• Previous Article
    Order allocation model in logistics service supply chain with demand updating and inequity aversion: A perspective of two option contracts comparison
  • JIMO Home
  • This Issue
  • Next Article
    Weakening convergence conditions of a potential reduction method for tensor complementarity problems
doi: 10.3934/jimo.2020095

Stability of ground state for the Schrödinger-Poisson equation

1. 

School of Mathematical Sciencesand V.C. & V.R. Key Lab, Sichuan Normal University, Chengdu, 610066, China

2. 

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China

* Corresponding author: Na Wei

Received  August 2019 Revised  March 2020 Published  May 2020

Fund Project: The first author is supported by NSFC grant (No.11771314), the second author is supported by the Natural Science Foundation of Hubei Province (No.2019CFB570) and the Fundamental Research Funds for the Central Universities (No.2722019PY053)

We are concerned with the stability of the ground state for the Schrödinger-Poisson equation
$ i\frac{\partial\psi}{\partial t}+\triangle\psi-(|x|^{-1}\ast|\psi|^2)\psi+|\psi|^{p-1}\psi = 0,\quad x\in \mathbb{R}^3. $
If
$ 2<p<\frac{7}{3} $
and the frequency is sufficiently large, we show that the ground state is orbitally stable.
Citation: Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020095
References:
[1]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[2]

J. Bellazzini and G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), 2486-2507.  doi: 10.1016/j.jfa.2011.06.014.  Google Scholar

[3]

J. Bellazzini and G. Siciliano, Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62 (2011), 267-280.  doi: 10.1007/s00033-010-0092-1.  Google Scholar

[4]

J. BellazziniL. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303-339.  doi: 10.1112/plms/pds072.  Google Scholar

[5]

O. BokanowskiJ. L. López and J. Soler, On an exchange interaction model for quantum transport: The Schrödinger-Poisson- Slater system, Math. Models Methods Appl. Sci., 13 (2003), 1397-1412.  doi: 10.1142/S0218202503002969.  Google Scholar

[6]

O. Bokanowski and N. J. Mauser, Local approximation for the Hartree-Fock exchange potential: A deformation approach, Math. Models Methods Appl. Sci., 9 (1999), 941-961.  doi: 10.1142/S0218202599000439.  Google Scholar

[7]

H. Brézis and E. H. Leib, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[9]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[10]

R. Fukuizumi, Remarks on the stable standing waves for nonlinear Schrödinger equation with double power nonlinearity, Adv. Math. Sci. Appl., 13 (2003), 549-564.   Google Scholar

[11]

R. Fukuizumi, Stability and instability of standing waves for nonlinear Schrödinger equations, Ph.D thesis, Tohoku University, Sendai, Japan, 2003.  Google Scholar

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry (Ⅰ), J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[13]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840.   Google Scholar

[14]

L. Jeanjean and T. Luo, Sharp nonexistence results of prescried $L^2-$ norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys., 64 (2013), 937-954.  doi: 10.1007/s00033-012-0272-2.  Google Scholar

[15]

Y. S. JiangZ. P. Wang and H. S. Zhou, Multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^3$, Nonlinear Anal., 83 (2013), 50-57.  doi: 10.1016/j.na.2013.01.006.  Google Scholar

[16]

Y. S. Jiang and H. S. Zhou, Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential, Sci. China Math., 57 (2014), 1163-1174.  doi: 10.1007/s11425-014-4790-6.  Google Scholar

[17]

Y. S. Jiang and H. S. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.  doi: 10.1016/j.jde.2011.05.006.  Google Scholar

[18]

H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7 (2007), 403-437.  doi: 10.1515/ans-2007-0305.  Google Scholar

[19]

M. K. Kwong, Uniqueness of positive solutions of $\bigtriangleup u-u+u^p = 0$ in $\mathbb{R}^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[20]

C. Lavor, L. Libeti, N. Maculan and M. A. C. Nascimento, Solving Hartree-Fock systems with global optimization methods, Europhys. Lett. EPL, 77 (2007), 50006, 5 pp. doi: 10.1209/0295-5075/77/50006.  Google Scholar

[21]

E. H. Leib, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys., 53 (1981), 603-641.  doi: 10.1103/RevModPhys.53.603.  Google Scholar

[22]

X. G. LiJ. Zhang and Y. H. Wu, Strong instability of standing waves for the Schrödinger-Poisson-Slater equation (in Chinese), Sci. Sin. Math., 46 (2016), 45-58.  doi: 10.1360/N012014-00007.  Google Scholar

[23]

P.-L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[24]

O. Lopes and M. Maris, Symmetry of minimizers for some nonlocal variational problems, J. Funct. Anal., 254 (2008), 535-592.  doi: 10.1016/j.jfa.2007.10.004.  Google Scholar

[25]

N. J. Mauser, The Schrödinger-Poisson-X equation, Appl. Math. Lett., 14 (2001), 759-763.  doi: 10.1016/S0893-9659(01)80038-0.  Google Scholar

[26]

J. F. Mennemann, D. Matthes, R. M. Weishäupl and T. Langen, Optimal control of Bose-Einstein condensates in three dimensions, New J. Phys., 17 (2015), 113027. doi: 10.1088/1367-2630/17/11/113027.  Google Scholar

[27]

S. Pötting, M. Cramer and P. Meystre, Momentum-state engineering and control in Bose-Einstein condensates, Phys. Rev. A, 64 (2001), 063613. Google Scholar

[28]

L. Rosier and B.-Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J. Differential Equations, 246 (2009), 4129-4153.  doi: 10.1016/j.jde.2008.11.004.  Google Scholar

