• Previous Article
    Resource allocation flowshop scheduling with learning effect and slack due window assignment
  • JIMO Home
  • This Issue
  • Next Article
    Two-stage mean-risk stochastic mixed integer optimization model for location-allocation problems under uncertain environment
September  2021, 17(5): 2805-2816. doi: 10.3934/jimo.2020095

Stability of ground state for the Schrödinger-Poisson equation

1. 

School of Mathematical Sciencesand V.C. & V.R. Key Lab, Sichuan Normal University, Chengdu, 610066, China

2. 

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China

* Corresponding author: Na Wei

Received  August 2019 Revised  March 2020 Published  September 2021 Early access  May 2020

Fund Project: The first author is supported by NSFC grant (No.11771314), the second author is supported by the Natural Science Foundation of Hubei Province (No.2019CFB570) and the Fundamental Research Funds for the Central Universities (No.2722019PY053)

We are concerned with the stability of the ground state for the Schrödinger-Poisson equation
$ i\frac{\partial\psi}{\partial t}+\triangle\psi-(|x|^{-1}\ast|\psi|^2)\psi+|\psi|^{p-1}\psi = 0,\quad x\in \mathbb{R}^3. $
If
$ 2<p<\frac{7}{3} $
and the frequency is sufficiently large, we show that the ground state is orbitally stable.
Citation: Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2805-2816. doi: 10.3934/jimo.2020095
References:
[1]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.

[2]

J. Bellazzini and G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), 2486-2507.  doi: 10.1016/j.jfa.2011.06.014.

[3]

J. Bellazzini and G. Siciliano, Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62 (2011), 267-280.  doi: 10.1007/s00033-010-0092-1.

[4]

J. BellazziniL. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303-339.  doi: 10.1112/plms/pds072.

[5]

O. BokanowskiJ. L. López and J. Soler, On an exchange interaction model for quantum transport: The Schrödinger-Poisson- Slater system, Math. Models Methods Appl. Sci., 13 (2003), 1397-1412.  doi: 10.1142/S0218202503002969.

[6]

O. Bokanowski and N. J. Mauser, Local approximation for the Hartree-Fock exchange potential: A deformation approach, Math. Models Methods Appl. Sci., 9 (1999), 941-961.  doi: 10.1142/S0218202599000439.

[7]

H. Brézis and E. H. Leib, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.

[8]

T. Cazenave, Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.

[9]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.

[10]

R. Fukuizumi, Remarks on the stable standing waves for nonlinear Schrödinger equation with double power nonlinearity, Adv. Math. Sci. Appl., 13 (2003), 549-564. 

[11]

R. Fukuizumi, Stability and instability of standing waves for nonlinear Schrödinger equations, Ph.D thesis, Tohoku University, Sendai, Japan, 2003.

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry (Ⅰ), J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.

[13]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840. 

[14]

L. Jeanjean and T. Luo, Sharp nonexistence results of prescried $L^2-$ norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys., 64 (2013), 937-954.  doi: 10.1007/s00033-012-0272-2.

[15]

Y. S. JiangZ. P. Wang and H. S. Zhou, Multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^3$, Nonlinear Anal., 83 (2013), 50-57.  doi: 10.1016/j.na.2013.01.006.

[16]

Y. S. Jiang and H. S. Zhou, Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential, Sci. China Math., 57 (2014), 1163-1174.  doi: 10.1007/s11425-014-4790-6.

[17]

Y. S. Jiang and H. S. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.  doi: 10.1016/j.jde.2011.05.006.

[18]

H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7 (2007), 403-437.  doi: 10.1515/ans-2007-0305.

[19]

M. K. Kwong, Uniqueness of positive solutions of $\bigtriangleup u-u+u^p = 0$ in $\mathbb{R}^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[20]

C. Lavor, L. Libeti, N. Maculan and M. A. C. Nascimento, Solving Hartree-Fock systems with global optimization methods, Europhys. Lett. EPL, 77 (2007), 50006, 5 pp. doi: 10.1209/0295-5075/77/50006.

