doi: 10.3934/jimo.2020101

A $ {BMAP/BMSP/1} $ queue with Markov dependent arrival and Markov dependent service batches

1. 

Centre for Research in Mathematics, C.M.S. College, Kottayam-686001, India

2. 

Department of Mathematics, Union Christian College, Aluva-683102, India

Received  November 2019 Published  May 2020

Fund Project: The first author is supported by UGC, Govt. of India, Emeritus Fellow(EMERITUS 2017-18 GEN 10822(SA-II)) and DST, Indo-Russian project: INT/RUS/RSF/P-15

Batch arrival and batch service queueing systems are of importance in the context of telecommunication networks. None of the work reported so far consider the dependence of consecutive arrival and service batches. Batch Markovian Arrival Process($ BMAP $) and Batch Markovian Service Process ($ BMSP $) take care of the dependence between successive inter-arrival and service times, respectively. However in real life situations dependence between consecutive arrival and service batch sizes also play an important role. This is to regulate the workload of the server in the context of service and to restrict the arrival batch size when the flow is from the same source. In this paper we study a queueing system with Markov dependent arrival and service batch sizes. The arrival and service batch sizes are assumed to be finite. Further, successive inter-arrival and service time durations are also assumed to be correlated. Specifically, we consider a $ BMAP/BMSP/1 $ queue with Markov dependent arrival and Markov dependent service batch sizes. The stability of the system is investigated. The steady state probability vectors of the system state and some important performance measures are computed. The Laplace-Stieltjes transform of waiting time and idle time of the server are obtained. Some numerical examples are provided.

Citation: Achyutha Krishnamoorthy, Anu Nuthan Joshua. A $ {BMAP/BMSP/1} $ queue with Markov dependent arrival and Markov dependent service batches. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020101
References:
[1]

A. D. Banik, Analyzing state-dependent arrival in $GI/BMSP/1/\infty $ queues, Math. Comput. Modelling, 53 (2011), 1229-1246.  doi: 10.1016/j.mcm.2010.12.007.  Google Scholar

[2]

A. D. Banik, Queueing analysis and optimal control of $ BMAP/G^{(a, b)}/1/N $ and $ BMAP/MSP^{(a, b)}/1/N $ systems, Comput. Industrial Engineering, 57 (2009), 748-761.  doi: 10.1016/j.cie.2009.02.002.  Google Scholar

[3]

A. D. Banik, Stationary analysis of a $ BMAP/R/1 $ queue with $ R $-type multiple working vacations, Comm. Statist. Simulation Comput., 46 (2017), 1035-1061.  doi: 10.1080/03610918.2014.990096.  Google Scholar

[4]

A. D. BanikM. L. Chaudhry and U. C. Gupta, On the finite buffer queue with renewal input and batch Markovian service process: $ GI/BMSP/1/N $, Methodol. Comput. Appl. Probab., 10 (2008), 559-575.  doi: 10.1007/s11009-007-9064-0.  Google Scholar

[5]

S. Ghosh and A. D. Banik, An algorithmic analysis of the $ BMAP/MSP/1 $ generalized processor-sharing queue, Comput. Oper. Res., 79 (2017), 1-11.  doi: 10.1016/j.cor.2016.10.001.  Google Scholar

[6]

S. Ghosh and A. D. Banik, Computing conditional sojourn time of a randomly chosen tagged customer in a $ BMAP/MSP/1 $ queue under random order service discipline, Ann. Oper. Res., 261 (2018), 185-206.  doi: 10.1007/s10479-017-2534-z.  Google Scholar

[7]

S. Ghosh and A. D. Banik, Efficient computational analysis of non-exhaustive service vacation queues: $ BMAP/R/1/N(\infty) $ under gated-limited discipline, Appl. Math. Model., 68 (2019), 540-562.  doi: 10.1016/j.apm.2018.11.040.  Google Scholar

[8]

C. KimV. I. Klimenok and A. N. Dudin, Analysis of unreliable $ BMAP/PH/N $ type queue with Markovian flow of breakdowns, Appl. Math. Comput., 314 (2017), 154-172.  doi: 10.1016/j.amc.2017.06.035.  Google Scholar

