
-
Previous Article
General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes
- JIMO Home
- This Issue
-
Next Article
Probabilistic robust anti-disturbance control of uncertain systems
Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment
1. | School of Mathematics Science, Liaocheng University, Liaocheng, China |
2. | Business School, University of Shanghai for Science and Technology, Shanghai, China |
3. | Nanjing University of Information Science and Technology, Nanjing, China |
4. | National University of Singapore, Singapore |
The problem of the optimal location-allocation of processing factory and distribution center for supply chain networks under uncertain transportation cost and customer demand are studied. We establish a two-stage mean-risk stochastic 0-1 mixed integer optimization model, by considering the uncertainty and the risk measure of the supply chain. Given the complexity of the model this paper proposes a modified hybrid binary particle swarm optimization algorithm (MHB-PSO) to solve the resulting model, yielding the optimal location and maximal expected return of the supply chain simultaneously. A case study of a bread supply chain in Shanghai is then presented to investigate the specific influence of uncertainties on the food factory and distribution center location. Moreover, we compare the MHB-PSO with hybrid particle swarm optimization algorithm and hybrid genetic algorithm, to validate the proposed algorithm based on the computational time and the convergence rate.
References:
[1] |
M. Abbasa,
Cutting plane method for multiple objective stochastic integer linear programming, European Journal of Operational Research, 168 (2006), 967-984.
doi: 10.1016/j.ejor.2002.11.006. |
[2] |
P. Artzner, F. Delbaen, J. M. Eber and D. Heath,
Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068. |
[3] |
Z. Bai 2007]Bai2007The, G. Z. Bai, The transportation problem with uncertain transportation cost Google Scholar |
[4] |
V. Balachandran and S. Jain,
Optimal facility location under random demand with general cost structure, Naval Research Logistics Quarterly, 23 (1976), 421-436.
doi: 10.1002/nav.3800230305. |
[5] |
S. Baptista, M. I. Gomes and A. P. Barbosa-Povoa, A two-stage stochastic model for the design and planning of a multi-product closed loop supply chain, Computer Aided Chemical Engineering, 30, (2012), 412–416.
doi: 10.1016/B978-0-444-59519-5.50083-6. |
[6] |
K. S. H. Basta, Computationally efficient solution of a multiproduct, two-stage distribution-location problem, The Journal of the Operational Research Society, 45 (1994), 1316-1323. Google Scholar |
[7] |
J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd edition, Springer, New York, 2011.
doi: 10.1007/978-1-4614-0237-4. |
[8] |
K. W. Chau,
A two-stage dynamic model on allocation of construction facilities with genetic algorithm, Automation in Construction, 13 (2004), 481-490.
doi: 10.1016/j.autcon.2004.02.001. |
[9] |
A. Chen, Shelter location-allocation model for flood evacuation planning, Journal of the Eastern Asia Society for Transportation Studies, 6 (2005), 4237-4252. Google Scholar |
[10] |
X. Chen, A. Shapiro and H. Sun,
Convergence analysis of sample average approximation of two-stage stochastic generalized equations, SIAM Journal on Optimization, 29 (2019), 135-161.
doi: 10.1137/17M1162822. |
[11] |
X. Chen, H. L. Sun and H. Xu,
Discrete approximation of two-stage stochastic and distributionally robust linear complementarity problems, Mathematical Programming, 177 (2019), 255-289.
doi: 10.1007/s10107-018-1266-4. |
[12] |
M. Clerc and J. Kennedy,
The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, 6 (2002), 58-73.
doi: 10.1109/4235.985692. |
[13] |
L. Cooper,
Location-Allocation Problems, Operations Research, 11 (1963), 331-343.
doi: 10.1287/opre.11.3.331. |
[14] |
L. Gelders, L. Pintelon and L. N. Van Wassenhove,
A location-allocation problem in a large Belgian brewery, European Journal of Operational Research, 28 (1987), 196-206.
doi: 10.1016/0377-2217(87)90218-9. |
[15] |
D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Co. Inc., Reading, MA, 1989. Google Scholar |
[16] |
C. A. Irawan and D. Jones,
Formulation and solution of a two-stage capacitated facility location problem with multilevel capacities, Annals of Operations Research, 272 (2019), 41-67.
doi: 10.1007/s10479-017-2741-7. |
[17] |
R. Ishfaq and C. R. Sox,
Hub location-allocation in intermodal logistic networks, European Journal of Operational Research, 210 (2011), 213-230.
doi: 10.1016/j.ejor.2010.09.017. |
[18] |
Y. Ji, S. Qu, Z. Wu and Z. Liu, A fuzzy-robust weighted approach for multicriteria bilevel games, IEEE Transactions on Industrial Informatics, (2020).
doi: 10.1109/TII.2020.2969456. |
[19] |
Q. Jin, X. Hui and Y. Yong, A simulated annealing methodology to multiproduct capacitated facility location with stochastic demand, The Scientific World Journal, (2015), 1–9. Google Scholar |
[20] |
J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm algorithm, IEEE International Conference on Systems, Man, and Cybernetics, 5 (1997), 4104-4108. Google Scholar |
[21] |
A. Klose,
An lp-based heuristic for two-stage capacitated facility location problems, The Journal of the Operational Research Society, 50 (1999), 157-166.
doi: 10.1016/S0377-2217(99)00300-8. |
[22] |
B. Li, J. Sun, H. L. Xu and M. Zhang, A class of two-stage distributionally robust games,
Journal of Industrial and Management Optimization, 15 (2019), 387–400.
doi: 10.3934/jimo.2018048. |
[23] |
B. Li, Q. Xun, J. Sun, K. L. Teo, and C. J. Yu, A model of distributionally robust two-stage
stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58
(2018), 86–97.
doi: 10.1016/j.apm.2017.11.039. |
[24] |
I. S. Litvinchev, M. Mata and L. Ozuna,
Lagrangian heuristic for the two-stage capacitated facility location problem, Applied and Computational Mathematics, 11 (2012), 137-146.
|
[25] |
N. Loree and F. Aros-Vera,
Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics, Transportation Research Part E: Logistics and Transportation Review, 116 (2018), 1-24.
