$F2\left|NW, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}\right|A+ \sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n^3)$ |
Liu and Feng [12] |
$F2|NW, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, \sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}\leq X|A$ |
$O(n^3)$ |
Tian et al. [21] |
$F2\left|NW, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, A\leq Y\right|\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n^3)$ |
Tian et al. [21] |
$F2|NW, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}} \right)^{\eta}, Z, \sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}\leq X|A$ |
$O(n \log n)$ |
Tian et al. [21] |
$F2\left|NW, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, Z, A\leq Y\right|\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n \log n)$ |
Tian et al. [21] |
$F2\left|NW, CON, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta} \right|$ $\sum_{j = 1}^n(\alpha E_j+\beta T_j+\gamma d)+ \theta\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n^3)$ |
Gao et al. [4] |
$F2\left|NW, CON, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, Z\right|$ $\sum_{j = 1}^n(\alpha E_j+\beta T_j+\gamma d)+ \theta\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n\log n)$ |
Gao et al. [4] |
$F2\left|NW, CON, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, \sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}\leq X\right|$ $\sum_{j = 1}^n(\alpha E_j+\beta T_j+\gamma d)$ |
$O(n^3)$ |
Geng et al. [5] |
$F2|NW, CON, $ $p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, \sum_{j = 1}^n(\alpha E_j+\beta T_j+\gamma d)\leq Y|\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n^3)$ |
Geng et al. [5] |
$F2\left|NW, CON, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, Z, \sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}\leq X\right|$ $\sum_{j = 1}^n(\alpha E_j+\beta T_j+\gamma d)$ |
$O(n \log n)$ |
Geng et al. [5] |
$F2|NW, CON, $ $p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, Z, \sum_{j = 1}^n(\alpha E_j+\beta T_j+\gamma d)\leq Y|\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n\log n)$ |
Geng et al. [5] |
$F2\left|NW, SLK, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}\right|$ $\sum_{j = 1}^n(\alpha E_j+\beta T_j+\gamma q)+ \theta\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n^3)$ |
Sun et al. [20] |
$F2|NW, SLK, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, $ $ \sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}\leq X|\sum_{j = 1}^n(\alpha E_j+\beta T_j+ q)$ |
$O(n^3)$ |
Sun et al. [20] |
$F2|NW, SLK, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, $ $ \sum_{j = 1}^n(\alpha E_j+\beta T_j+\gamma q)\leq Y|\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n^3)$ |
Sun et al. [20] |
$F2\left|NW, SLK, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, Z\right|$ $\sum_{j = 1}^n(\alpha E_j+\beta T_j+\gamma q)+ \theta\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n \log n)$ |
Sun et al. [20] |
$F2|NW, SLK, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, Z, \sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}\leq X|\sum_{j = 1}^n(\alpha E_j+\beta T_j+\gamma q)$ |
$O(n \log n)$ |
Sun et al. [20] |
$F2|NW, SLK, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, Z, \sum_{j = 1}^n(\alpha E_j+\beta T_j+\gamma q)\leq Y|\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n\log n)$ |
Sun et al. [20] |
$F2\left|NW, CON-DW, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a_{j, i}}}{u_{j, i}} \right)^{\eta}\right|$ $\sum_{j = 1}^n(\alpha E_j+\beta T_j+\delta d +\gamma D)+ \theta\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n^3)$ |
Shi and Wang [19] |
$F2\left|NW, CON-DW, p_{j, i} = \left(\frac{\overline{p}_{{j, i}}r^{a}}{u_{j, i}}\right)^{\eta}, Z\right|$ $\sum_{j = 1}^n(\alpha E_j+\beta T_j+\delta d +\gamma D)+ \theta\sum_{i = 1}^2\sum_{j = 1}^n v_{j, i}u_{j, i}$ |
$O(n\log n)$ |
Shi and Wang [19] |
P1, P2, P3 |
$O(n^3)$ |
Theorem 1 |
P1($Z$), P2($Z$), P3($Z$) |
$O(n\log n)$ |
Theorem 2 |