[9]

V. KlimenokA. N. Dudin and K. Samouylov, Computation of moments of queue length in the $ BMAP/SM/1 $ queue, Oper. Res. Lett., 45 (2017), 467-470.  doi: 10.1016/j.orl.2017.07.003.  Google Scholar

[10]

V. Klimenok and O. Dudina, Retrial tandem queue with controllable strategy of repeated attempts, Quality Tech. Quantitative Manag., 14 (2017), 74-93.  doi: 10.1080/16843703.2016.1189177.  Google Scholar

[11]

V. Klimenok, O. Dudina, V. Vishnevsky and K. Samouylov, Retrial tandem queue with $ BMAP $ input and semi-Markovian service process, in International Conference on Distributed Computer and Communication Networks, Communications in Computer and Information Science, 700, Springer, Cham, 2017,159–173. doi: 10.1007/978-3-319-66836-9_14.  Google Scholar

[12]

V. I. KlimenokA. N. Dudin and K. E. Samouylov, Analysis of the $ BMAP/PH/N $ queueing systems with backup servers, Appl. Math. Model., 57 (2018), 64-84.  doi: 10.1016/j.apm.2017.12.024.  Google Scholar

[13]

D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Comm. Statist. Stochastic Models, 7 (1991), 1-46.  doi: 10.1080/15326349108807174.  Google Scholar

[14]

D. M. LucantoniK. S. Meier-Hellstern and M. F. Neuts, A single-server queue with server vacations and a class of non-renewal arrival processes, Adv. in Appl. Probab., 22 (1990), 676-705.  doi: 10.2307/1427464.  Google Scholar

[15]

M. F. Neuts, Versatile Markovian point process, J. Appl. Probab., 16 (1979), 764-779.  doi: 10.2307/3213143.  Google Scholar

[16] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach, Johns Hopkins Series in the Mathematical Sciences, 2, John Hopkins University Press, Baltimore, MD, 1981.  doi: 10.2307/2287748.  Google Scholar
[17]

G. RamaR. RamshankarR. SandhyaV. Sundar and R. Ramanarayanan, $ BMAP/M/C $ bulk service queue with randomly varying environment, IOSR J. Engineering, 5 (2015), 33-47.   Google Scholar

[18]

V. Ramaswami, The $ N/G/1 $ queue and its detailed analysis, Adv. in Appl. Probab., 12 (1980), 222-261.  doi: 10.2307/1426503.  Google Scholar

[19]

S. K. SamantaM. L. Chaudhry and A. Pacheco, Analysis of $ BMAP/MSP/1 $ queue, Methodol. Comput. Appl. Probab., 18 (2016), 419-440.  doi: 10.1007/s11009-014-9429-0.  Google Scholar

[20]

R. SandhyaV. SundarG. RamaR. Ramshankar and R. Ramanarayanan, $ BMAP/BMSP/1 $ queue with randomly varying environment, IOSR J. Engineering, 5 (2015), 01-12.   Google Scholar

[21]

V. M. Vishnevskii and A. N. Dudin, Queueing systems with correlated arrival flows and their applications to modeling telecommunication networks, Autom. Remote Control, 78 (2017), 1361-1403.  doi: 10.1134/S000511791708001X.  Google Scholar

show all references

References:
[1]

A. D. Banik, Analyzing state-dependent arrival in $GI/BMSP/1/\infty $ queues, Math. Comput. Modelling, 53 (2011), 1229-1246.  doi: 10.1016/j.mcm.2010.12.007.  Google Scholar

[2]

A. D. Banik, Queueing analysis and optimal control of $ BMAP/G^{(a, b)}/1/N $ and $ BMAP/MSP^{(a, b)}/1/N $ systems, Comput. Industrial Engineering, 57 (2009), 748-761.  doi: 10.1016/j.cie.2009.02.002.  Google Scholar

[3]

A. D. Banik, Stationary analysis of a $ BMAP/R/1 $ queue with $ R $-type multiple working vacations, Comm. Statist. Simulation Comput., 46 (2017), 1035-1061.  doi: 10.1080/03610918.2014.990096.  Google Scholar

[4]

