doi: 10.3934/jimo.2020101

A $ {BMAP/BMSP/1} $ queue with Markov dependent arrival and Markov dependent service batches

1. 

Centre for Research in Mathematics, C.M.S. College, Kottayam-686001, India

2. 

Department of Mathematics, Union Christian College, Aluva-683102, India

Received  November 2019 Published  May 2020

Fund Project: The first author is supported by UGC, Govt. of India, Emeritus Fellow(EMERITUS 2017-18 GEN 10822(SA-II)) and DST, Indo-Russian project: INT/RUS/RSF/P-15

Batch arrival and batch service queueing systems are of importance in the context of telecommunication networks. None of the work reported so far consider the dependence of consecutive arrival and service batches. Batch Markovian Arrival Process($ BMAP $) and Batch Markovian Service Process ($ BMSP $) take care of the dependence between successive inter-arrival and service times, respectively. However in real life situations dependence between consecutive arrival and service batch sizes also play an important role. This is to regulate the workload of the server in the context of service and to restrict the arrival batch size when the flow is from the same source. In this paper we study a queueing system with Markov dependent arrival and service batch sizes. The arrival and service batch sizes are assumed to be finite. Further, successive inter-arrival and service time durations are also assumed to be correlated. Specifically, we consider a $ BMAP/BMSP/1 $ queue with Markov dependent arrival and Markov dependent service batch sizes. The stability of the system is investigated. The steady state probability vectors of the system state and some important performance measures are computed. The Laplace-Stieltjes transform of waiting time and idle time of the server are obtained. Some numerical examples are provided.

Citation: Achyutha Krishnamoorthy, Anu Nuthan Joshua. A $ {BMAP/BMSP/1} $ queue with Markov dependent arrival and Markov dependent service batches. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020101
References:
[1]

A. D. Banik, Analyzing state-dependent arrival in $GI/BMSP/1/\infty $ queues, Math. Comput. Modelling, 53 (2011), 1229-1246.  doi: 10.1016/j.mcm.2010.12.007.  Google Scholar

[2]

A. D. Banik, Queueing analysis and optimal control of $ BMAP/G^{(a, b)}/1/N $ and $ BMAP/MSP^{(a, b)}/1/N $ systems, Comput. Industrial Engineering, 57 (2009), 748-761.  doi: 10.1016/j.cie.2009.02.002.  Google Scholar

[3]

A. D. Banik, Stationary analysis of a $ BMAP/R/1 $ queue with $ R $-type multiple working vacations, Comm. Statist. Simulation Comput., 46 (2017), 1035-1061.  doi: 10.1080/03610918.2014.990096.  Google Scholar

[4]

A. D. BanikM. L. Chaudhry and U. C. Gupta, On the finite buffer queue with renewal input and batch Markovian service process: $ GI/BMSP/1/N $, Methodol. Comput. Appl. Probab., 10 (2008), 559-575.  doi: 10.1007/s11009-007-9064-0.  Google Scholar

[5]

S. Ghosh and A. D. Banik, An algorithmic analysis of the $ BMAP/MSP/1 $ generalized processor-sharing queue, Comput. Oper. Res., 79 (2017), 1-11.  doi: 10.1016/j.cor.2016.10.001.  Google Scholar

[6]

S. Ghosh and A. D. Banik, Computing conditional sojourn time of a randomly chosen tagged customer in a $ BMAP/MSP/1 $ queue under random order service discipline, Ann. Oper. Res., 261 (2018), 185-206.  doi: 10.1007/s10479-017-2534-z.  Google Scholar

[7]

S. Ghosh and A. D. Banik, Efficient computational analysis of non-exhaustive service vacation queues: $ BMAP/R/1/N(\infty) $ under gated-limited discipline, Appl. Math. Model., 68 (2019), 540-562.  doi: 10.1016/j.apm.2018.11.040.  Google Scholar

[8]

C. KimV. I. Klimenok and A. N. Dudin, Analysis of unreliable $ BMAP/PH/N $ type queue with Markovian flow of breakdowns, Appl. Math. Comput., 314 (2017), 154-172.  doi: 10.1016/j.amc.2017.06.035.  Google Scholar

[9]