doi: 10.1016/j.tre.2018.05.003. |
[26] |
L. R. Medsker, Hybrid Intelligent Systems, Kluwer Academic Publishers, Boston, 1995. Google Scholar |
[27] |
A. Moreno, D. Alem, D. Ferreira and A. Clark,
An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains, European Journal of Operational Research, 269 (2018), 1050-1071.
doi: 10.1016/j.ejor.2018.02.022. |
[28] |
S.M. Mousavi, R. Tavakkoli-Moghaddam and F. Jolai,
A possibilistic programming approach for the location problem of multiple cross-docks and vehicle routing scheduling under uncertainty, Engineering Optimization, 45 (2013), 1223-1249.
doi: 10.1080/0305215X.2012.729053. |
[29] |
S. Mudchanatongsuk, F. Ordoez and J. Liu, Robust solutions for network design under transportation cost and demand uncertainty, Journal of the Operational Research Society, 59
(2008), 652–662.
doi: 10.1057/palgrave.jors.2602362. |
[30] |
A. M. Nezhad, H. Manzour and S. Salhi,
Lagrangian relaxation heuristics for the uncapacitated single-source multi-product facility location problem, International Journal of Production Economics, 145 (2013), 713-723.
doi: 10.1016/j.ijpe.2013.06.001. |
[31] |
N. Noyan, Risk-averse stochastic modeling and optimization, in Recent Advances in Optimization and Modeling of Contemporary Problems, INFORMS: PubsOnLine, 2018,221–254.
doi: 10.1287/educ.2018.0183. |
[32] |
N. Noyan,
Risk-averse two-stage stochastic programming with an application to disaster management, Computers and Operations Research, 39 (2012), 541-559.
doi: 10.1016/j.cor.2011.03.017. |
[33] |
N. Noyan and G. Rudolf,
Optimization with multivariate conditional value-at-risk-constraints, Operations Research, 61 (2013), 990-1013.
doi: 10.1287/opre.2013.1186. |
[34] |
L. K. Nozick and M. A. Turnquist,
A two-echelon inventory allocation and distribution center location analysis, Transportation Research Part E: Logistics and Transportation Review, 37 (2001), 425-441.
doi: 10.1016/S1366-5545(01)00007-2. |
[35] |
W. Ogryczak and A. Ruszczyński,
Dual stochastic dominance and related mean-risk models, SIAM Journal on Optimization, 13 (2002), 60-78.
doi: 10.1137/S1052623400375075. |
[36] |
M. Padberg,
Classical Cuts for Mixed-Integer Programming and Branch-and-Cut, Mathematical Methods of Operations Research, 53 (2001), 173-203.
doi: 10.1007/s001860100120. |
[37] |
N. Ricciardi, R. Tadei and A. Grosso,
Optimal facility location with random throughput costs, Computers and Operations Research, 29 (2002), 593-607.
doi: 10.1016/S0305-0548(99)00090-8. |
[38] |
V. Rico-Ramirez, G. A. Iglesias-Silva, F. Gomez-De la Cruz and S. Hernandez-Castro,
Two-stage stochastic approach to the optimal location of booster disinfection stations, Industrial and Engineering Chemistry Research, 46 (2007), 6284-6292.
doi: 10.1021/ie070141a. |
[39] |
R. T. Rockafellar, Coherent approaches to risk in optimization under uncertainty, in Tutorials in Operations Research, INFORMS: PubsOnline, 2007, 38–61.
doi: 10.1287/educ.1073.0032. |
[40] |
R. T. Rockafellar and S. Uryasev,
Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.
doi: 10.1007/978-1-4757-6594-6_17. |
[41] |
A. Ruszczyński, Decomposition methods, in Handbooks in Operations Research and Management Science, Vol. 10, Elsevier Sci. B. V., Amsterdam, 2003,141–211.
doi: 10.1016/S0927-0507(03)10003-5. |
[42] |
A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory,, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.
doi: 10.1137/1.9780898718751. |
[43] |
H. D. Sherali and B. M. P. Fraticelli,
A modification of Benders' decomposition algorithm for discrete subproblems: An approach for stochastic programs with integer recourse, Journal of Global Optimization, 22 (2002), 319-342.
doi: 10.1023/A:1013827731218. |
[44] |
J. Shu and J. Sun,
Designing the distribution network for an integrated supply chain, Journal of Industrial and Management Optimization, 2 (2006), 339-349.
doi: 10.3934/jimo.2006.2.339. |
[45] |
K. M. Sim, Y. Guo and B. Shi,
BLGAN: Bayesian learning and genetic algorithm for supporting negotiation with incomplete information, IEEE Transactions on Systems Man and Cybernetics Part B, 39 (2009), 198-211.
doi: 10.1109/TSMCB.2008.2004501. |
[46] |
H. Soleimani, M. Seyyed-Esfahani and G. Kannan,
Incorporating risk measures in closed-loop supply chain network design, International Journal of Production Research, 52 (2014), 1843-1867.
doi: 10.1080/00207543.2013.849823. |
[47] |
T. R. Stidsen, K. A. Andersen and B. Dammann,
A branch and bound algorithm for a class of biobjective mixed integer programs, Management Science, 60 (2014), 1009-1032.
doi: 10.1287/mnsc.2013.1802. |
[48] |
H. L. Sun, H. Xu and Y. Wang,
Asymptotic analysis of sample average approximation for stochastic optimization problems with joint chance constraints via conditional value at risk and difference of convex functions, Journal of Optimization Theory and Applications, 161 (2014), 257-284.
doi: 10.1007/s10957-012-0127-1. |
[49] |
J. Sun, L. Z. Liao and B. Rodrigues,
Quadratic two-stage stochastic optimization with coherent measures of risk, Mathematical Programming, 168 (2018), 599-613.
doi: 10.1007/s10107-017-1131-x. |
[50] |
S. A. Trusevych, R. H. Kwon and A. K. S. Jardine,
Optimizing critical spare parts and location based on the conditional value-at-risk criterion, The Engineering Economist, 59 (2014), 116-135.