[21]

E. H. Leib, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys., 53 (1981), 603-641.  doi: 10.1103/RevModPhys.53.603.

[22]

X. G. LiJ. Zhang and Y. H. Wu, Strong instability of standing waves for the Schrödinger-Poisson-Slater equation (in Chinese), Sci. Sin. Math., 46 (2016), 45-58.  doi: 10.1360/N012014-00007.

[23]

P.-L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.

[24]

O. Lopes and M. Maris, Symmetry of minimizers for some nonlocal variational problems, J. Funct. Anal., 254 (2008), 535-592.  doi: 10.1016/j.jfa.2007.10.004.

[25]

N. J. Mauser, The Schrödinger-Poisson-X equation, Appl. Math. Lett., 14 (2001), 759-763.  doi: 10.1016/S0893-9659(01)80038-0.

[26]

J. F. Mennemann, D. Matthes, R. M. Weishäupl and T. Langen, Optimal control of Bose-Einstein condensates in three dimensions, New J. Phys., 17 (2015), 113027. doi: 10.1088/1367-2630/17/11/113027.

[27]

S. Pötting, M. Cramer and P. Meystre, Momentum-state engineering and control in Bose-Einstein condensates, Phys. Rev. A, 64 (2001), 063613.

[28]

L. Rosier and B.-Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J. Differential Equations, 246 (2009), 4129-4153.  doi: 10.1016/j.jde.2008.11.004.

[29]

D. Ruiz, Schrödinger-Poisson equation under the effect of nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.

[30]

O. Sánchez and J. Soler, Long-time dynamics of Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004), 179-204.  doi: 10.1023/B:JOSS.0000003109.97208.53.

show all references

References:
[1]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.

[2]

J. Bellazzini and G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), 2486-2507.  doi: 10.1016/j.jfa.2011.06.014.

[3]

J. Bellazzini and G. Siciliano, Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62 (2011), 267-280.  doi: 10.1007/s00033-010-0092-1.

[4]

J. BellazziniL. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303-339.  doi: 10.1112/plms/pds072.

[5]

O. BokanowskiJ. L. López and J. Soler, On an exchange interaction model for quantum transport: The Schrödinger-Poisson- Slater system, Math. Models Methods Appl. Sci., 13 (2003), 1397-1412.  doi: 10.1142/S0218202503002969.

[6]

O. Bokanowski and N. J. Mauser, Local approximation for the Hartree-Fock exchange potential: A deformation approach, Math. Models Methods Appl. Sci., 9 (1999), 941-961.  doi: 10.1142/S0218202599000439.

[7]

H. Brézis and E. H. Leib, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.

[8]

T. Cazenave, Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.

[9]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.

[10]

R. Fukuizumi, Remarks on the stable standing waves for nonlinear Schrödinger equation with double power nonlinearity, Adv. Math. Sci. Appl., 13 (2003), 549-564. 

[11]

R. Fukuizumi, Stability and instability of standing waves for nonlinear Schrödinger equations, Ph.D thesis, Tohoku University, Sendai, Japan, 2003.

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry (Ⅰ), J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.

[13]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840. 

[14]

L. Jeanjean and T. Luo, Sharp nonexistence results of prescried $L^2-$ norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys., 64 (2013), 937-954.  doi: 10.1007/s00033-012-0272-2.

[15]

Y. S. JiangZ. P. Wang and H. S. Zhou, Multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^3$, Nonlinear Anal., 83 (2013), 50-57.  doi: 10.1016/j.na.2013.01.006.

[16]

Y. S. Jiang and H. S. Zhou, Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential, Sci. China Math., 57 (2014), 1163-1174.  doi: 10.1007/s11425-014-4790-6.

[17]

Y. S. Jiang and H. S. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.  doi: 10.1016/j.jde.2011.05.006.

[18]

H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7 (2007), 403-437.  doi: 10.1515/ans-2007-0305.