V. KlimenokA. N. Dudin and K. Samouylov, Computation of moments of queue length in the $ BMAP/SM/1 $ queue, Oper. Res. Lett., 45 (2017), 467-470.  doi: 10.1016/j.orl.2017.07.003.  Google Scholar

[10]

V. Klimenok and O. Dudina, Retrial tandem queue with controllable strategy of repeated attempts, Quality Tech. Quantitative Manag., 14 (2017), 74-93.  doi: 10.1080/16843703.2016.1189177.  Google Scholar

[11]

V. Klimenok, O. Dudina, V. Vishnevsky and K. Samouylov, Retrial tandem queue with $ BMAP $ input and semi-Markovian service process, in International Conference on Distributed Computer and Communication Networks, Communications in Computer and Information Science, 700, Springer, Cham, 2017,159–173. doi: 10.1007/978-3-319-66836-9_14.  Google Scholar

[12]

V. I. KlimenokA. N. Dudin and K. E. Samouylov, Analysis of the $ BMAP/PH/N $ queueing systems with backup servers, Appl. Math. Model., 57 (2018), 64-84.  doi: 10.1016/j.apm.2017.12.024.  Google Scholar

[13]

D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Comm. Statist. Stochastic Models, 7 (1991), 1-46.  doi: 10.1080/15326349108807174.  Google Scholar

[14]

D. M. LucantoniK. S. Meier-Hellstern and M. F. Neuts, A single-server queue with server vacations and a class of non-renewal arrival processes, Adv. in Appl. Probab., 22 (1990), 676-705.  doi: 10.2307/1427464.  Google Scholar

[15]

M. F. Neuts, Versatile Markovian point process, J. Appl. Probab., 16 (1979), 764-779.  doi: 10.2307/3213143.  Google Scholar

[16] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach, Johns Hopkins Series in the Mathematical Sciences, 2, John Hopkins University Press, Baltimore, MD, 1981.  doi: 10.2307/2287748.  Google Scholar
[17]

G. RamaR. RamshankarR. SandhyaV. Sundar and R. Ramanarayanan, $ BMAP/M/C $ bulk service queue with randomly varying environment, IOSR J. Engineering, 5 (2015), 33-47.   Google Scholar

[18]

V. Ramaswami, The $ N/G/1 $ queue and its detailed analysis, Adv. in Appl. Probab., 12 (1980), 222-261.  doi: 10.2307/1426503.  Google Scholar

[19]

S. K. SamantaM. L. Chaudhry and A. Pacheco, Analysis of $ BMAP/MSP/1 $ queue, Methodol. Comput. Appl. Probab., 18 (2016), 419-440.  doi: 10.1007/s11009-014-9429-0.  Google Scholar

[20]

R. SandhyaV. SundarG. RamaR. Ramshankar and R. Ramanarayanan, $ BMAP/BMSP/1 $ queue with randomly varying environment, IOSR J. Engineering, 5 (2015), 01-12.   Google Scholar

[21]

V. M. Vishnevskii and A. N. Dudin, Queueing systems with correlated arrival flows and their applications to modeling telecommunication networks, Autom. Remote Control, 78 (2017), 1361-1403.  doi: 10.1134/S000511791708001X.  Google Scholar

show all references

References:
[1]

A. D. Banik, Analyzing state-dependent arrival in $GI/BMSP/1/\infty $ queues, Math. Comput. Modelling, 53 (2011), 1229-1246.  doi: 10.1016/j.mcm.2010.12.007.  Google Scholar

[2]

A. D. Banik, Queueing analysis and optimal control of $ BMAP/G^{(a, b)}/1/N $ and $ BMAP/MSP^{(a, b)}/1/N $ systems, Comput. Industrial Engineering, 57 (2009), 748-761.  doi: 10.1016/j.cie.2009.02.002.  Google Scholar

[3]

A. D. Banik, Stationary analysis of a $ BMAP/R/1 $ queue with $ R $-type multiple working vacations, Comm. Statist. Simulation Comput., 46 (2017), 1035-1061.  doi: 10.1080/03610918.2014.990096.  Google Scholar

[4]