doi: 10.1080/0013791X.2013.876795. |
[51] |
W. Shih,
A branch and bound method for the multiconstraint zero-one knapsack problem, Journal of the Operational Research Society, 30 (1979), 369-378.
doi: 10.2307/3009639. |
[52] |
G. O. Wesolowsky and W. G. Truscott,
The multiperiod location-allocation problem with relocation of facilities, Management Science, 22 (1975), 57-65.
doi: 10.1287/mnsc.22.1.57. |
[53] |
T. Westerlund and F. Pettersson, An extended cutting plane method for solving convex MINLP problems, Computers and Chemical Engineering, 19 (1995), S131–S136. Google Scholar |
[54] |
T. H. Yang,
A two-stage stochastic model for airline network design with uncertain demand, Transportmetrica, 6 (2010), 187-213.
doi: 10.1080/18128600902906755. |
[55] |
W. Zhang, K. Cao, S. Liu and B. Huang,
A multi-objective optimization approach for health-care facility location-allocation problems in highly developed cities such as Hong Kong, Computers Environment and Urban Systems, 59 (2016), 220-230.
doi: 10.1016/j.compenvurbsys.2016.07.001. |
show all references
References:
[1] |
M. Abbasa,
Cutting plane method for multiple objective stochastic integer linear programming, European Journal of Operational Research, 168 (2006), 967-984.
doi: 10.1016/j.ejor.2002.11.006. |
[2] |
P. Artzner, F. Delbaen, J. M. Eber and D. Heath,
Coherent measures of risk, Mathematical Finance, 9 (1999), 203-228.
doi: 10.1111/1467-9965.00068. |
[3] |
Z. Bai 2007]Bai2007The, G. Z. Bai, The transportation problem with uncertain transportation cost Google Scholar |
[4] |
V. Balachandran and S. Jain,
Optimal facility location under random demand with general cost structure, Naval Research Logistics Quarterly, 23 (1976), 421-436.
doi: 10.1002/nav.3800230305. |
[5] |
S. Baptista, M. I. Gomes and A. P. Barbosa-Povoa, A two-stage stochastic model for the design and planning of a multi-product closed loop supply chain, Computer Aided Chemical Engineering, 30, (2012), 412–416.
doi: 10.1016/B978-0-444-59519-5.50083-6. |
[6] |
K. S. H. Basta, Computationally efficient solution of a multiproduct, two-stage distribution-location problem, The Journal of the Operational Research Society, 45 (1994), 1316-1323. Google Scholar |
[7] |
J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd edition, Springer, New York, 2011.
doi: 10.1007/978-1-4614-0237-4. |
[8] |
K. W. Chau,
A two-stage dynamic model on allocation of construction facilities with genetic algorithm, Automation in Construction, 13 (2004), 481-490.
doi: 10.1016/j.autcon.2004.02.001. |
[9] |
A. Chen, Shelter location-allocation model for flood evacuation planning, Journal of the Eastern Asia Society for Transportation Studies, 6 (2005), 4237-4252. Google Scholar |
[10] |
X. Chen, A. Shapiro and H. Sun,
Convergence analysis of sample average approximation of two-stage stochastic generalized equations, SIAM Journal on Optimization, 29 (2019), 135-161.
doi: 10.1137/17M1162822. |
[11] |
X. Chen, H. L. Sun and H. Xu,
Discrete approximation of two-stage stochastic and distributionally robust linear complementarity problems, Mathematical Programming, 177 (2019), 255-289.
doi: 10.1007/s10107-018-1266-4. |
[12] |
M. Clerc and J. Kennedy,
The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, 6 (2002), 58-73.
doi: 10.1109/4235.985692. |
[13] |
L. Cooper,
Location-Allocation Problems, Operations Research, 11 (1963), 331-343.
doi: 10.1287/opre.11.3.331. |
[14] |
L. Gelders, L. Pintelon and L. N. Van Wassenhove,
A location-allocation problem in a large Belgian brewery, European Journal of Operational Research, 28 (1987), 196-206.
doi: 10.1016/0377-2217(87)90218-9. |
[15] |
D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Co. Inc., Reading, MA, 1989. Google Scholar |
[16] |
C. A. Irawan and D. Jones,
Formulation and solution of a two-stage capacitated facility location problem with multilevel capacities, Annals of Operations Research, 272 (2019), 41-67.
doi: 10.1007/s10479-017-2741-7. |
[17] |
R. Ishfaq and C. R. Sox,
Hub location-allocation in intermodal logistic networks, European Journal of Operational Research, 210 (2011), 213-230.
doi: 10.1016/j.ejor.2010.09.017. |
[18] |
Y. Ji, S. Qu, Z. Wu and Z. Liu, A fuzzy-robust weighted approach for multicriteria bilevel games, IEEE Transactions on Industrial Informatics, (2020).
doi: 10.1109/TII.2020.2969456. |
[19] |
Q. Jin, X. Hui and Y. Yong, A simulated annealing methodology to multiproduct capacitated facility location with stochastic demand, The Scientific World Journal, (2015), 1–9. Google Scholar |
[20] |
J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm algorithm, IEEE International Conference on Systems, Man, and Cybernetics, 5 (1997), 4104-4108. Google Scholar |
[21] |
A. Klose,
An lp-based heuristic for two-stage capacitated facility location problems, The Journal of the Operational Research Society, 50 (1999), 157-166.
doi: 10.1016/S0377-2217(99)00300-8. |
[22] |
B. Li, J. Sun, H. L. Xu and M. Zhang, A class of two-stage distributionally robust games,
Journal of Industrial and Management Optimization, 15 (2019), 387–400.
doi: 10.3934/jimo.2018048. |
[23] |
B. Li, Q. Xun, J. Sun, K. L. Teo, and C. J. Yu, A model of distributionally robust two-stage
stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58
(2018), 86–97.
doi: 10.1016/j.apm.2017.11.039. |
[24] |
I. S. Litvinchev, M. Mata and L. Ozuna,
Lagrangian heuristic for the two-stage capacitated facility location problem, Applied and Computational Mathematics, 11 (2012), 137-146.