A. D. BanikM. L. Chaudhry and U. C. Gupta, On the finite buffer queue with renewal input and batch Markovian service process: $ GI/BMSP/1/N $, Methodol. Comput. Appl. Probab., 10 (2008), 559-575.  doi: 10.1007/s11009-007-9064-0.  Google Scholar

[5]

S. Ghosh and A. D. Banik, An algorithmic analysis of the $ BMAP/MSP/1 $ generalized processor-sharing queue, Comput. Oper. Res., 79 (2017), 1-11.  doi: 10.1016/j.cor.2016.10.001.  Google Scholar

[6]

S. Ghosh and A. D. Banik, Computing conditional sojourn time of a randomly chosen tagged customer in a $ BMAP/MSP/1 $ queue under random order service discipline, Ann. Oper. Res., 261 (2018), 185-206.  doi: 10.1007/s10479-017-2534-z.  Google Scholar

[7]

S. Ghosh and A. D. Banik, Efficient computational analysis of non-exhaustive service vacation queues: $ BMAP/R/1/N(\infty) $ under gated-limited discipline, Appl. Math. Model., 68 (2019), 540-562.  doi: 10.1016/j.apm.2018.11.040.  Google Scholar

[8]

C. KimV. I. Klimenok and A. N. Dudin, Analysis of unreliable $ BMAP/PH/N $ type queue with Markovian flow of breakdowns, Appl. Math. Comput., 314 (2017), 154-172.  doi: 10.1016/j.amc.2017.06.035.  Google Scholar

[9]

V. KlimenokA. N. Dudin and K. Samouylov, Computation of moments of queue length in the $ BMAP/SM/1 $ queue, Oper. Res. Lett., 45 (2017), 467-470.  doi: 10.1016/j.orl.2017.07.003.  Google Scholar

[10]

V. Klimenok and O. Dudina, Retrial tandem queue with controllable strategy of repeated attempts, Quality Tech. Quantitative Manag., 14 (2017), 74-93.  doi: 10.1080/16843703.2016.1189177.  Google Scholar

[11]

V. Klimenok, O. Dudina, V. Vishnevsky and K. Samouylov, Retrial tandem queue with $ BMAP $ input and semi-Markovian service process, in International Conference on Distributed Computer and Communication Networks, Communications in Computer and Information Science, 700, Springer, Cham, 2017,159–173. doi: 10.1007/978-3-319-66836-9_14.  Google Scholar

[12]

V. I. KlimenokA. N. Dudin and K. E. Samouylov, Analysis of the $ BMAP/PH/N $ queueing systems with backup servers, Appl. Math. Model., 57 (2018), 64-84.  doi: 10.1016/j.apm.2017.12.024.  Google Scholar

[13]

D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Comm. Statist. Stochastic Models, 7 (1991), 1-46.  doi: 10.1080/15326349108807174.  Google Scholar

[14]

D. M. LucantoniK. S. Meier-Hellstern and M. F. Neuts, A single-server queue with server vacations and a class of non-renewal arrival processes, Adv. in Appl. Probab., 22 (1990), 676-705.  doi: 10.2307/1427464.  Google Scholar

[15]

M. F. Neuts, Versatile Markovian point process, J. Appl. Probab., 16 (1979), 764-779.  doi: 10.2307/3213143.  Google Scholar

[16] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach, Johns Hopkins Series in the Mathematical Sciences, 2, John Hopkins University Press, Baltimore, MD, 1981.  doi: 10.2307/2287748.  Google Scholar
[17]

G. RamaR. RamshankarR. SandhyaV. Sundar and R. Ramanarayanan, $ BMAP/M/C $ bulk service queue with randomly varying environment, IOSR J. Engineering, 5 (2015), 33-47.   Google Scholar

[18]

V. Ramaswami, The $ N/G/1 $ queue and its detailed analysis, Adv. in Appl. Probab., 12 (1980), 222-261.  doi: 10.2307/1426503.  Google Scholar

[19]

S. K. SamantaM. L. Chaudhry and A. Pacheco, Analysis of $ BMAP/MSP/1 $ queue, Methodol. Comput. Appl. Probab., 18 (2016), 419-440.  doi: 10.1007/s11009-014-9429-0.  Google Scholar

