimization of interval objective functions - A generalized approach, European J. Oper. Res., 94 (1996), 594-598.  doi: 10.1016/0377-2217(95)00055-0.  Google Scholar

[10]

J. W. Chinneck and K. Ramadan, Linear programming with interval coefficients, JORS, 51 (1996), 209-220.   Google Scholar

[11]

M. Ehrgott, Multicriteria Optimization, 2nd edition, Springer-Verlag, Berlin, 2005.  Google Scholar

[12]

G. Eichfelder, Adaptive Scalarization Methods in Multiobjective Optimization, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-79159-1.  Google Scholar

[13]

M. A. Hanson and B. Mond, Further generalizations of convexity in mathematical programming, J. Inform. Optim. Sci., 3 (1982), 25-32.  doi: 10.1080/02522667.1982.10698716.  Google Scholar

[14]

M. Hladik, Interval Linear Programming: A Survey. Linear Programming-New Frontiers in Theory and Applications, Nova Science Publishers, New York, 2011. doi: 10.1016/j.ejor.2009.04.019.  Google Scholar

[15]

E. Hosseinzade and H. Hassanpour, The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems, J. Appl. Math. Inform., 29 (2011), 1157-1165.   Google Scholar

[16]

M. Inuiguchi and Y. Kume, Minimax regret in linear programming problems with an interval objective function, in Multiple Criteria Decision Making, Springer-Verlag, New York, 1994, 65–74. doi: 10.1007/978-1-4612-2666-6_8.  Google Scholar

[17]

M. Inuiguchi and M. Sakawa, Minimax regret solution to linear programming problems with an interval objective function, European J. Oper. Res., 86 (1995), 526-536.  doi: 10.1016/0377-2217(94)00092-Q.  Google Scholar

[18]

H. Ishihuchi and M. Tanaka, Multiobjective programming in optimization of the interval objective function, European J. Oper. Res., 48 (1990), 219-225.   Google Scholar

[19]

J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[20]

M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Res. Int. J., 1 (2014), 71-85.   Google Scholar

[21]

A. JayswalI. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. Comput., 218 (2011), 4119-4127.  doi: 10.1016/j.amc.2011.09.041.  Google Scholar

[22]

C. JiangX. HanG. R. Liu and G. P. Liu, A nonlinear interval number programming method for uncertain optimization problems, European J. Oper. Res., 188 (2008), 1-13.  doi: 10.1016/j.ejor.2007.03.031.  Google Scholar

[23]

S. Karmakar and K. Bhunia, An alternative optimization technique for interval objective constrained optimization problems via multiobjective programming, J. Egypt. Math. Soc., 22 (2014), 292-303.  doi: 10.1016/j.joems.2013.07.002.  Google Scholar

[24]

D. S. Kim, Generalized convexity and duality for multiobjective optimization problems, J. Inform. Optim. Sci., 13 (1992), 383-390.  doi: 10.1080/02522667.1992.10699123.  Google Scholar

[25]

L. Li, S. Liu and J. Zhang, On interval-valued invex mappings and optimality conditions for interval-valued optimization problems, J. Inequal. Appl., (2015), No. 179, 19 pp. doi: 10.1186/s13660-015-0692-6.  Google Scholar

[26]

J. Lin, Maximal vectors and multi-objective optimization, J. Optim. Theory Appl., 18 (1976), 41-64.  doi: 10.1007/BF00933793.  Google Scholar

[27]

D. V. Luu and T. T. Mai, Optimality and duality in constrained interval-valued optimization, 4OR-Q J Oper Res., 16 (2018), 311-337.  doi: 10.1007/s10288-017-0369-8.  Google Scholar

[28]

O. L. Mangasarian, Nonlinear Programming, McGraw-Hill Book Co., New York-London-Sydney, 1969.  Google Scholar

[29]

K. Miettinen, Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, Vol. 12, Kluwer Academic Publishers, Boston, MA, 2004.  Google Scholar

[30]

R. E. Moore, Method and Applications of Interval Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1979.  Google Scholar

[31]