|
[25] |
N. Loree and F. Aros-Vera,
Points of distribution location and inventory management model for Post-Disaster Humanitarian Logistics, Transportation Research Part E: Logistics and Transportation Review, 116 (2018), 1-24.
doi: 10.1016/j.tre.2018.05.003. |
[26] |
L. R. Medsker, Hybrid Intelligent Systems, Kluwer Academic Publishers, Boston, 1995. Google Scholar |
[27] |
A. Moreno, D. Alem, D. Ferreira and A. Clark,
An effective two-stage stochastic multi-trip location-transportation model with social concerns in relief supply chains, European Journal of Operational Research, 269 (2018), 1050-1071.
doi: 10.1016/j.ejor.2018.02.022. |
[28] |
S.M. Mousavi, R. Tavakkoli-Moghaddam and F. Jolai,
A possibilistic programming approach for the location problem of multiple cross-docks and vehicle routing scheduling under uncertainty, Engineering Optimization, 45 (2013), 1223-1249.
doi: 10.1080/0305215X.2012.729053. |
[29] |
S. Mudchanatongsuk, F. Ordoez and J. Liu, Robust solutions for network design under transportation cost and demand uncertainty, Journal of the Operational Research Society, 59
(2008), 652–662.
doi: 10.1057/palgrave.jors.2602362. |
[30] |
A. M. Nezhad, H. Manzour and S. Salhi,
Lagrangian relaxation heuristics for the uncapacitated single-source multi-product facility location problem, International Journal of Production Economics, 145 (2013), 713-723.
doi: 10.1016/j.ijpe.2013.06.001. |
[31] |
N. Noyan, Risk-averse stochastic modeling and optimization, in Recent Advances in Optimization and Modeling of Contemporary Problems, INFORMS: PubsOnLine, 2018,221–254.
doi: 10.1287/educ.2018.0183. |
[32] |
N. Noyan,
Risk-averse two-stage stochastic programming with an application to disaster management, Computers and Operations Research, 39 (2012), 541-559.
doi: 10.1016/j.cor.2011.03.017. |
[33] |
N. Noyan and G. Rudolf,
Optimization with multivariate conditional value-at-risk-constraints, Operations Research, 61 (2013), 990-1013.
doi: 10.1287/opre.2013.1186. |
[34] |
L. K. Nozick and M. A. Turnquist,
A two-echelon inventory allocation and distribution center location analysis, Transportation Research Part E: Logistics and Transportation Review, 37 (2001), 425-441.
doi: 10.1016/S1366-5545(01)00007-2. |
[35] |
W. Ogryczak and A. Ruszczyński,
Dual stochastic dominance and related mean-risk models, SIAM Journal on Optimization, 13 (2002), 60-78.
doi: 10.1137/S1052623400375075. |
[36] |
M. Padberg,
Classical Cuts for Mixed-Integer Programming and Branch-and-Cut, Mathematical Methods of Operations Research, 53 (2001), 173-203.
doi: 10.1007/s001860100120. |
[37] |
N. Ricciardi, R. Tadei and A. Grosso,
Optimal facility location with random throughput costs, Computers and Operations Research, 29 (2002), 593-607.
doi: 10.1016/S0305-0548(99)00090-8. |
[38] |
V. Rico-Ramirez, G. A. Iglesias-Silva, F. Gomez-De la Cruz and S. Hernandez-Castro,
Two-stage stochastic approach to the optimal location of booster disinfection stations, Industrial and Engineering Chemistry Research, 46 (2007), 6284-6292.
doi: 10.1021/ie070141a. |
[39] |
R. T. Rockafellar, Coherent approaches to risk in optimization under uncertainty, in Tutorials in Operations Research, INFORMS: PubsOnline, 2007, 38–61.
doi: 10.1287/educ.1073.0032. |
[40] |
R. T. Rockafellar and S. Uryasev,
Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.
doi: 10.1007/978-1-4757-6594-6_17. |
[41] |
A. Ruszczyński, Decomposition methods, in Handbooks in Operations Research and Management Science, Vol. 10, Elsevier Sci. B. V., Amsterdam, 2003,141–211.
doi: 10.1016/S0927-0507(03)10003-5. |
[42] |
A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory,, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.
doi: 10.1137/1.9780898718751. |
[43] |
H. D. Sherali and B. M. P. Fraticelli,
A modification of Benders' decomposition algorithm for discrete subproblems: An approach for stochastic programs with integer recourse, Journal of Global Optimization, 22 (2002), 319-342.
doi: 10.1023/A:1013827731218. |
[44] |
J. Shu and J. Sun,
Designing the distribution network for an integrated supply chain, Journal of Industrial and Management Optimization, 2 (2006), 339-349.
doi: 10.3934/jimo.2006.2.339. |
[45] |
K. M. Sim, Y. Guo and B. Shi,
BLGAN: Bayesian learning and genetic algorithm for supporting negotiation with incomplete information, IEEE Transactions on Systems Man and Cybernetics Part B, 39 (2009), 198-211.
doi: 10.1109/TSMCB.2008.2004501. |
[46] |
H. Soleimani, M. Seyyed-Esfahani and G. Kannan,
Incorporating risk measures in closed-loop supply chain network design, International Journal of Production Research, 52 (2014), 1843-1867.
doi: 10.1080/00207543.2013.849823. |
[47] |
T. R. Stidsen, K. A. Andersen and B. Dammann,
A branch and bound algorithm for a class of biobjective mixed integer programs, Management Science, 60 (2014), 1009-1032.
doi: 10.1287/mnsc.2013.1802. |
[48] |
H. L. Sun, H. Xu and Y. Wang,
Asymptotic analysis of sample average approximation for stochastic optimization problems with joint chance constraints via conditional value at risk and difference of convex functions, Journal of Optimization Theory and Applications, 161 (2014), 257-284.
doi: 10.1007/s10957-012-0127-1. |
[49] |
J. Sun, L. Z. Liao and B. Rodrigues,
Quadratic two-stage stochastic optimization with coherent measures of risk, Mathematical Programming, 168 (2018), 599-613.
