• Previous Article
    Optimal customer behavior in observable and unobservable discrete-time queues
  • JIMO Home
  • This Issue
  • Next Article
    Stackelberg pricing policy in dyadic capital-constrained supply chain considering bank's deposit and loan based on delay payment scheme
doi: 10.3934/jimo.2020099

Application of a modified VES production function model

1. 

School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, 215009, China

2. 

School of Business, Suzhou University of Science and Technology, Suzhou, 215009, China

* Corresponding author: Maolin Cheng

Received  November 2019 Revised  February 2020 Published  May 2020

Fund Project: This work is supported in part by the National Natural Science Foundation of China(11401418)

In the analyses on economic growth factors, researchers generally use the production function model to calculate the contribution rates of influencing factors to economic growth. The paper proposes a new modified VES production function model. As for the model's parameter estimation, the conventional optimization methods are complicated, generally require information like the gradient of objective function, and have the poor convergence rate and precision. The paper gives a modern intelligent algorithm, i.e., the cuckoo search algorithm, which has the strong robustness, can be realized easily, has the fast convergence rate and can be used flexibly. To enhance the convergence rate and precision, the paper improves the conventional cuckoo search algorithm. Using the new model, the paper gives a method calculating the contribution rates of economic growth influencing factors scientifically. Finally, the paper calculates the contribution rates of influencing factors to economic growth in Shanghai City, China.

Citation: Maolin Cheng, Bin Liu. Application of a modified VES production function model. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020099
References:
[1]

A. Assad and K. Deep, A Hybrid Harmony search and Simulated Annealing algorithm for continuous optimization, Information Sci., 450 (2018), 246-266.  doi: 10.1016/j.ins.2018.03.042.  Google Scholar

[2]

V. O. Bohaienko and V. M. Popov, Optimization of operation regimes of irrigation canals using genetic algorithms, in International Conference on Computer Science, Engineering and Education Applications, Advances in Intelligent Systems and Computing, 754, Springer, Cham, 2019,224–233. doi: 10.1007/978-3-319-91008-6_23.  Google Scholar

[3]

M. A. CardeneteM. C. Lima and F. Sancho, An assessment of the impact of EU funds through productivity boosts using CES functions, Appl. Econ. Lett., 26 (2019), 872-876.  doi: 10.1080/13504851.2018.1508867.  Google Scholar

[4]

J. ChengL. WangQ. Jiang and Y. Xiong, A novel cuckoo search algorithm with multiple update rules, Appl. Intell., 48 (2018), 4192-4211.  doi: 10.1007/s10489-018-1198-y.  Google Scholar

[5]

M. L. Cheng, A generalized constant elasticity of substitution production function model and its application, J. Systems Sci. Info., 4 (2016), 269-279.  doi: 10.21078/JSSI-2016-269-11.  Google Scholar

[6]

M. L. Cheng, A Grey CES production function model and its application in calculating the contribution rate of economic growth factors, Complexity, 2019 (2019), 8pp. doi: 10.1155/2019/5617061.  Google Scholar

[7]

J. ChongelaV. Nandala and S. Korabandi, Estimation of constant elasticity of substitution (CES) production function with capital and labour inputs of agri-food firms in Tanzania, African J. Agricultural Res., 8 (2013), 5082-5089.   Google Scholar

[8]

F. Erdal, A firefly algorithm for optimum design of new-generation beams, Engineering Optim., 49 (2017), 915-931.  doi: 10.1080/0305215X.2016.1218003.  Google Scholar

[9]

H. GuoJ. HuS. YuH. Sun and Y. Chen, Computing of the contribution rate of scientific and technological progress to economic growth in Chinese regions, Expert Systems Appl., 39 (2012), 8514-8521.  doi: 10.1016/j.eswa.2011.12.032.  Google Scholar

[10]

Y. HeS. W. Gao and N. Liao, An intelligent computing approach to evaluating the contribution rate of talent on economic growth, Comput. Econ., 48 (2016), 399-423.  doi: 10.1007/s10614-015-9536-1.  Google Scholar

[11]

G. V. S. K. Karthik and S. Deb, A methodology for assembly sequence optimization by hybrid cuckoo-search genetic algorithm, J. Adv. Manufacturing Systems, 17 (2018), 47-59.  doi: 10.1142/S021968671850004X.  Google Scholar