A. D. BanikM. L. Chaudhry and U. C. Gupta, On the finite buffer queue with renewal input and batch Markovian service process: $ GI/BMSP/1/N $, Methodol. Comput. Appl. Probab., 10 (2008), 559-575.  doi: 10.1007/s11009-007-9064-0.  Google Scholar

[5]

S. Ghosh and A. D. Banik, An algorithmic analysis of the $ BMAP/MSP/1 $ generalized processor-sharing queue, Comput. Oper. Res., 79 (2017), 1-11.  doi: 10.1016/j.cor.2016.10.001.  Google Scholar

[6]

S. Ghosh and A. D. Banik, Computing conditional sojourn time of a randomly chosen tagged customer in a $ BMAP/MSP/1 $ queue under random order service discipline, Ann. Oper. Res., 261 (2018), 185-206.  doi: 10.1007/s10479-017-2534-z.  Google Scholar

[7]

S. Ghosh and A. D. Banik, Efficient computational analysis of non-exhaustive service vacation queues: $ BMAP/R/1/N(\infty) $ under gated-limited discipline, Appl. Math. Model., 68 (2019), 540-562.  doi: 10.1016/j.apm.2018.11.040.  Google Scholar

[8]

C. KimV. I. Klimenok and A. N. Dudin, Analysis of unreliable $ BMAP/PH/N $ type queue with Markovian flow of breakdowns, Appl. Math. Comput., 314 (2017), 154-172.  doi: 10.1016/j.amc.2017.06.035.  Google Scholar

[9]

V. KlimenokA. N. Dudin and K. Samouylov, Computation of moments of queue length in the $ BMAP/SM/1 $ queue, Oper. Res. Lett., 45 (2017), 467-470.  doi: 10.1016/j.orl.2017.07.003.  Google Scholar

[10]

V. Klimenok and O. Dudina, Retrial tandem queue with controllable strategy of repeated attempts, Quality Tech. Quantitative Manag., 14 (2017), 74-93.  doi: 10.1080/16843703.2016.1189177.  Google Scholar

[11]

V. Klimenok, O. Dudina, V. Vishnevsky and K. Samouylov, Retrial tandem queue with $ BMAP $ input and semi-Markovian service process, in International Conference on Distributed Computer and Communication Networks, Communications in Computer and Information Science, 700, Springer, Cham, 2017,159–173. doi: 10.1007/978-3-319-66836-9_14.  Google Scholar

[12]

V. I. KlimenokA. N. Dudin and K. E. Samouylov, Analysis of the $ BMAP/PH/N $ queueing systems with backup servers, Appl. Math. Model., 57 (2018), 64-84.  doi: 10.1016/j.apm.2017.12.024.  Google Scholar

[13]

D. M. Lucantoni, New results on the single server queue with a batch Markovian arrival process, Comm. Statist. Stochastic Models, 7 (1991), 1-46.  doi: 10.1080/15326349108807174.  Google Scholar

[14]

D. M. LucantoniK. S. Meier-Hellstern and M. F. Neuts, A single-server queue with server vacations and a class of non-renewal arrival processes, Adv. in Appl. Probab., 22 (1990), 676-705.  doi: 10.2307/1427464.  Google Scholar

[15]

M. F. Neuts, Versatile Markovian point process, J. Appl. Probab., 16 (1979), 764-779.  doi: 10.2307/3213143.  Google Scholar

[16] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models. An Algorithmic Approach, Johns Hopkins Series in the Mathematical Sciences, 2, John Hopkins University Press, Baltimore, MD, 1981.  doi: 10.2307/2287748.  Google Scholar
[17]

G. RamaR. RamshankarR. SandhyaV. Sundar and R. Ramanarayanan, $ BMAP/M/C $ bulk service queue with randomly varying environment, IOSR J. Engineering, 5 (2015), 33-47.   Google Scholar

[18]

V. Ramaswami, The $ N/G/1 $ queue and its detailed analysis, Adv. in Appl. Probab., 12 (1980), 222-261.  doi: 10.2307/1426503.  Google Scholar

[19]

S. K. SamantaM. L. Chaudhry and A. Pacheco, Analysis of $ BMAP/MSP/1 $ queue, Methodol. Comput. Appl. Probab., 18 (2016), 419-440.  doi: 10.1007/s11009-014-9429-0.  Google Scholar