doi: 10.1007/s10107-017-1131-x. |
[50] |
S. A. Trusevych, R. H. Kwon and A. K. S. Jardine,
Optimizing critical spare parts and location based on the conditional value-at-risk criterion, The Engineering Economist, 59 (2014), 116-135.
doi: 10.1080/0013791X.2013.876795. |
[51] |
W. Shih,
A branch and bound method for the multiconstraint zero-one knapsack problem, Journal of the Operational Research Society, 30 (1979), 369-378.
doi: 10.2307/3009639. |
[52] |
G. O. Wesolowsky and W. G. Truscott,
The multiperiod location-allocation problem with relocation of facilities, Management Science, 22 (1975), 57-65.
doi: 10.1287/mnsc.22.1.57. |
[53] |
T. Westerlund and F. Pettersson, An extended cutting plane method for solving convex MINLP problems, Computers and Chemical Engineering, 19 (1995), S131–S136. Google Scholar |
[54] |
T. H. Yang,
A two-stage stochastic model for airline network design with uncertain demand, Transportmetrica, 6 (2010), 187-213.
doi: 10.1080/18128600902906755. |
[55] |
W. Zhang, K. Cao, S. Liu and B. Huang,
A multi-objective optimization approach for health-care facility location-allocation problems in highly developed cities such as Hong Kong, Computers Environment and Urban Systems, 59 (2016), 220-230.
doi: 10.1016/j.compenvurbsys.2016.07.001. |






Reference | Location type | Random parameters | Stochastic approach | Risk approach | Solving algorithm |
[27] | Relief centers | Demand, supply | Two-stage | Risk-neutral | Heuristic |
[Irawan and Jones2019Formulation] | Distribution center | // | Two-stage | Risk-neutral | Matheuristic |
[32] | Emergency facility | Demand | Two-stage | CVaR | Bender decomposition |
[6] | Warehouse | // | Two-stage | Risk-neutral | Branch-and-bound |
[21] | Factory | // | Two-stage | Risk-neutral | Heuristic |
[24] | Factory, warehouse | // | Two-stage | Risk-neutral | Heuristic |
[37] | Facility | Throughput costs | One-stage | Risk-neutral | Heuristic |
[4] | Factory | Demand | One-stage | Risk-neutral | Branch-and-bound |
[5] | Facility | Demand | Two-stage | Risk-neutral | L-shaped |
[30] | Distribution center | // | One-stage | Risk-neutral | Heuristic |
[50] | Facility | Lead time | Two-stage | CVaR | Decomposition |
[19] | Facility | Demand | One-stage | Risk-neutral | Combined simulated annealing |
Reference | Location type | Random parameters | Stochastic approach | Risk approach | Solving algorithm |
[27] | Relief centers | Demand, supply | Two-stage | Risk-neutral | Heuristic |
[Irawan and Jones2019Formulation] | Distribution center | // | Two-stage | Risk-neutral | Matheuristic |
[32] | Emergency facility | Demand | Two-stage | CVaR | Bender decomposition |
[6] | Warehouse | // | Two-stage | Risk-neutral | Branch-and-bound |
[21] | Factory | // | Two-stage | Risk-neutral | Heuristic |
[24] | Factory, warehouse | // | Two-stage | Risk-neutral | Heuristic |
[37] | Facility | Throughput costs | One-stage | Risk-neutral | Heuristic |
[4] | Factory | Demand | One-stage | Risk-neutral | Branch-and-bound |
[5] | Facility | Demand | Two-stage | Risk-neutral | L-shaped |
[30] | Distribution center | // | One-stage | Risk-neutral | Heuristic |
[50] | Facility | Lead time | Two-stage | CVaR | Decomposition |
[19] | Facility | Demand | One-stage | Risk-neutral | Combined simulated annealing |
$\mathbf{e}_{best}=(1, 1, 1, 0)$ | $\mathbf{c}_{best}=(1, 0, 0, $ | $0, 1, 0, 1, 0, 1, 0)$ | ||
$x_{111}^*=495.0740$ | $x_{112}^*=935.0000$ | $x^*_{113}=69.9260$ | $x_{123}^*=382.7580$ | $y_{111}^*=495.0740$ |
$y_{125}^*=424.7554$ | $y_{127}^*=466.7951$ | $y_{129}^*=43.4494$ | $y_{135}^*=52.9868$ | $y_{139}^*=399.6973$ |
$z_{111}^*=495.0740$ | $z_{152}^*=477.7422$ | $z_{171}^*=2.6723$ | $z_{172}^*=7.1685$ | $Pro=1.2952e+04$ |
$z_{174}^*=456.9543$ | $z_{193}^*=443.1467$ | Others=0 | $Val=-1.2799e+04$ |
$\mathbf{e}_{best}=(1, 1, 1, 0)$ | $\mathbf{c}_{best}=(1, 0, 0, $ | $0, 1, 0, 1, 0, 1, 0)$ | ||