R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898717716.  Google Scholar

[32]

F. Mráz, Calculating the exact bounds of optimal values in LP with interval coefficients, Ann. Oper. Res., 81 (1998), 51-62.  doi: 10.1023/A:1018985914065.  Google Scholar

[33]

C. Oliveira and C. H. Antunes, Multiple objective linear programming models with interval coefficients - an illustrated overview, European J. Oper. Res., 181 (2007), 1434-1463.  doi: 10.1016/j.ejor.2005.12.042.  Google Scholar

[34]

R. Osuna-GómezB. Hernández-JiménezY. Chalco-Cano and G. Ruiz-Garzón, New efficiency conditions for multiobjective interval - valued programming problems, Inform. Sci., 420 (2017), 235-248.  doi: 10.1016/j.ins.2017.08.022.  Google Scholar

[35]

V. Preda, On efficiency and duality for multiobjective programs, J. Math. Anal. Appl., 166 (1992), 365-377.  doi: 10.1016/0022-247X(92)90303-U.  Google Scholar

[36]

S. Ruzika and M. M. Wiecek, Approximation methods in multiobjective programming, J. Optim. Theory Appl., 126 (2005), 473-501.  doi: 10.1007/s10957-005-5494-4.  Google Scholar

[37]

D. SinghB. A. Dar and A. Goyal, KKT optimality conditions for interval valued optimization problems, J. Nonlinear Anal. Optim., 5 (2014), 91-103.   Google Scholar

[38]

D. SinghB. A. Dar and D. S. Kim, KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions, European J. Oper. Res., 254 (2016), 29-39.  doi: 10.1016/j.ejor.2016.03.042.  Google Scholar

[39]

R. E. Steuer, Algorithms for linear programming problems with interval objective function coefficients, Math. Oper. Res., 6 (1981), 333-348.  doi: 10.1287/moor.6.3.333.  Google Scholar

[40]

H. Suprajitno and I. bin Mohd, Linear programming with interval arithmetic, Int. J. Contemp. Math. Sci., 5 (2010), 323-332.   Google Scholar

[41]

B. Urli and R. Nadeau, An interactive method to multiobjective linear programming problems with interval coefficients, INFOR: Information Systems and Operational Research, 30 (1992), 127-137.  doi: 10.1080/03155986.1992.11732189.  Google Scholar

[42]

H.-C. Wu, On interval-valued nonlinear programming problems, J. Math. Anal. Appl., 338 (2008), 299-316.  doi: 10.1016/j.jmaa.2007.05.023.  Google Scholar

[43]

H.-C. Wu, The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions, European J. Oper. Res., 196 (2009), 49-60.  doi: 10.1016/j.ejor.2008.03.012.  Google Scholar

[44]

J. ZhangS. LiuL. Li and Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optim. Lett., 8 (2014), 607-631.  doi: 10.1007/s11590-012-0601-6.  Google Scholar

[45]

H.-C. Zhou and Y-J. Wang, Optimality condition and mixed duality for interval-valued optimization, in Fuzzy Information and Engineering, Vol. 2, Springer, Berlin, Heidelberg, 2009, 1315–1323. doi: 10.1007/978-3-642-03664-4_140.  Google Scholar

[1]

Ruonan Liu, Run Xu. Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021005

[2]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[3]

Yun Gao, Shilin Yang, Fang-Wei Fu. Some optimal cyclic $ \mathbb{F}_q $-linear $ \mathbb{F}_{q^t} $-codes. Advances in Mathematics of Communications, 2021, 15 (3) : 387-396. doi: 10.3934/amc.2020072

[4]

Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011

[5]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[6]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[7]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[8]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[9]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[10]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[11]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

[12]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[13]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[14]

Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021125

[15]

Bingru Zhang, Chuanye Gu, Jueyou Li. Distributed convex optimization with coupling constraints over time-varying directed graphs. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2119-2138. doi: 10.3934/jimo.2020061

[16]

Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080

[17]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[18]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[19]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[20]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (61)
  • HTML views (322)
  • Cited by (0)

Other articles
by authors

[Back to Top]