[20]

R. SandhyaV. SundarG. RamaR. Ramshankar and R. Ramanarayanan, $ BMAP/BMSP/1 $ queue with randomly varying environment, IOSR J. Engineering, 5 (2015), 01-12.   Google Scholar

[21]

V. M. Vishnevskii and A. N. Dudin, Queueing systems with correlated arrival flows and their applications to modeling telecommunication networks, Autom. Remote Control, 78 (2017), 1361-1403.  doi: 10.1134/S000511791708001X.  Google Scholar

Table 1.  Transition rate submatrices within level 0
$ \rm{ From} $ $ \rm{To} $ $ \rm{ Rate} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p, n_1, n_2 = 0(k)) $ $ \textbf I_s \otimes D_0 $
$ (0, p, n_1, n_2) $ $ (0, p, n_1, n_2) $ $ S_0 \oplus D_0 $
$ (0, p, n_1, n_2) $ $ (0, p + m_1, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1}D_{c} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p + m_1 - k, m_1, k) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p+m_1, m_1, 0(k)) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (0, p, n_1, n_2 ) $ $ (0, p, n_1, m_2 = 0(k)) $ $ q_{n_2 k} S_d \otimes \textbf I_r $
$ (0, p, n_1, n_2) $ $ (0, p-m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ \rm{ From} $ $ \rm{To} $ $ \rm{ Rate} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p, n_1, n_2 = 0(k)) $ $ \textbf I_s \otimes D_0 $
$ (0, p, n_1, n_2) $ $ (0, p, n_1, n_2) $ $ S_0 \oplus D_0 $
$ (0, p, n_1, n_2) $ $ (0, p + m_1, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1}D_{c} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p + m_1 - k, m_1, k) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (0, p, n_1, n_2 = 0(k)) $ $ (0, p+m_1, m_1, 0(k)) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (0, p, n_1, n_2 ) $ $ (0, p, n_1, m_2 = 0(k)) $ $ q_{n_2 k} S_d \otimes \textbf I_r $
$ (0, p, n_1, n_2) $ $ (0, p-m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
Table 2.  Transition rate submatrices except those within level 0
$ \rm{ From} $ $ \rm{To} $ $ \rm{ Rate} $
$ (0, p, n_1 , n_2) $ $ (1, p + m_1- q, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1}D_{c} $
$ (1, p, n_1, n_2) $ $ (0, q + p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ (l, p, n_1, n_2) $ $ (l+1, p + m_1 - q, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (l, p, n_1, n_2) $ $ (l, p, n_1, n_2) $ $ S_0 \oplus D_0 $
$ (l, p, n_1, n_2) $ $ (l, p + m_1, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (l, p, n_1, n_2) $ $ (l, p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ (l, p, n_1, n_2) $ $ (l-1, q + p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ \rm{ From} $ $ \rm{To} $ $ \rm{ Rate} $
$ (0, p, n_1 , n_2) $ $ (1, p + m_1- q, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1}D_{c} $
$ (1, p, n_1, n_2) $ $ (0, q + p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ (l, p, n_1, n_2) $ $ (l+1, p + m_1 - q, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (l, p, n_1, n_2) $ $ (l, p, n_1, n_2) $ $ S_0 \oplus D_0 $
$ (l, p, n_1, n_2) $ $ (l, p + m_1, m_1, n_2) $ $ \textbf I_s \otimes p_{n_1 m_1} D_{c} $
$ (l, p, n_1, n_2) $ $ (l, p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
$ (l, p, n_1, n_2) $ $ (l-1, q + p- m_2, n_1, m_2) $ $ q_{n_2 m_2} S_d \otimes \textbf I_r $
Table 3.  Expected queue length under various arrival and service processes
NCA (2a) NCA (2b) ZCA PCA (3a) PCA (3b)
NCS(2b) $ {4.5898} $ $ {5.7659} $ $ {3.1824} $ $ {42.5934} $ $ {179.1428} $
NCS(2a) $ {3.3006} $ $ {4.3856} $ $ {2.1585} $ $ {41.1375} $ $ {177.7154} $
ZCS $ {1.1070} $ $ {1.1905} $ $ {0.9351} $ $ {8.1323} $ $ {40.2739} $
PCS $ {40.5835} $ $ {42.1713} $ $ {32.6996} $ $ {82.5983} $ $ {214.3443} $
NCA (2a) NCA (2b) ZCA PCA (3a) PCA (3b)
NCS(2b) $ {4.5898} $ $ {5.7659} $ $ {3.1824} $ $ {42.5934} $ $ {179.1428} $
NCS(2a) $ {3.3006} $ $ {4.3856} $ $ {2.1585} $ $ {41.1375} $ $ {177.7154} $
ZCS $ {1.1070} $ $ {1.1905} $ $ {0.9351} $ $ {8.1323} $ $ {40.2739} $
PCS $ {40.5835} $ $ {42.1713} $ $ {32.6996} $ $ {82.5983} $ $ {214.3443} $