[20]

R. SandhyaV. SundarG. RamaR. Ramshankar and R. Ramanarayanan, $ BMAP/BMSP/1 $ queue with randomly varying environment, IOSR J. Engineering, 5 (2015), 01-12.   Google Scholar

[21]

V. M. Vishnevskii and A. N. Dudin, Queueing systems with correlated arrival flows and their applications to modeling telecommunication networks, Autom. Remote Control, 78 (2017), 1361-1403.  doi: 10.1134/S000511791708001X.  Google Scholar

Table 1.  Transition rate submatrices within level 0
$ \rm{ From} $ $ \rm{To} $ $ \rm{ Rate} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p, n_1, n_2 = 0(k)) $ $ \textbf I_s \otimes D_0 $
$ (0, p, n_1, n_2) $ $ (0, p, n_1, n_2) $ $ S_0 \oplus D_0 $
$ (0, p, n_1, n_2) $ $ (0, p + m_1, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1}D_{c} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p + m_1 - k, m_1, k) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p+m_1, m_1, 0(k)) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (0, p, n_1, n_2 ) $ $ (0, p, n_1, m_2 = 0(k)) $ $ q_{n_2 k} S_d \otimes \textbf I_r $
$ (0, p, n_1, n_2) $ $ (0, p-m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ \rm{ From} $ $ \rm{To} $ $ \rm{ Rate} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p, n_1, n_2 = 0(k)) $ $ \textbf I_s \otimes D_0 $
$ (0, p, n_1, n_2) $ $ (0, p, n_1, n_2) $ $ S_0 \oplus D_0 $
$ (0, p, n_1, n_2) $ $ (0, p + m_1, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1}D_{c} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p + m_1 - k, m_1, k) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p+m_1, m_1, 0(k)) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (0, p, n_1, n_2 ) $ $ (0, p, n_1, m_2 = 0(k)) $ $ q_{n_2 k} S_d \otimes \textbf I_r $
$ (0, p, n_1, n_2) $ $ (0, p-m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
Table 2.  Transition rate submatrices except those within level 0
$ \rm{ From} $ $ \rm{To} $ $ \rm{ Rate} $
$ (0, p, n_1 , n_2) $ $ (1, p + m_1- q, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1}D_{c} $
$ (1, p, n_1, n_2) $ $ (0, q + p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ (l, p, n_1, n_2) $ $ (l+1, p + m_1 - q, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (l, p, n_1, n_2) $ $ (l, p, n_1, n_2) $ $ S_0 \oplus D_0 $
$ (l, p, n_1, n_2) $ $ (l, p + m_1, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (l, p, n_1, n_2) $ $ (l, p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ (l, p, n_1, n_2) $ $ (l-1, q + p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ \rm{ From} $ $ \rm{To} $ $ \rm{ Rate} $
$ (0, p, n_1 , n_2) $ $ (1, p + m_1- q, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1}D_{c} $
$ (1, p, n_1, n_2) $ $ (0, q + p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ (l, p, n_1, n_2) $ $ (l+1, p + m_1 - q, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (l, p, n_1, n_2) $ $ (l, p, n_1, n_2) $ $ S_0 \oplus D_0 $
$ (l, p, n_1, n_2) $ $ (l, p + m_1, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (l, p, n_1, n_2) $ $ (l, p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ (l, p, n_1, n_2) $ $ (l-1, q + p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
Table 3.  Expected queue length under various arrival and service processes
NCA (2a) NCA (2b) ZCA PCA (3a) PCA (3b)
NCS(2b) $ {4.5898} $ $ {5.7659} $ $ {3.1824} $ $ {42.5934} $ $ {179.1428} $
NCS(2a) $ {3.3006} $ $ {4.3856} $ $ {2.1585} $ $ {41.1375} $ $ {177.7154} $
ZCS $ {1.1070} $ $ {1.1905} $ $ {0.9351} $ $ {8.1323} $ $ {40.2739} $
PCS $ {40.5835} $ $ {42.1713} $ $ {32.6996} $ $ {82.5983} $ $ {214.3443} $
NCA (2a) NCA (2b) ZCA PCA (3a) PCA (3b)
NCS(2b) $ {4.5898} $ $ {5.7659} $ $ {3.1824} $ $ {42.5934} $ $ {179.1428} $
NCS(2a) $ {3.3006} $ $ {4.3856} $ $ {2.1585} $ $ {41.1375} $ $ {177.7154} $
ZCS $ {1.1070} $ $ {1.1905} $ $ {0.9351} $ $ {8.1323} $ $ {40.2739} $
PCS $ {40.5835} $ $ {42.1713} $ $ {32.6996} $ $ {82.5983} $ $ {214.3443} $