[29]

D. Ruiz, Schrödinger-Poisson equation under the effect of nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[30]

O. Sánchez and J. Soler, Long-time dynamics of Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004), 179-204.  doi: 10.1023/B:JOSS.0000003109.97208.53.  Google Scholar

show all references

References:
[1]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[2]

J. Bellazzini and G. Siciliano, Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., 261 (2011), 2486-2507.  doi: 10.1016/j.jfa.2011.06.014.  Google Scholar

[3]

J. Bellazzini and G. Siciliano, Stable standing waves for a class of nonlinear Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62 (2011), 267-280.  doi: 10.1007/s00033-010-0092-1.  Google Scholar

[4]

J. BellazziniL. Jeanjean and T. Luo, Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations, Proc. Lond. Math. Soc., 107 (2013), 303-339.  doi: 10.1112/plms/pds072.  Google Scholar

[5]

O. BokanowskiJ. L. López and J. Soler, On an exchange interaction model for quantum transport: The Schrödinger-Poisson- Slater system, Math. Models Methods Appl. Sci., 13 (2003), 1397-1412.  doi: 10.1142/S0218202503002969.  Google Scholar

[6]

O. Bokanowski and N. J. Mauser, Local approximation for the Hartree-Fock exchange potential: A deformation approach, Math. Models Methods Appl. Sci., 9 (1999), 941-961.  doi: 10.1142/S0218202599000439.  Google Scholar

[7]

H. Brézis and E. H. Leib, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[9]

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.  doi: 10.1007/BF01403504.  Google Scholar

[10]

R. Fukuizumi, Remarks on the stable standing waves for nonlinear Schrödinger equation with double power nonlinearity, Adv. Math. Sci. Appl., 13 (2003), 549-564.   Google Scholar

[11]

R. Fukuizumi, Stability and instability of standing waves for nonlinear Schrödinger equations, Ph.D thesis, Tohoku University, Sendai, Japan, 2003.  Google Scholar

[12]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry (Ⅰ), J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[13]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840.   Google Scholar

[14]

L. Jeanjean and T. Luo, Sharp nonexistence results of prescried $L^2-$ norm solutions for some class of Schrödinger-Poisson and quasi-linear equations, Z. Angew. Math. Phys., 64 (2013), 937-954.  doi: 10.1007/s00033-012-0272-2.  Google Scholar

[15]

Y. S. JiangZ. P. Wang and H. S. Zhou, Multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^3$, Nonlinear Anal., 83 (2013), 50-57.  doi: 10.1016/j.na.2013.01.006.  Google Scholar

[16]

Y. S. Jiang and H. S. Zhou, Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential, Sci. China Math., 57 (2014), 1163-1174.  doi: 10.1007/s11425-014-4790-6.  Google Scholar

[17]

Y. S. Jiang and H. S. Zhou, Schrödinger-Poisson system with steep potential well, J. Differential Equations, 251 (2011), 582-608.  doi: 10.1016/j.jde.2011.05.006.  Google Scholar

[18]

H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7 (2007), 403-437.  doi: 10.1515/ans-2007-0305.  Google Scholar

[19]

M. K. Kwong, Uniqueness of positive solutions of $\bigtriangleup u-u+u^p = 0$ in $\mathbb{R}^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[20]

C. Lavor, L. Libeti, N. Maculan and M. A. C. Nascimento, Solving Hartree-Fock systems with global optimization methods, Europhys. Lett. EPL, 77 (2007), 50006, 5 pp. doi: 10.1209/0295-5075/77/50006.  Google Scholar

[21]

E. H. Leib, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys., 53 (1981), 603-641.  doi: 10.1103/RevModPhys.53.603.  Google Scholar

[22]

X. G. LiJ. Zhang and Y. H. Wu, Strong instability of standing waves for the Schrödinger-Poisson-Slater equation (in Chinese), Sci. Sin. Math., 46 (2016), 45-58.  doi: 10.1360/N012014-00007.  Google Scholar

[23]

P.-L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact case 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[24]

O. Lopes and M. Maris, Symmetry of minimizers for some nonlocal variational problems, J. Funct. Anal., 254 (2008), 535-592.  doi: 10.1016/j.jfa.2007.10.004.  Google Scholar

[25]

N. J. Mauser, The Schrödinger-Poisson-X equation, Appl. Math. Lett., 14 (2001), 759-763.  doi: 10.1016/S0893-9659(01)80038-0.  Google Scholar

[26]

J. F. Mennemann, D. Matthes, R. M. Weishäupl and T. Langen, Optimal control of Bose-Einstein condensates in three dimensions, New J. Phys., 17 (2015), 113027. doi: 10.1088/1367-2630/17/11/113027.  Google Scholar

[27]

S. Pötting, M. Cramer and P. Meystre, Momentum-state engineering and control in Bose-Einstein condensates, Phys. Rev. A, 64 (2001), 063613. Google Scholar

[28]

L. Rosier and B.-Y. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation, J. Differential Equations, 246 (2009), 4129-4153.  doi: 10.1016/j.jde.2008.11.004.  Google Scholar

[29]

D. Ruiz, Schrödinger-Poisson equation under the effect of nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[30]

O. Sánchez and J. Soler, Long-time dynamics of Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004), 179-204.  doi: 10.1023/B:JOSS.0000003109.97208.53.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[2]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039

[3]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021038

[4]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[5]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[6]

Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021054

[7]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[8]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[9]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[10]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[11]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[12]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[13]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[14]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[16]

Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022

[17]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021047

[18]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[19]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[20]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

2019 Impact Factor: 1.366

Article outline

[Back to Top]