[12]

Y. N. KiselevS. N. Avvakumov and M. V. Orlov, Optimal control in the resource allocation problem for a two-sector economy with a CES production function, Comput. Math. Model., 28 (2017), 449-477.  doi: 10.1007/s10598-017-9375-0.  Google Scholar

[13]

X. J. MengJ. X. ChangX. B. Wang and Y. M. Wang, Multi-objective hydropower station operation using an improved cuckoo search algorithm, Energy, 168 (2019), 425-439.  doi: 10.1016/j.energy.2018.11.096.  Google Scholar

[14]

S. K. Mishra, A brief history of production functions, IUP J. Managerial Econ., 8 (2010), 6-34.  doi: 10.2139/ssrn.1020577.  Google Scholar

[15]

Y. Nakamura, Productivity versus elasticity: A normalized constant elasticity of substitution production function applied to historical Soviet data, Appl. Econ., 47 (2015), 5805-5823.  doi: 10.1080/00036846.2015.1058909.  Google Scholar

[16]

S. Opuni-BasoaF. T. Oduro and G. A. Okyere, Population dynamics in optimally controlled economic growth models: Case of Cobb-Douglas production function, J. Adv. Math. Comput. Sci., 25 (2017), 1-24.  doi: 10.9734/JAMCS/2017/36753.  Google Scholar

[17]

A. S. PillaiK. SinghV. SaravananA. AnpalaganI. Woungang and L. Barolli, A genetic algorithm-based method for optimizing the energy consumption and performance of multiprocessor systems, Soft Comput., 22 (2018), 3271-3285.  doi: 10.1007/s00500-017-2789-y.  Google Scholar

[18]

F. E. Sarac, A general evaluation on estimates of Cobb-Douglas, CES, VES and Translog production functions, Bull. Econ. Theory Anal., 2 (2017), 235-278.   Google Scholar

[19]

C. Takeang and A. Aurasopon, Multiple of hybrid lambda iteration and simulated annealing algorithm to solve economic dispatch problem with ramp rate limit and prohibited operating zones, J. Electrical Engineering Tech., 14 (2019), 111-120.  doi: 10.1007/s42835-018-00001-z.  Google Scholar

[20]

K. ThirugnanasambandamS. PrakashV. SubramanianS. Pothula and V. Thirumal, Reinforced cuckoo search algorithm-based multimodal optimization, Applid Intell., 49 (2019), 2059-2083.  doi: 10.1007/s10489-018-1355-3.  Google Scholar

[21]

H. WangX. ZhouH. SunX. YuJ. ZhaoH. Zhang and L. Cui, Firefly algorithm with adaptive control parameters, Soft Comput., 21 (2017), 5091-5102.  doi: 10.1007/s00500-016-2104-3.  Google Scholar

[22]

D. ZhaA. S. Kavuri and S. Si, Energy-biased technical change in the Chinese industrial sector with CES production functions, Energy, 148 (2018), 896-903.  doi: 10.1016/j.energy.2017.11.087.  Google Scholar

[23]

C. Zhao, Y. Xu and Y. Feng, A study on contribution rate of management elements in economic growth, in International Conference on Information and Management Engineering, Communications in Computer and Information Science, 234, Springer, Berlin, Heidelberg, 2011,151–158. doi: 10.1007/978-3-642-24091-1_21.  Google Scholar

show all references

References:
[1]

A. Assad and K. Deep, A Hybrid Harmony search and Simulated Annealing algorithm for continuous optimization, Information Sci., 450 (2018), 246-266.  doi: 10.1016/j.ins.2018.03.042.  Google Scholar

[2]

V. O. Bohaienko and V. M. Popov, Optimization of operation regimes of irrigation canals using genetic algorithms, in International Conference on Computer Science, Engineering and Education Applications, Advances in Intelligent Systems and Computing, 754, Springer, Cham, 2019,224–233. doi: 10.1007/978-3-319-91008-6_23.  Google Scholar

[3]

M. A. CardeneteM. C. Lima and F. Sancho, An assessment of the impact of EU funds through productivity boosts using CES functions, Appl. Econ. Lett., 26 (2019), 872-876.  doi: 10.1080/13504851.2018.1508867.  Google Scholar