Table 4.  Expected idle time in $ (0, 0, 1, 0(1), 1, 1), (0, 0, 1, 0(2), 1, 1), (0, 0, 1, 0(3), 1, 1) $ respectively and arrival phase changes to 1, 2, 3 respectively at the end of idle time under various arrival and service processes
L(1, 1) M(1, 1) N(1, 1) L(1, 2) M(1, 2) N(1, 2) L(1, 3) M(1, 3) N(1, 3)
ZCS NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
ZCS NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
ZCS ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
ZCS PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
PCS NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
PCS NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
PCS ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
PCS PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
NCS(2a) NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
NCS(2a) NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
NCS(2a) ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
NCS(2a) PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
L(1, 1) M(1, 1) N(1, 1) L(1, 2) M(1, 2) N(1, 2) L(1, 3) M(1, 3) N(1, 3)
ZCS NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
ZCS NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
ZCS ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
ZCS PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
PCS NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
PCS NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
PCS ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
PCS PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
NCS(2a) NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
NCS(2a) NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
NCS(2a) ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
NCS(2a) PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
Table 5.  Expected idle time in $ (0, 0, 1, 0(1), 1, 2), (0, 0, 1, 0(2), 1, 2), (0, 0, 1, 0(3), 1, 2) $ respectively and arrival phase changes to 1, 2, 3 respectively at the end of idle time under various arrival and service processes
L(2, 1) M(2, 1) N(2, 1) L(2, 2) M(2, 2) N(2, 2) L(2, 3) M(2, 3) N(2, 3)
ZCS NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
ZCS NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
ZCS ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
ZCS PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
PCS NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
PCS NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
PCS ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
PCS PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
NCS(2a) NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
NCS(2a) NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
NCS(2a) ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
NCS(2a) PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
L(2, 1) M(2, 1) N(2, 1) L(2, 2) M(2, 2) N(2, 2) L(2, 3) M(2, 3) N(2, 3)
ZCS NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
ZCS NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
ZCS ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
ZCS PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
PCS NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
PCS NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
PCS ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
PCS PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
NCS(2a) NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
NCS(2a) NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
NCS(2a) ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
NCS(2a) PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
Table 6.  Expected idle time in $ (0, 0, 1, 0(1), 1, 3), (0, 0, 1, 0(2), 1, 3), (0, 0, 1, 0(3), 1, 3) $ respectively and arrival phase changes to 1, 2, 3 respectively at the end of idle time under various arrival and service processes
L(3, 1) M(3, 1) N(3, 1) L(3, 2) M(3, 2) N(3, 2) L(3, 3) M(3, 3) N(3, 3)
ZCS NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
