• Previous Article
    Order allocation model in logistics service supply chain with demand updating and inequity aversion: A perspective of two option contracts comparison
  • JIMO Home
  • This Issue
  • Next Article
    Distributed convex optimization with coupling constraints over time-varying directed graphs
doi: 10.3934/jimo.2020095

Stability of ground state for the Schrödinger-Poisson equation

1. 

School of Mathematical Sciencesand V.C. & V.R. Key Lab, Sichuan Normal University, Chengdu, 610066, China

2. 

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China

* Corresponding author: Na Wei

Received  August 2019 Revised  March 2020 Published  May 2020

Fund Project: The first author is supported by NSFC grant (No.11771314), the second author is supported by the Natural Science Foundation of Hubei Province (No.2019CFB570) and the Fundamental Research Funds for the Central Universities (No.2722019PY053)

We are concerned with the stability of the ground state for the Schrödinger-Poisson equation
$ i\frac{\partial\psi}{\partial t}+\triangle\psi-(|x|^{-1}\ast|\psi|^2)\psi+|\psi|^{p-1}\psi = 0,\quad x\in \mathbb{R}^3. $
If
$ 2<p<\frac{7}{3} $
and the frequency is sufficiently large, we show that the ground state is orbitally stable.
Citation: Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020095
References:
[1]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[2]

J. Bellazzini and G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), 2486-2507.  doi: 10.1016/j.jfa.2011.06.014.  Google Scholar

[3]

J. Bellazzini and G. Siciliano, Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62 (2011), 267-280.  doi: 10.1007/s00033-010-0092-1.  Google Scholar

[4]

J. BellazziniL. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303-339.  doi: 10.1112/plms/pds072.  Google Scholar

[5]

O. BokanowskiJ. L. López and J. Soler, On an exchange interaction model for quantum transport: The Schrödinger-Poisson- Slater system, Math. Models Methods Appl. Sci., 13 (2003), 1397-1412.  doi: 10.1142/S0218202503002969.  Google Scholar

[6]

O. Bokanowski and N. J. Mauser, Local approximation for the Hartree-Fock exchange potential: A deformation approach, Math. Models Methods Appl. Sci., 9 (1999), 941-961.  doi: 10.1142/S0218202599000439.  Google Scholar

[7]

H. Brézis and E. H. Leib, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[9]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[10]

R. Fukuizumi, Remarks on the stable standing waves for nonlinear Schrödinger equation with double power nonlinearity, Adv. Math. Sci. Appl., 13 (2003), 549-564.   Google Scholar

[11]

R. Fukuizumi, Stability and instability of standing waves for nonlinear Schrödinger equations, Ph.D thesis, Tohoku University, Sendai, Japan, 2003.  Google Scholar

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry (Ⅰ), J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[13]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840.   Google Scholar

[14]

L. Jeanjean and T. Luo, Sharp nonexistence results of prescried $L^2-$ norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys., 64 (2013), 937-954.  doi: 10.1007/s00033-012-0272-2.  Google Scholar

[15]

Y. S. JiangZ. P. Wang and H. S. Zhou, Multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^3$, Nonlinear Anal., 83 (2013), 50-57.  doi: 10.1016/j.na.2013.01.006.  Google Scholar

[16]

Y. S. Jiang and H. S. Zhou, Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential, Sci. China Math., 57 (2014), 1163-1174.  doi: 10.1007/s11425-014-4790-6.  Google Scholar

[17]

Y. S. Jiang and H. S. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.  doi: 10.1016/j.jde.2011.05.006.  Google Scholar

[18]

H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7 (2007), 403-437.  doi: 10.1515/ans-2007-0305.  Google Scholar

[19]

M. K. Kwong, Uniqueness of positive solutions of $\bigtriangleup u-u+u^p = 0$ in $\mathbb{R}^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[20]

C. Lavor, L. Libeti, N. Maculan and M. A. C. Nascimento, Solving Hartree-Fock systems with global optimization methods, Europhys. Lett. EPL, 77 (2007), 50006, 5 pp. doi: 10.1209/0295-5075/77/50006.  Google Scholar

[21]

E. H. Leib, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys., 53 (1981), 603-641.  doi: 10.1103/RevModPhys.53.603.  Google Scholar

[22]

X. G. LiJ. Zhang and Y. H. Wu, Strong instability of standing waves for the Schrödinger-Poisson-Slater equation (in Chinese), Sci. Sin. Math., 46 (2016), 45-58.  doi: 10.1360/N012014-00007.  Google Scholar

[23]

P.-L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[24]

O. Lopes and M. Maris, Symmetry of minimizers for some nonlocal variational problems, J. Funct. Anal., 254 (2008), 535-592.  doi: 10.1016/j.jfa.2007.10.004.  Google Scholar

[25]

N. J. Mauser, The Schrödinger-Poisson-X equation, Appl. Math. Lett., 14 (2001), 759-763.  doi: 10.1016/S0893-9659(01)80038-0.  Google Scholar

[26]

J. F. Mennemann, D. Matthes, R. M. Weishäupl and T. Langen, Optimal control of Bose-Einstein condensates in three dimensions, New J. Phys., 17 (2015), 113027. doi: 10.1088/1367-2630/17/11/113027.  Google Scholar

[27]