$x_{111}^*=495.0740$ | $x_{112}^*=935.0000$ | $x^*_{113}=69.9260$ | $x_{123}^*=382.7580$ | $y_{111}^*=495.0740$ |
$y_{125}^*=424.7554$ | $y_{127}^*=466.7951$ | $y_{129}^*=43.4494$ | $y_{135}^*=52.9868$ | $y_{139}^*=399.6973$ |
$z_{111}^*=495.0740$ | $z_{152}^*=477.7422$ | $z_{171}^*=2.6723$ | $z_{172}^*=7.1685$ | $Pro=1.2952e+04$ |
$z_{174}^*=456.9543$ | $z_{193}^*=443.1467$ | Others=0 | $Val=-1.2799e+04$ |
Algorithm | $\mathbf{e}_{best}$ | $\mathbf{c}_{best}$ | Pro | Val | TI |
MHB-PSO | $(1, 1, 1, 0)$ | $(1, 0, 0, 0, 1, 0, 1, 0, 1, 0)$ | $1.2952e+04$ | $-1.2799e+04$ | $9849.4900$ |
Hybrid PSO | $(0, 1, 1, 1)$ | $(0, 0, 1, 0, 0, 1, 1, 0, 1, 0)$ | $1.2861e+04$ | $-1.2683e+04$ | $11169.2300$ |
Hybrid GA | $(0, 1, 0, 1)$ | $(0, 0, 1, 0, 0, 1, 0, 0, 1, 1)$ | $1.2855e+04$ | $-1.2660e+04$ | $12035.1647$ |
Algorithm | $\mathbf{e}_{best}$ | $\mathbf{c}_{best}$ | Pro | Val | TI |
MHB-PSO | $(1, 1, 1, 0)$ | $(1, 0, 0, 0, 1, 0, 1, 0, 1, 0)$ | $1.2952e+04$ | $-1.2799e+04$ | $9849.4900$ |
Hybrid PSO | $(0, 1, 1, 1)$ | $(0, 0, 1, 0, 0, 1, 1, 0, 1, 0)$ | $1.2861e+04$ | $-1.2683e+04$ | $11169.2300$ |
Hybrid GA | $(0, 1, 0, 1)$ | $(0, 0, 1, 0, 0, 1, 0, 0, 1, 1)$ | $1.2855e+04$ | $-1.2660e+04$ | $12035.1647$ |
System | Parameters | Results | ||||||
T | N | $c_{min}$ | $c_{max}$ | $\mathbf{e}_{best}$ | $\mathbf{c}_{best}$ | Val | Error(%) | |
50 | 10 | 2.0 | 2.1 | $(1, 1, 1, 0)$ | $(1, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2690e+04$ | 0.99 | |
100 | 10 | 2.0 | 2.1 | $(0, 1, 1, 1)$ | $(0, 0, 1, 0, 0, 1, 1, 0, 1, 0)$ | $-1.2712e+04$ | 0.76 | |
1000 | 10 | 2.0 | 2.1 | $(1, 1, 1, 0)$ | $(0, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2780e+04$ | 0.23 | |
2000 | 10 | 2.0 | 2.1 | $(1, 1, 1, 0)$ | $(0, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2780e+04$ | 0.23 | |
1000 | 100 | 2.0 | 2.1 | $(1, 1, 1, 0)$ | $(1, 0, 0, 0, 1, 0, 1, 0, 1, 0)$ | $-1.2799e+04$ | 0.08 | |
1000 | 1000 | 2.0 | 2.1 | $(1, 1, 1, 0)$ | $(1, 0, 0, 0, 1, 0, 1, 0, 1, 0)$ | $-1.2799e+04$ | 0.08 | |
1000 | 10 | 2.0 | 2.5 | $(0, 1, 0, 1)$ | $(0, 0, 1, 0, 1, 0, 0, 0, 1, 1)$ | $-1.2801e+04$ | 0.06 | |
1000 | 10 | 2.0 | 3.0 | $(1, 1, 0, 1)$ | $(0, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2809e+04$ | 0.00 | |
1000 | 10 | 2.0 | 4.0 | $(1, 1, 1, 0)$ | $(0, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2780e+04$ | 0.23 | |
1000 | 10 | 2.5 | 3.0 | $(1, 1, 0, 1)$ | $(0, 0, 0, 1, 1, 0, 1, 0, 1, 0)$ | $-1.2721e+04$ | 0.69 | |
1000 | 10 | 2.5 | 4.0 | $(1, 1, 1, 0)$ | $(0, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2760e+04$ | 0.38 |
System | Parameters | Results | ||||||
T | N | $c_{min}$ | $c_{max}$ | $\mathbf{e}_{best}$ | $\mathbf{c}_{best}$ | Val | Error(%) | |
50 | 10 | 2.0 | 2.1 | $(1, 1, 1, 0)$ | $(1, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2690e+04$ | 0.99 | |
100 | 10 | 2.0 | 2.1 | $(0, 1, 1, 1)$ | $(0, 0, 1, 0, 0, 1, 1, 0, 1, 0)$ | $-1.2712e+04$ | 0.76 | |
1000 | 10 | 2.0 | 2.1 | $(1, 1, 1, 0)$ | $(0, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2780e+04$ | 0.23 | |
2000 | 10 | 2.0 | 2.1 | $(1, 1, 1, 0)$ | $(0, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2780e+04$ | 0.23 | |
1000 | 100 | 2.0 | 2.1 | $(1, 1, 1, 0)$ | $(1, 0, 0, 0, 1, 0, 1, 0, 1, 0)$ | $-1.2799e+04$ | 0.08 | |
1000 | 1000 | 2.0 | 2.1 | $(1, 1, 1, 0)$ | $(1, 0, 0, 0, 1, 0, 1, 0, 1, 0)$ | $-1.2799e+04$ | 0.08 | |
1000 | 10 | 2.0 | 2.5 | $(0, 1, 0, 1)$ | $(0, 0, 1, 0, 1, 0, 0, 0, 1, 1)$ | $-1.2801e+04$ | 0.06 | |
1000 | 10 | 2.0 | 3.0 | $(1, 1, 0, 1)$ | $(0, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2809e+04$ | 0.00 | |
1000 | 10 | 2.0 | 4.0 | $(1, 1, 1, 0)$ | $(0, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2780e+04$ | 0.23 | |
1000 | 10 | 2.5 | 3.0 | $(1, 1, 0, 1)$ | $(0, 0, 0, 1, 1, 0, 1, 0, 1, 0)$ | $-1.2721e+04$ | 0.69 | |
1000 | 10 | 2.5 | 4.0 | $(1, 1, 1, 0)$ | $(0, 0, 0, 1, 0, 1, 1, 0, 1, 0)$ | $-1.2760e+04$ | 0.38 |
$\xi(\omega)$ | $\mathbf{e}_{best}$ | $\mathbf{c}_{best}$ | Pro |