[19]

M. K. Kwong, Uniqueness of positive solutions of $\bigtriangleup u-u+u^p = 0$ in $\mathbb{R}^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[20]

C. Lavor, L. Libeti, N. Maculan and M. A. C. Nascimento, Solving Hartree-Fock systems with global optimization methods, Europhys. Lett. EPL, 77 (2007), 50006, 5 pp. doi: 10.1209/0295-5075/77/50006.

[21]

E. H. Leib, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys., 53 (1981), 603-641.  doi: 10.1103/RevModPhys.53.603.

[22]

X. G. LiJ. Zhang and Y. H. Wu, Strong instability of standing waves for the Schrödinger-Poisson-Slater equation (in Chinese), Sci. Sin. Math., 46 (2016), 45-58.  doi: 10.1360/N012014-00007.

[23]

P.-L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.

[24]

O. Lopes and M. Maris, Symmetry of minimizers for some nonlocal variational problems, J. Funct. Anal., 254 (2008), 535-592.  doi: 10.1016/j.jfa.2007.10.004.

[25]

N. J. Mauser, The Schrödinger-Poisson-X equation, Appl. Math. Lett., 14 (2001), 759-763.  doi: 10.1016/S0893-9659(01)80038-0.

[26]

J. F. Mennemann, D. Matthes, R. M. Weishäupl and T. Langen, Optimal control of Bose-Einstein condensates in three dimensions, New J. Phys., 17 (2015), 113027. doi: 10.1088/1367-2630/17/11/113027.

[27]

S. Pötting, M. Cramer and P. Meystre, Momentum-state engineering and control in Bose-Einstein condensates, Phys. Rev. A, 64 (2001), 063613.

[28]

L. Rosier and B.-Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J. Differential Equations, 246 (2009), 4129-4153.  doi: 10.1016/j.jde.2008.11.004.

[29]

D. Ruiz, Schrödinger-Poisson equation under the effect of nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.

[30]

O. Sánchez and J. Soler, Long-time dynamics of Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004), 179-204.  doi: 10.1023/B:JOSS.0000003109.97208.53.

[1]

Hangzhou Hu, Yuan Li, Dun Zhao. Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1899-1916. doi: 10.3934/dcdss.2021064

[2]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[3]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

[4]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[5]

Sitong Chen, Wennian Huang, Xianhua Tang. Existence criteria of ground state solutions for Schrödinger-Poisson systems with a vanishing potential. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3055-3066. doi: 10.3934/dcdss.2020339

[6]

Jin-Cai Kang, Xiao-Qi Liu, Chun-Lei Tang. Ground state sign-changing solution for Schrödinger-Poisson system with steep potential well. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022112

[7]

Rong Cheng, Jun Wang. Existence of ground states for Schrödinger-Poisson system with nonperiodic potentials. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021317

[8]

Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079

[9]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[10]

Xinsheng Du, Qi Li, Zengqin Zhao, Gen Li. Bound state solutions for fractional Schrödinger-Poisson systems. Mathematical Foundations of Computing, 2022, 5 (1) : 57-66. doi: 10.3934/mfc.2021023

[11]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[12]

Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184

[13]

Caixia Chen, Aixia Qian. Multiple positive solutions for the Schrödinger-Poisson equation with critical growth. Mathematical Foundations of Computing, 2022, 5 (2) : 113-128. doi: 10.3934/mfc.2021036

[14]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[15]

Yi He, Lu Lu, Wei Shuai. Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Communications on Pure and Applied Analysis, 2016, 15 (1) : 103-125. doi: 10.3934/cpaa.2016.15.103

[16]

Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure and Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867

[17]

Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations and Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009

[18]

Lixi Wen, Wen Zhang. Groundstates and infinitely many solutions for the Schrödinger-Poisson equation with magnetic field. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022109

[19]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[20]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (215)
  • HTML views (600)
  • Cited by (0)

Other articles
by authors

[Back to Top]