[1]
|
A. D. Banik, Analyzing state-dependent arrival in $GI/BMSP/1/\infty $ queues, Math. Comput. Modelling, 53 (2011), 1229-1246.
doi: 10.1016/j.mcm.2010.12.007.
|
[2]
|
A. D. Banik, Queueing analysis and optimal control of $ BMAP/G^{(a, b)}/1/N $ and $ BMAP/MSP^{(a, b)}/1/N $ systems, Comput. Industrial Engineering, 57 (2009), 748-761.
doi: 10.1016/j.cie.2009.02.002.
|
[3]
|
A. D. Banik, Stationary analysis of a $ BMAP/R/1 $ queue with $ R $-type multiple working vacations, Comm. Statist. Simulation Comput., 46 (2017), 1035-1061.
doi: 10.1080/03610918.2014.990096.
|
[4]
|
A. D. Banik, M. L. Chaudhry and U. C. Gupta, On the finite buffer queue with renewal input and batch Markovian service process: $ GI/BMSP/1/N $, Methodol. Comput. Appl. Probab., 10 (2008), 559-575.
doi: 10.1007/s11009-007-9064-0.
|
[5]
|
S. Ghosh and A. D. Banik, An algorithmic analysis of the $ BMAP/MSP/1 $ generalized processor-sharing queue, Comput. Oper. Res., 79 (2017), 1-11.
doi: 10.1016/j.cor.2016.10.001.
|
[6]
|
S. Ghosh and A. D. Banik, Computing conditional sojourn time of a randomly chosen tagged customer in a $ BMAP/MSP/1 $ queue under random order service discipline, Ann. Oper. Res., 261 (2018), 185-206.
doi: 10.1007/s10479-017-2534-z.
|
[7]
|
S. Ghosh and A. D. Banik, Efficient computational analysis of non-exhaustive service vacation queues: $ BMAP/R/1/N(\infty) $ under gated-limited discipline, Appl. Math. Model., 68 (2019), 540-562.
doi: 10.1016/j.apm.2018.11.040.
|
[8]
|
C. Kim, V. I. Klimenok and A. N. Dudin, Analysis of unreliable $ BMAP/PH/N $ type queue with Markovian flow of breakdowns, Appl. Math. Comput., 314 (2017), 154-172.
doi: 10.1016/j.amc.2017.06.035.
|
[9]
|
V. Klimenok, A. N. Dudin and K. Samouylov, Computation of moments of queue length in the $ BMAP/SM/1 $ queue, Oper. Res. Lett., 45 (2017), 467-470.
doi: 10.1016/j.orl.2017.07.003.
|
[10]
|
V. Klimenok and O. Dudina, Retrial tandem queue with controllable strategy of repeated attempts, Quality Tech. Quantitative Manag., 14 (2017), 74-93.
doi: 10.1080/16843703.2016.1189177.
|
[11]
|
V. Klimenok, O. Dudina, V. Vishnevsky and K. Samouylov, Retrial tandem queue with $ BMAP $ input and semi-Markovian service process, in International Conference on Distributed Computer and Communication Networks, Communications in Computer and Information Science, 700, Springer, Cham, 2017,159–173.
doi: 10.1007/978-3-319-66836-9_14.
|
[12]
|
V. I. Klimenok, A. N. Dudin and K. E. Samouylov, Analysis of the $ BMAP/PH/N $ queueing systems with backup servers, Appl. Math. Model., 57 (2018), 64-84.
doi: 10.1016/j.apm.2017.12.024.
|
[13]
|
D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Comm. Statist. Stochastic Models, 7 (1991), 1-46.
doi: 10.1080/15326349108807174.
|
[14]
|
D. M. Lucantoni, K. S. Meier-Hellstern and M. F. Neuts, A single-server queue with server vacations and a class of non-renewal arrival processes, Adv. in Appl. Probab., 22 (1990), 676-705.
doi: 10.2307/1427464.
|
[15]
|
M. F. Neuts, Versatile Markovian point process, J. Appl. Probab., 16 (1979), 764-779.
doi: 10.2307/3213143.
|
[16]
|
M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach, Johns Hopkins Series in the Mathematical Sciences, 2, John Hopkins University Press, Baltimore, MD, 1981.
doi: 10.2307/2287748.
|
[17]
|
G. Rama, R. Ramshankar, R. Sandhya, V. Sundar and R. Ramanarayanan, $ BMAP/M/C $ bulk service queue with randomly varying environment, IOSR J. Engineering, 5 (2015), 33-47.
|
[18]
|
V. Ramaswami, The $ N/G/1 $ queue and its detailed analysis, Adv. in Appl. Probab., 12 (1980), 222-261.
doi: 10.2307/1426503.
|
[19]
|
S. K. Samanta, M. L. Chaudhry and A. Pacheco, Analysis of $ BMAP/MSP/1 $ queue, Methodol. Comput. Appl. Probab., 18 (2016), 419-440.
doi: 10.1007/s11009-014-9429-0.
|
[20]
|
R. Sandhya, V. Sundar, G. Rama, R. Ramshankar and R. Ramanarayanan, $ BMAP/BMSP/1 $ queue with randomly varying environment, IOSR J. Engineering, 5 (2015), 01-12.
|
[21]
|
V. M. Vishnevskii and A. N. Dudin, Queueing systems with correlated arrival flows and their applications to modeling telecommunication networks, Autom. Remote Control, 78 (2017), 1361-1403.
doi: 10.1134/S000511791708001X.
|