[4]

J. ChengL. WangQ. Jiang and Y. Xiong, A novel cuckoo search algorithm with multiple update rules, Appl. Intell., 48 (2018), 4192-4211.  doi: 10.1007/s10489-018-1198-y.  Google Scholar

[5]

M. L. Cheng, A generalized constant elasticity of substitution production function model and its application, J. Systems Sci. Info., 4 (2016), 269-279.  doi: 10.21078/JSSI-2016-269-11.  Google Scholar

[6]

M. L. Cheng, A Grey CES production function model and its application in calculating the contribution rate of economic growth factors, Complexity, 2019 (2019), 8pp. doi: 10.1155/2019/5617061.  Google Scholar

[7]

J. ChongelaV. Nandala and S. Korabandi, Estimation of constant elasticity of substitution (CES) production function with capital and labour inputs of agri-food firms in Tanzania, African J. Agricultural Res., 8 (2013), 5082-5089.   Google Scholar

[8]

F. Erdal, A firefly algorithm for optimum design of new-generation beams, Engineering Optim., 49 (2017), 915-931.  doi: 10.1080/0305215X.2016.1218003.  Google Scholar

[9]

H. GuoJ. HuS. YuH. Sun and Y. Chen, Computing of the contribution rate of scientific and technological progress to economic growth in Chinese regions, Expert Systems Appl., 39 (2012), 8514-8521.  doi: 10.1016/j.eswa.2011.12.032.  Google Scholar

[10]

Y. HeS. W. Gao and N. Liao, An intelligent computing approach to evaluating the contribution rate of talent on economic growth, Comput. Econ., 48 (2016), 399-423.  doi: 10.1007/s10614-015-9536-1.  Google Scholar

[11]

G. V. S. K. Karthik and S. Deb, A methodology for assembly sequence optimization by hybrid cuckoo-search genetic algorithm, J. Adv. Manufacturing Systems, 17 (2018), 47-59.  doi: 10.1142/S021968671850004X.  Google Scholar

[12]

Y. N. KiselevS. N. Avvakumov and M. V. Orlov, Optimal control in the resource allocation problem for a two-sector economy with a CES production function, Comput. Math. Model., 28 (2017), 449-477.  doi: 10.1007/s10598-017-9375-0.  Google Scholar

[13]

X. J. MengJ. X. ChangX. B. Wang and Y. M. Wang, Multi-objective hydropower station operation using an improved cuckoo search algorithm, Energy, 168 (2019), 425-439.  doi: 10.1016/j.energy.2018.11.096.  Google Scholar

[14]

S. K. Mishra, A brief history of production functions, IUP J. Managerial Econ., 8 (2010), 6-34.  doi: 10.2139/ssrn.1020577.  Google Scholar

[15]

Y. Nakamura, Productivity versus elasticity: A normalized constant elasticity of substitution production function applied to historical Soviet data, Appl. Econ., 47 (2015), 5805-5823.  doi: 10.1080/00036846.2015.1058909.  Google Scholar

[16]

S. Opuni-BasoaF. T. Oduro and G. A. Okyere, Population dynamics in optimally controlled economic growth models: Case of Cobb-Douglas production function, J. Adv. Math. Comput. Sci., 25 (2017), 1-24.  doi: 10.9734/JAMCS/2017/36753.  Google Scholar

[17]

A. S. PillaiK. SinghV. SaravananA. AnpalaganI. Woungang and L. Barolli, A genetic algorithm-based method for optimizing the energy consumption and performance of multiprocessor systems, Soft Comput., 22 (2018), 3271-3285.  doi: 10.1007/s00500-017-2789-y.  Google Scholar

[18]

F. E. Sarac, A general evaluation on estimates of Cobb-Douglas, CES, VES and Translog production functions, Bull. Econ. Theory Anal., 2 (2017), 235-278.   Google Scholar

[19]

C. Takeang and A. Aurasopon, Multiple of hybrid lambda iteration and simulated annealing algorithm to solve economic dispatch problem with ramp rate limit and prohibited operating zones, J. Electrical Engineering Tech., 14 (2019), 111-120.  doi: 10.1007/s42835-018-00001-z.  Google Scholar

[20]