Random | $(1, 1, 1, 0)$ | $(1, 0, 0, 0, 1, 0, 1, 0, 1, 0)$ | $1.2952e+04$ |
Expected | $(0, 1, 0, 1)$ | $(0, 0, 0, 1, 0, 1, 0, 0, 1, 1)$ | $1.2819e+04$ |
$\xi(\omega)$ | $\mathbf{e}_{best}$ | $\mathbf{c}_{best}$ | Pro |
Random | $(1, 1, 1, 0)$ | $(1, 0, 0, 0, 1, 0, 1, 0, 1, 0)$ | $1.2952e+04$ |
Expected | $(0, 1, 0, 1)$ | $(0, 0, 0, 1, 0, 1, 0, 0, 1, 1)$ | $1.2819e+04$ |
$\lambda$ | $\mathbf{e}_{best}$ | $\mathbf{c}_{best}$ | Pro |
$\lambda=0$ | $(1, 1, 1, 0)$ | $(0, 0, 1, 1, 0, 1, 1, 0, 1, 0)$ | $1.3007e+04$ |
$\lambda=0.1$ | $(1, 1, 1, 0)$ | $(1, 0, 0, 0, 1, 0, 1, 0, 1, 0)$ | $1.2952e+04$ |
$\lambda$ | $\mathbf{e}_{best}$ | $\mathbf{c}_{best}$ | Pro |
$\lambda=0$ | $(1, 1, 1, 0)$ | $(0, 0, 1, 1, 0, 1, 1, 0, 1, 0)$ | $1.3007e+04$ |
$\lambda=0.1$ | $(1, 1, 1, 0)$ | $(1, 0, 0, 0, 1, 0, 1, 0, 1, 0)$ | $1.2952e+04$ |
Pro | ||||
(4.6, 4.8) | 14.0 | |||
(4.6, 4.8) | 14.5 | |||
(4.6, 4.8) | 15.0 | |||
(4.3, 4.8) | 14.5 | |||
(4.9, 4.8) | 14.5 | |||
(4.6, 4.5) | 14.5 | |||
(4.6, 5.0) | 14.5 | |||
(4.3, 4.5) | 14.5 | |||
(4.9, 5.0) | 14.5 |
Pro | ||||
(4.6, 4.8) | 14.0 | |||
(4.6, 4.8) | 14.5 | |||
(4.6, 4.8) | 15.0 | |||
(4.3, 4.8) | 14.5 | |||
(4.9, 4.8) | 14.5 | |||
(4.6, 4.5) | 14.5 | |||
(4.6, 5.0) | 14.5 | |||
(4.3, 4.5) | 14.5 | |||
(4.9, 5.0) | 14.5 |
Index | Suppliers | Processing | plants | Distribution | centers | ||||||
$s, i, j$ | $a_{1s}$ | $r_{1s}$ | $b_{i1}$ | $q_{i1}$ | $f_i$ | $\tau_{1j}$ | $w_{1j}$ | $g_j$ | |||
1 | 1500 | 4.6 | 850 | 0.80 | 185 | 500 | 0.25 | 135 | |||
2 | 1200 | 4.8 | 935 | 0.75 | 180 | 480 | 0.25 | 130 | |||
3 | $/$ | $/$ | 845 | 0.81 | 200 | 450 | 0.25 | 120 | |||
4 | $/$ | $/$ | 950 | 0.76 | 160 | 470 | 0.25 | 125 | |||
5 | $/$ | $/$ | $/$ | $/$ | $/$ | 510 | 0.25 | 140 | |||
6 | $/$ | $/$ | $/$ | $/$ | $/$ | 490 | 0.25 | 130 | |||
7 | $/$ | $/$ | $/$ | $/$ | $/$ | 520 | 0.25 | 145 | |||
8 | $/$ | $/$ | $/$ | $/$ | $/$ | 505 | 0.25 | 143 | |||
9 | $/$ | $/$ | $/$ | $/$ | $/$ | 460 | 0.25 | 123 | |||
10 | $/$ | $/$ | $/$ | $/$ | $/$ | 485 | 0.25 | 133 |
Index | Suppliers | Processing | plants | Distribution | centers | ||||||
$s, i, j$ | $a_{1s}$ | $r_{1s}$ | $b_{i1}$ | $q_{i1}$ | $f_i$ | $\tau_{1j}$ | $w_{1j}$ | $g_j$ | |||
1 | 1500 | 4.6 | 850 | 0.80 | 185 | 500 | 0.25 | 135 | |||
2 | 1200 | 4.8 | 935 | 0.75 | 180 | 480 | 0.25 | 130 | |||
3 | $/$ | $/$ | 845 | 0.81 | 200 | 450 | 0.25 | 120 | |||
4 | $/$ | $/$ | 950 | 0.76 | 160 | 470 | 0.25 | 125 | |||
5 | $/$ | $/$ | $/$ | $/$ | $/$ | 510 | 0.25 | 140 | |||
6 | $/$ | $/$ | $/$ | $/$ | $/$ | 490 | 0.25 | 130 | |||
7 | $/$ | $/$ | $/$ | $/$ | $/$ | 520 | 0.25 | 145 | |||
8 | $/$ | $/$ | $/$ | $/$ | $/$ | 505 | 0.25 | 143 | |||
9 | $/$ | $/$ | $/$ | $/$ | $/$ | 460 | 0.25 | 123 | |||
10 | $/$ | $/$ | $/$ | $/$ | $/$ | 485 | 0.25 | 133 |
Flour factory | Yingyuan food factory | Changli food factory | Ziyan food factory | Sunhong food factory |
Fuxin third | $\mathscr{U}(0.18, 0.21)$ | $\mathscr{U}(0.12, 0.16)$ | $\mathscr{U}(0.25, 0.28)$ | $\mathscr{U}(0.40, 0.43)$ |
Fuxin | $\mathscr{U}(0.45, 0.49)$ | $\mathscr{U}(0.25, 0.28)$ | $\mathscr{U}(0.11, 0.15)$ | $\mathscr{U}(0.27, 0.30)$ |
Flour factory | Yingyuan food factory | Changli food factory | Ziyan food factory | Sunhong food factory |
Fuxin third | $\mathscr{U}(0.18, 0.21)$ | $\mathscr{U}(0.12, 0.16)$ | $\mathscr{U}(0.25, 0.28)$ | $\mathscr{U}(0.40, 0.43)$ |
Fuxin | $\mathscr{U}(0.45, 0.49)$ | $\mathscr{U}(0.25, 0.28)$ | $\mathscr{U}(0.11, 0.15)$ | $\mathscr{U}(0.27, 0.30)$ |
Rt-mart | Yingyuan food factory | Changli food factory | Ziyan food factory | Sunhong food factory |
Meilanhu | $\mathscr{U}(0.26, 0.30)$ | $\mathscr{U}(0.37, 0.40)$ | $\mathscr{U}(0.46, 0.49)$ | $\mathscr{U}(0.65, 0.68)$ |
Anting | $\mathscr{U}(0.46, 0.49)$ | $\mathscr{U}(0.41, 0.45)$ | $\mathscr{U}(0.40, 0.44)$ | $\mathscr{U}(0.68, 0.72)$ |
Nanxiang | $\mathscr{U}(0.31, 0.34)$ | $\mathscr{U}(0.27, 0.31)$ | $\mathscr{U}(0.33, 0.36)$ | $\mathscr{U}(0.56, 0.60)$ |