ZCS NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
ZCS ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
ZCS PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
PCS NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
PCS NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
PCS ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
PCS PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
NCS(2a) NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
NCS(2a) NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
NCS(2a) ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
NCS(2a) PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
L(3, 1) M(3, 1) N(3, 1) L(3, 2) M(3, 2) N(3, 2) L(3, 3) M(3, 3) N(3, 3)
ZCS NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
ZCS NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
ZCS ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
ZCS PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
PCS NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
PCS NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
PCS ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
PCS PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
NCS(2a) NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
NCS(2a) NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
NCS(2a) ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
NCS(2a) PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
Table 7.  $ A_1(j, j') $ and $ B_1(j, j') $
$ A (1, 1) $ $ A (1, 2) $ $ A(2, 1) $ $ A(2, 2) $ $ B(1, 1) $ B(1, 2) $ B(2, 1) $ $ B(2, 2) $
ZCS NCA(2a) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS NCA(2b) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS ZCA $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS PCA(3a) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS PCA(3b) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
PCS NCA(2a) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS NCA(2b) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS ZCA $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS PCA(3a) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS PCA(3b) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
NCS(2a) NCA(2a) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) NCA(2b) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) ZCA $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) PCA(3a) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) PCA(3b) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
$ A (1, 1) $ $ A (1, 2) $ $ A(2, 1) $ $ A(2, 2) $ $ B(1, 1) $ B(1, 2) $ B(2, 1) $ $ B(2, 2) $
ZCS NCA(2a) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS NCA(2b) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS ZCA $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS PCA(3a) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS PCA(3b) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
PCS NCA(2a) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS NCA(2b) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS ZCA $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS PCA(3a) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS PCA(3b) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
NCS(2a) NCA(2a) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) NCA(2b) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) ZCA $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) PCA(3a) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) PCA(3b) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
Table 8.  $ A_2(j, j') $ and $ B_2(j, j') $
$ A 2(1, 1) $ $ A2 (1, 2) $ $ A2(2, 1) $ $ A2(2, 2) $ $ B2(1, 1) $ B2(1, 2) $ B2(2, 1) $ $ B2(2, 2) $
ZCS NCA(2a) $ {0} $ $ {1.4212} $ $ {0} $ $ {0.4737} $ $ {0} $ $ {0.4599} $ $ {0} $ $ {0.1717} $
ZCS NCA(2b) $ {0} $ $ {1.1870} $ $ {0} $ $ {0.3957} $ $ {0} $ $ {0.5642} $ $ {0} $ $ {0.2033} $