K. ThirugnanasambandamS. PrakashV. SubramanianS. Pothula and V. Thirumal, Reinforced cuckoo search algorithm-based multimodal optimization, Applid Intell., 49 (2019), 2059-2083.  doi: 10.1007/s10489-018-1355-3.  Google Scholar

[21]

H. WangX. ZhouH. SunX. YuJ. ZhaoH. Zhang and L. Cui, Firefly algorithm with adaptive control parameters, Soft Comput., 21 (2017), 5091-5102.  doi: 10.1007/s00500-016-2104-3.  Google Scholar

[22]

D. ZhaA. S. Kavuri and S. Si, Energy-biased technical change in the Chinese industrial sector with CES production functions, Energy, 148 (2018), 896-903.  doi: 10.1016/j.energy.2017.11.087.  Google Scholar

[23]

C. Zhao, Y. Xu and Y. Feng, A study on contribution rate of management elements in economic growth, in International Conference on Information and Management Engineering, Communications in Computer and Information Science, 234, Springer, Berlin, Heidelberg, 2011,151–158. doi: 10.1007/978-3-642-24091-1_21.  Google Scholar

Figure 1.  Two algorithms' objective function value variation curves with the changes of the number of iteration
Figure 2.  The distribution diagram of contribution rates of influencing factors to economic growth in Shanghai City, China
Table 1.  Related data about the economic growth of Shanghai city, China
Year $ Y $ $ K $ $ L $
1999 4222.30 1856.72 733.76
2000 4812.15 1869.67 745.24
2001 5257.66 1994.73 752.26
2002 5795.02 2187.06 792.04
2003 6762.38 2452.11 813.05
2004 8165.38 3084.66 836.87
2005 9365.54 3542.55 863.32
2006 10718.04 3925.09 885.51
2007 12668.12 4458.61 909.08
2008 14275.80 4829.45 1053.24
2009 15285.58 5273.33 1064.42
2010 17433.21 5317.67 1090.76
2011 19533.84 5067.09 1104.33
2012 20553.52 5254.38 1115.50
2013 22257.66 5647.79 1137.35
2014 24060.87 6016.43 1197.31
2015 25643.47 6352.70 1361.51
2016 28178.65 6755.88 1365.24
2017 30632.09 7246.60 1372.65
2018 32679.87 7623.42 1430.82
Year $ Y $ $ K $ $ L $
1999 4222.30 1856.72 733.76
2000 4812.15 1869.67 745.24
2001 5257.66 1994.73 752.26
2002 5795.02 2187.06 792.04
2003 6762.38 2452.11 813.05
2004 8165.38 3084.66 836.87
2005 9365.54 3542.55 863.32
2006 10718.04 3925.09 885.51
2007 12668.12 4458.61 909.08
2008 14275.80 4829.45 1053.24
2009 15285.58 5273.33 1064.42
2010 17433.21 5317.67 1090.76
2011 19533.84 5067.09 1104.33
2012 20553.52 5254.38 1115.50
2013 22257.66 5647.79 1137.35
2014 24060.87 6016.43 1197.31
2015 25643.47 6352.70 1361.51
2016 28178.65 6755.88 1365.24
2017 30632.09 7246.60 1372.65
2018 32679.87 7623.42 1430.82
Table 2.  The comparison of results of two CS algorithms
Method Conventional CS Improved CS
$ A_{0} $ 4.9963 3.9414
$ \sigma $ 0.0450 0.0433
$ \delta_{1} $ 1.1503 1.4430
$ \delta_{2} $ 4.9788 6.6868
$ a $ 4.9940 5.0012
$ b $ 3.2084 3.1064
$ c $ 0.1988 0.1497
$ \mu $ 0.8231 0.8293
Number of Iteration 252 54
$ G, $ Optimal Value of Objective Function 1.0319e$ + $07 9.9439e$ + $06