Yangpu | $\mathscr{U}(0.08, 0.11)$ | $\mathscr{U}(0.17, 0.20)$ | $\mathscr{U}(0.34, 0.37)$ | $\mathscr{U}(0.41, 0.44)$ |
Sijing | $\mathscr{U}(0.45, 0.49)$ | $\mathscr{U}(0.27, 0.31)$ | $\mathscr{U}(0.18, 0.21)$ | $\mathscr{U}(0.48, 0.52)$ |
Chunshen | $\mathscr{U}(0.36, 0.39)$ | $\mathscr{U}(0.12, 0.16)$ | $\mathscr{U}(0.06, 0.09)$ | $\mathscr{U}(0.33, 0.37)$ |
Kangqiao | $\mathscr{U}(0.26, 0.29)$ | $\mathscr{U}(0.11, 0.15)$ | $\mathscr{U}(0.24, 0.28)$ | $\mathscr{U}(0.19, 0.23)$ |
Songjiang | $\mathscr{U}(0.58, 0.62)$ | $\mathscr{U}(0.37, 0.41)$ | $\mathscr{U}(0.21, 0.25)$ | $\mathscr{U}(0.51, 0.55)$ |
Fengxian | $\mathscr{U}(0.58, 0.62)$ | $\mathscr{U}(0.36, 0.40)$ | $\mathscr{U}(0.24, 0.27)$ | $\mathscr{U}(0.30, 0.34)$ |
Nicheng | $\mathscr{U}(0.63, 0.67)$ | $\mathscr{U}(0.52, 0.55)$ | $\mathscr{U}(0.54, 0.57)$ | $\mathscr{U}(0.22, 0.25)$ |
Rt-mart | Yingyuan food factory | Changli food factory | Ziyan food factory | Sunhong food factory |
Meilanhu | $\mathscr{U}(0.26, 0.30)$ | $\mathscr{U}(0.37, 0.40)$ | $\mathscr{U}(0.46, 0.49)$ | $\mathscr{U}(0.65, 0.68)$ |
Anting | $\mathscr{U}(0.46, 0.49)$ | $\mathscr{U}(0.41, 0.45)$ | $\mathscr{U}(0.40, 0.44)$ | $\mathscr{U}(0.68, 0.72)$ |
Nanxiang | $\mathscr{U}(0.31, 0.34)$ | $\mathscr{U}(0.27, 0.31)$ | $\mathscr{U}(0.33, 0.36)$ | $\mathscr{U}(0.56, 0.60)$ |
Yangpu | $\mathscr{U}(0.08, 0.11)$ | $\mathscr{U}(0.17, 0.20)$ | $\mathscr{U}(0.34, 0.37)$ | $\mathscr{U}(0.41, 0.44)$ |
Sijing | $\mathscr{U}(0.45, 0.49)$ | $\mathscr{U}(0.27, 0.31)$ | $\mathscr{U}(0.18, 0.21)$ | $\mathscr{U}(0.48, 0.52)$ |
Chunshen | $\mathscr{U}(0.36, 0.39)$ | $\mathscr{U}(0.12, 0.16)$ | $\mathscr{U}(0.06, 0.09)$ | $\mathscr{U}(0.33, 0.37)$ |
Kangqiao | $\mathscr{U}(0.26, 0.29)$ | $\mathscr{U}(0.11, 0.15)$ | $\mathscr{U}(0.24, 0.28)$ | $\mathscr{U}(0.19, 0.23)$ |
Songjiang | $\mathscr{U}(0.58, 0.62)$ | $\mathscr{U}(0.37, 0.41)$ | $\mathscr{U}(0.21, 0.25)$ | $\mathscr{U}(0.51, 0.55)$ |
Fengxian | $\mathscr{U}(0.58, 0.62)$ | $\mathscr{U}(0.36, 0.40)$ | $\mathscr{U}(0.24, 0.27)$ | $\mathscr{U}(0.30, 0.34)$ |
Nicheng | $\mathscr{U}(0.63, 0.67)$ | $\mathscr{U}(0.52, 0.55)$ | $\mathscr{U}(0.54, 0.57)$ | $\mathscr{U}(0.22, 0.25)$ |
Rt-mart | Demand area 1 | Demand area 2 | Demand area 3 | Demand area 4 |
Meilanhu | ||||
Anting | ||||
Nanxiang | ||||
Yangpu | ||||
Sijing | ||||
Chunshen | ||||
Kangqiao | ||||
Songjiang | ||||
Fengxian | ||||
Nicheng |
Rt-mart | Demand area 1 | Demand area 2 | Demand area 3 | Demand area 4 |
Meilanhu | ||||
Anting | ||||
Nanxiang | ||||
Yangpu | ||||
Sijing | ||||
Chunshen | ||||
Kangqiao | ||||
Songjiang | ||||
Fengxian | ||||
Nicheng |
Demand area 1 | Demand area 2 | Demand area 3 | Demand area 4 |
Demand area 1 | Demand area 2 | Demand area 3 | Demand area 4 |
[1] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[2] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[3] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[4] |
Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117 |
[5] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[6] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[7] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[8] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020179 |
[9] |
Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128 |
[10] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[11] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[12] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[13] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[14] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[15] |
Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006 |
[16] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[17] |
Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167 |
[18] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[19] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[20] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]