S. Pötting, M. Cramer and P. Meystre, Momentum-state engineering and control in Bose-Einstein condensates, Phys. Rev. A, 64 (2001), 063613. Google Scholar

[28]

L. Rosier and B.-Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J. Differential Equations, 246 (2009), 4129-4153.  doi: 10.1016/j.jde.2008.11.004.  Google Scholar

[29]

D. Ruiz, Schrödinger-Poisson equation under the effect of nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[30]

O. Sánchez and J. Soler, Long-time dynamics of Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004), 179-204.  doi: 10.1023/B:JOSS.0000003109.97208.53.  Google Scholar

show all references

References:
[1]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[2]

J. Bellazzini and G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), 2486-2507.  doi: 10.1016/j.jfa.2011.06.014.  Google Scholar

[3]

J. Bellazzini and G. Siciliano, Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62 (2011), 267-280.  doi: 10.1007/s00033-010-0092-1.  Google Scholar

[4]

J. BellazziniL. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303-339.  doi: 10.1112/plms/pds072.  Google Scholar

[5]

O. BokanowskiJ. L. López and J. Soler, On an exchange interaction model for quantum transport: The Schrödinger-Poisson- Slater system, Math. Models Methods Appl. Sci., 13 (2003), 1397-1412.  doi: 10.1142/S0218202503002969.  Google Scholar

[6]

O. Bokanowski and N. J. Mauser, Local approximation for the Hartree-Fock exchange potential: A deformation approach, Math. Models Methods Appl. Sci., 9 (1999), 941-961.  doi: 10.1142/S0218202599000439.  Google Scholar

[7]

H. Brézis and E. H. Leib, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[9]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[10]

R. Fukuizumi, Remarks on the stable standing waves for nonlinear Schrödinger equation with double power nonlinearity, Adv. Math. Sci. Appl., 13 (2003), 549-564.   Google Scholar

[11]

R. Fukuizumi, Stability and instability of standing waves for nonlinear Schrödinger equations, Ph.D thesis, Tohoku University, Sendai, Japan, 2003.  Google Scholar

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry (Ⅰ), J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[13]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840.   Google Scholar

[14]

L. Jeanjean and T. Luo, Sharp nonexistence results of prescried $L^2-$ norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys., 64 (2013), 937-954.  doi: 10.1007/s00033-012-0272-2.  Google Scholar

[15]

Y. S. JiangZ. P. Wang and H. S. Zhou, Multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^3$, Nonlinear Anal., 83 (2013), 50-57.  doi: 10.1016/j.na.2013.01.006.  Google Scholar

[16]

Y. S. Jiang and H. S. Zhou, Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential, Sci. China Math., 57 (2014), 1163-1174.  doi: 10.1007/s11425-014-4790-6.  Google Scholar

[17]

Y. S. Jiang and H. S. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.  doi: 10.1016/j.jde.2011.05.006.  Google Scholar

[18]

H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7 (2007), 403-437.  doi: 10.1515/ans-2007-0305.  Google Scholar

[19]

M. K. Kwong, Uniqueness of positive solutions of $\bigtriangleup u-u+u^p = 0$ in $\mathbb{R}^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[20]

C. Lavor, L. Libeti, N. Maculan and M. A. C. Nascimento, Solving Hartree-Fock systems with global optimization methods, Europhys. Lett. EPL, 77 (2007), 50006, 5 pp. doi: 10.1209/0295-5075/77/50006.  Google Scholar

[21]

E. H. Leib, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys., 53 (1981), 603-641.  doi: 10.1103/RevModPhys.53.603.  Google Scholar

[22]

X. G. LiJ. Zhang and Y. H. Wu, Strong instability of standing waves for the Schrödinger-Poisson-Slater equation (in Chinese), Sci. Sin. Math., 46 (2016), 45-58.  doi: 10.1360/N012014-00007.  Google Scholar

[23]

P.-L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[24]

O. Lopes and M. Maris, Symmetry of minimizers for some nonlocal variational problems, J. Funct. Anal., 254 (2008), 535-592.  doi: 10.1016/j.jfa.2007.10.004.  Google Scholar

[25]

N. J. Mauser, The Schrödinger-Poisson-X equation, Appl. Math. Lett., 14 (2001), 759-763.  doi: 10.1016/S0893-9659(01)80038-0.  Google Scholar

[26]

J. F. Mennemann, D. Matthes, R. M. Weishäupl and T. Langen, Optimal control of Bose-Einstein condensates in three dimensions, New J. Phys., 17 (2015), 113027. doi: 10.1088/1367-2630/17/11/113027.  Google Scholar

[27]

S. Pötting, M. Cramer and P. Meystre, Momentum-state engineering and control in Bose-Einstein condensates, Phys. Rev. A, 64 (2001), 063613. Google Scholar

[28]

L. Rosier and B.-Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J. Differential Equations, 246 (2009), 4129-4153.  doi: 10.1016/j.jde.2008.11.004.  Google Scholar

[29]

D. Ruiz, Schrödinger-Poisson equation under the effect of nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[30]

O. Sánchez and J. Soler, Long-time dynamics of Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004), 179-204.  doi: 10.1023/B:JOSS.0000003109.97208.53.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[2]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[3]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[4]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[5]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[8]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[9]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[10]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[11]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[13]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[14]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[16]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[17]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[18]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[19]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[20]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

2019 Impact Factor: 1.366

Article outline

[Back to Top]