$ R^{2}, $ Coefficient of Determination of Model 0.9935 0.9937
Method Conventional CS Improved CS
$ A_{0} $ 4.9963 3.9414
$ \sigma $ 0.0450 0.0433
$ \delta_{1} $ 1.1503 1.4430
$ \delta_{2} $ 4.9788 6.6868
$ a $ 4.9940 5.0012
$ b $ 3.2084 3.1064
$ c $ 0.1988 0.1497
$ \mu $ 0.8231 0.8293
Number of Iteration 252 54
$ G, $ Optimal Value of Objective Function 1.0319e$ + $07 9.9439e$ + $06
$ R^{2}, $ Coefficient of Determination of Model 0.9935 0.9937
Table 3.  Verification results of conditions of production function
Year $ f_{1} $ $ f_{2} $ $ f_{11} $ $ f_{22} $ $ f_{12} $ $ ff $
1999 1.2536 6.5002 -9.275e-5 -13.7e-4 -5.69e-5 1.2364e-7
2000 1.2387 6.2050 -7.511e-5 -11.8e-4 -9.53e-5 7.9713e-8
2001 1.2487 6.1583 -6.335e-5 -10.9e-4 -1.15e-4 5.5835e-8
2002 1.2665 6.1774 -5.439e-5 -9.92e-4 -1.23e-4 3.8894e-8
2003 1.2922 6.2664 -4.787e-5 -9.33e-4 -1.27e-4 2.8559e-8
2004 1.3090 6.3446 -3.959e-5 -8.48e-4 -1.21e-4 1.8918e-8
2005 1.3397 6.4705 -3.565e-5 -7.93e-4 -1.19e-4 1.4196e-8
2006 1.3780 6.6312 -3.337e-5 -7.56e-4 -1.18e-4 1.1381e-8
2007 1.4150 6.7923 -3.086e-5 -7.15e-4 -1.14e-4 8.9777e-9
2008 1.4472 6.9094 -2.805e-5 -6.34e-4 -1.06e-4 6.5751e-9
2009 1.4950 7.1239 -2.709e-5 -6.20e-4 -1.06e-4 5.6539e-9
2010 1.5549 7.3862 -2.754e-5 -6.24e-4 -1.09e-4 5.2946e-9
2011 1.6274 7.7058 -2.929e-5 -6.53e-4 -1.17e-4 5.4122e-9
2012 1.6907 7.9924 -2.949e-5 -6.59e-4 -1.20e-4 5.0563e-9
2013 1.7496 8.2616 -2.888e-5 -6.48e-4 -1.19e-4 4.5043e-9
2014 1.8078 8.5239 -2.803e-5 -6.28e-4 -1.17e-4 3.9252e-9
2015 1.8582 8.7431 -2.631e-5 -5.82e-4 -1.10e-4 3.1723e-9
2016 1.9281 9.0661 -2.625e-5 -5.83e-4 -1.11e-4 2.9566e-9
2017 1.9985 9.3922 -2.600e-5 -5.81e-4 -1.11e-4 2.7283e-9
2018 2.0695 9.7171 -2.563e-5 -5.71e-4 -1.10e-4 2.4778e-9
Year $ f_{1} $ $ f_{2} $ $ f_{11} $ $ f_{22} $ $ f_{12} $ $ ff $
1999 1.2536 6.5002 -9.275e-5 -13.7e-4 -5.69e-5 1.2364e-7
2000 1.2387 6.2050 -7.511e-5 -11.8e-4 -9.53e-5 7.9713e-8
2001 1.2487 6.1583 -6.335e-5 -10.9e-4 -1.15e-4 5.5835e-8
2002 1.2665 6.1774 -5.439e-5 -9.92e-4 -1.23e-4 3.8894e-8
2003 1.2922 6.2664 -4.787e-5 -9.33e-4 -1.27e-4 2.8559e-8
2004 1.3090 6.3446 -3.959e-5 -8.48e-4 -1.21e-4 1.8918e-8
2005 1.3397 6.4705 -3.565e-5 -7.93e-4 -1.19e-4 1.4196e-8
2006 1.3780 6.6312 -3.337e-5 -7.56e-4 -1.18e-4 1.1381e-8
2007 1.4150 6.7923 -3.086e-5 -7.15e-4 -1.14e-4 8.9777e-9
2008 1.4472 6.9094 -2.805e-5 -6.34e-4 -1.06e-4 6.5751e-9
2009 1.4950 7.1239 -2.709e-5 -6.20e-4 -1.06e-4 5.6539e-9
2010 1.5549 7.3862 -2.754e-5 -6.24e-4 -1.09e-4 5.2946e-9
2011 1.6274 7.7058 -2.929e-5 -6.53e-4 -1.17e-4 5.4122e-9
2012 1.6907 7.9924 -2.949e-5 -6.59e-4 -1.20e-4 5.0563e-9
2013 1.7496 8.2616 -2.888e-5 -6.48e-4 -1.19e-4 4.5043e-9
2014 1.8078 8.5239 -2.803e-5 -6.28e-4 -1.17e-4 3.9252e-9
2015 1.8582 8.7431 -2.631e-5 -5.82e-4 -1.10e-4 3.1723e-9
2016 1.9281 9.0661 -2.625e-5 -5.83e-4 -1.11e-4 2.9566e-9
2017 1.9985 9.3922 -2.600e-5 -5.81e-4 -1.11e-4 2.7283e-9
2018 2.0695 9.7171 -2.563e-5 -5.71e-4 -1.10e-4 2.4778e-9
[1]