ZCS ZCA $ {0} $ $ {1.9840} $ $ {0} $ $ {0.6613} $ $ {0} $ $ {1.5335} $ $ {0} $ $ {0.5363} $
ZCS PCA(3a) $ {0} $ $ {2.5277} $ $ {0} $ $ {0.8426} $ $ {0} $ $ {2.3911} $ $ {0} $ $ {0.8288} $
ZCS PCA(3b) $ {0} $ $ {3.7649} $ $ {0} $ $ {1.2550} $ $ {0} $ $ {2.9230} $ $ {0} $ $ {1.0221} $
PCS NCA(2a) $ {0.3972} $ $ {0.0441} $ $ {0.3716} $ $ {9.6942} $ $ {0.1426} $ $ {0.0197} $ $ {0.2146} $ $ {3.4026} $
PCS NCA(2b) $ {0.3317} $ $ {0.0368} $ $ {0.3103} $ $ {8.0964} $ $ {0.1693} $ $ {0.0220} $ $ {0.2257} $ $ {4.0690} $
PCS ZCA $ {0.5544} $ $ {0.0615} $ $ {0.5187} $ $ {13.5328} $ $ {0.4477} $ $ {0.0550} $ $ {0.5298} $ $ {10.8229} $
PCS PCA(3a) $ {0.7063} $ $ {0.0784} $ $ {0.6608} $ $ {17.2411} $ $ {0.6924} $ $ {0.0835} $ $ {0.7879} $ $ {16.7681} $
PCS PCA(3b) $ {1.0521} $ $ {0.1168} $ $ {0.9843} $ $ {25.6805} $ $ {0.8533} $ $ {0.1048} $ $ {1.0087} $ $ {20.6271} $
NCS(2a) NCA(2a) $ {1.7200} $ $ {0.5080} $ $ {0.6618} $ $ {0.1843} $ $ {0.6196} $ $ {0.1777} $ $ {0.2529} $ $ {0.0732} $
NCS(2a) NCA(2b) $ {1.4365} $ $ {0.4243} $ $ {0.5528} $ $ {0.1539} $ $ {0.7351} $ $ {0.2128} $ $ {0.2949} $ $ {0.0844} $
NCS(2a) ZCA $ {2.4011} $ $ {0.7091} $ $ {0.9239} $ $ {0.2573} $ $ {1.9419} $ $ {0.5664} $ $ {0.7671} $ $ {0.2174} $
NCS(2a) PCA(3a) $ {3.0590} $ $ {0.9035} $ $ {1.1771} $ $ {0.3278} $ $ {3.0025} $ $ {0.8777} $ $ {1.1804} $ $ {0.3335} $
NCS(2a) PCA(3b) $ {4.5564} $ $ {1.3457} $ $ {1.7533} $ $ {0.4882} $ $ {3.7009} $ $ {1.0794} $ $ {1.4617} $ $ {0.4143} $
$ A 2(1, 1) $ $ A2 (1, 2) $ $ A2(2, 1) $ $ A2(2, 2) $ $ B2(1, 1) $ B2(1, 2) $ B2(2, 1) $ $ B2(2, 2) $
ZCS NCA(2a) $ {0} $ $ {1.4212} $ $ {0} $ $ {0.4737} $ $ {0} $ $ {0.4599} $ $ {0} $ $ {0.1717} $
ZCS NCA(2b) $ {0} $ $ {1.1870} $ $ {0} $ $ {0.3957} $ $ {0} $ $ {0.5642} $ $ {0} $ $ {0.2033} $
ZCS ZCA $ {0} $ $ {1.9840} $ $ {0} $ $ {0.6613} $ $ {0} $ $ {1.5335} $ $ {0} $ $ {0.5363} $
ZCS PCA(3a) $ {0} $ $ {2.5277} $ $ {0} $ $ {0.8426} $ $ {0} $ $ {2.3911} $ $ {0} $ $ {0.8288} $
ZCS PCA(3b) $ {0} $ $ {3.7649} $ $ {0} $ $ {1.2550} $ $ {0} $ $ {2.9230} $ $ {0} $ $ {1.0221} $
PCS NCA(2a) $ {0.3972} $ $ {0.0441} $ $ {0.3716} $ $ {9.6942} $ $ {0.1426} $ $ {0.0197} $ $ {0.2146} $ $ {3.4026} $
PCS NCA(2b) $ {0.3317} $ $ {0.0368} $ $ {0.3103} $ $ {8.0964} $ $ {0.1693} $ $ {0.0220} $ $ {0.2257} $ $ {4.0690} $
PCS ZCA $ {0.5544} $ $ {0.0615} $ $ {0.5187} $ $ {13.5328} $ $ {0.4477} $ $ {0.0550} $ $ {0.5298} $ $ {10.8229} $
PCS PCA(3a) $ {0.7063} $ $ {0.0784} $ $ {0.6608} $ $ {17.2411} $ $ {0.6924} $ $ {0.0835} $ $ {0.7879} $ $ {16.7681} $
PCS PCA(3b) $ {1.0521} $ $ {0.1168} $ $ {0.9843} $ $ {25.6805} $ $ {0.8533} $ $ {0.1048} $ $ {1.0087} $ $ {20.6271} $
NCS(2a) NCA(2a) $ {1.7200} $ $ {0.5080} $ $ {0.6618} $ $ {0.1843} $ $ {0.6196} $ $ {0.1777} $ $ {0.2529} $ $ {0.0732} $
NCS(2a) NCA(2b) $ {1.4365} $ $ {0.4243} $ $ {0.5528} $ $ {0.1539} $ $ {0.7351} $ $ {0.2128} $ $ {0.2949} $ $ {0.0844} $
NCS(2a) ZCA $ {2.4011} $ $ {0.7091} $ $ {0.9239} $ $ {0.2573} $ $ {1.9419} $ $ {0.5664} $ $ {0.7671} $ $ {0.2174} $
NCS(2a) PCA(3a) $ {3.0590} $ $ {0.9035} $ $ {1.1771} $ $ {0.3278} $ $ {3.0025} $ $ {0.8777} $ $ {1.1804} $ $ {0.3335} $
NCS(2a) PCA(3b) $ {4.5564} $ $ {1.3457} $ $ {1.7533} $ $ {0.4882} $ $ {3.7009} $ $ {1.0794} $ $ {1.4617} $ $ {0.4143} $
[1]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[2]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[3]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[4]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[7]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[8]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[9]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[14]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[15]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[16]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[17]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[18]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (64)
  • HTML views (200)
  • Cited by (0)

Other articles
by authors

[Back to Top]