Jianjun Liu, Min Zeng, Yifan Ge, Changzhi Wu, Xiangyu Wang. Improved Cuckoo Search algorithm for numerical function optimization. Journal of Industrial & Management Optimization, 2020, 16 (1) : 103-115. doi: 10.3934/jimo.2018142

[2]

Mohamed A. Tawhid, Ahmed F. Ali. An effective hybrid firefly algorithm with the cuckoo search for engineering optimization problems. Mathematical Foundations of Computing, 2018, 1 (4) : 349-368. doi: 10.3934/mfc.2018017

[3]

Maolin Cheng, Mingyin Xiang. Application of a modified CES production function model based on improved firefly algorithm. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1571-1584. doi: 10.3934/jimo.2019018

[4]

Luis C. Corchón. A Malthus-Swan-Solow model of economic growth. Journal of Dynamics & Games, 2016, 3 (3) : 225-230. doi: 10.3934/jdg.2016012

[5]

Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456

[6]

Luis C. Corchón. Corrigendum to "A Malthus-Swan-Solow model of economic growth". Journal of Dynamics & Games, 2018, 5 (2) : 187-187. doi: 10.3934/jdg.2018011

[7]

Gülden Gün Polat, Teoman Özer. On group analysis of optimal control problems in economic growth models. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2853-2876. doi: 10.3934/dcdss.2020215

[8]

Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193

[9]

Behrouz Kheirfam, Morteza Moslemi. On the extension of an arc-search interior-point algorithm for semidefinite optimization. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 261-275. doi: 10.3934/naco.2018015

[10]

Kien Ming Ng, Trung Hieu Tran. A parallel water flow algorithm with local search for solving the quadratic assignment problem. Journal of Industrial & Management Optimization, 2019, 15 (1) : 235-259. doi: 10.3934/jimo.2018041

[11]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020043

[12]

Leonor Cruzeiro. The VES hypothesis and protein misfolding. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1033-1046. doi: 10.3934/dcdss.2011.4.1033

[13]

Ata Allah Taleizadeh, Biswajit Sarkar, Mohammad Hasani. Delayed payment policy in multi-product single-machine economic production quantity model with repair failure and partial backordering. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1273-1296. doi: 10.3934/jimo.2019002

[14]

Xiangyu Ge, Tifang Ye, Yanli Zhou, Guoguang Yan. Fiscal centralization vs. decentralization on economic growth and welfare: An optimal-control approach. Journal of Industrial & Management Optimization, 2016, 12 (2) : 487-504. doi: 10.3934/jimo.2016.12.487

[15]

Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021

[16]

Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053

[17]

Ming-Jong Yao, Tien-Cheng Hsu. An efficient search algorithm for obtaining the optimal replenishment strategies in multi-stage just-in-time supply chain systems. Journal of Industrial & Management Optimization, 2009, 5 (1) : 11-32. doi: 10.3934/jimo.2009.5.11

[18]

Zheng Chang, Haoxun Chen, Farouk Yalaoui, Bo Dai. Adaptive large neighborhood search Algorithm for route planning of freight buses with pickup and delivery. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020045

[19]

Abdel-Rahman Hedar, Ahmed Fouad Ali, Taysir Hassan Abdel-Hamid. Genetic algorithm and Tabu search based methods for molecular 3D-structure prediction. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 191-209. doi: 10.3934/naco.2011.1.191

[20]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020056

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]