Table 4.  Expected idle time in $ (0, 0, 1, 0(1), 1, 1), (0, 0, 1, 0(2), 1, 1), (0, 0, 1, 0(3), 1, 1) $ respectively and arrival phase changes to 1, 2, 3 respectively at the end of idle time under various arrival and service processes
L(1, 1) M(1, 1) N(1, 1) L(1, 2) M(1, 2) N(1, 2) L(1, 3) M(1, 3) N(1, 3)
ZCS NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
ZCS NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
ZCS ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
ZCS PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
PCS NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
PCS NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
PCS ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
PCS PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
NCS(2a) NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
NCS(2a) NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
NCS(2a) ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
NCS(2a) PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
L(1, 1) M(1, 1) N(1, 1) L(1, 2) M(1, 2) N(1, 2) L(1, 3) M(1, 3) N(1, 3)
ZCS NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
ZCS NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
ZCS ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
ZCS PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
PCS NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
PCS NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
PCS ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
PCS PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
NCS(2a) NCA(2a) $ {0.0200} $ $ {1.5725} $ $ {0.7685} $ $ {0} $ $ {0} $ $ {0} $ $ {1.9756} $ $ {0.4426} $ $ {2.5034} $
NCS(2a) NCA(2b) $ {0.2199} $ $ {1.2456} $ $ {1.1507} $ $ {0.2274} $ $ {0.1551} $ $ {0.2979} $ $ {1.4797} $ $ {0.8040} $ $ {1.7725} $
NCS(2a) ZCA $ {1.0333} $ $ {1.8600} $ $ {2.7280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {1.8098} $ $ {2.2052} $ $ {2.3602} $ $ {1.8682} $ $ {2.3471} $ $ {2.5799} $ $ {2.5189} $ $ {4.2899} $ $ {6.0942} $
NCS(2a) PCA(3b) $ {1.9756} $ $ {1.5247} $ $ {5.1267} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0200} $ $ {0.0514} $ $ {0.0965} $
Table 5.  Expected idle time in $ (0, 0, 1, 0(1), 1, 2), (0, 0, 1, 0(2), 1, 2), (0, 0, 1, 0(3), 1, 2) $ respectively and arrival phase changes to 1, 2, 3 respectively at the end of idle time under various arrival and service processes
L(2, 1) M(2, 1) N(2, 1) L(2, 2) M(2, 2) N(2, 2) L(2, 3) M(2, 3) N(2, 3)
ZCS NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
ZCS NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
ZCS ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
ZCS PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
PCS NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
PCS NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
PCS ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
PCS PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
NCS(2a) NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
NCS(2a) NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
NCS(2a) ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
NCS(2a) PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
L(2, 1) M(2, 1) N(2, 1) L(2, 2) M(2, 2) N(2, 2) L(2, 3) M(2, 3) N(2, 3)
ZCS NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
ZCS NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
ZCS ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
ZCS PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
PCS NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
PCS NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
PCS ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
PCS PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
NCS(2a) NCA(2a) $ {0.0100} $ $ {0.7881} $ $ {0.3977} $ $ {0} $ $ {0} $ $ {0} $ $ {0.9878} $ $ {0.2292} $ $ {1.8764} $
NCS(2a) NCA(2b) $ {0.0567} $ $ {0.5166} $ $ {0.5367} $ $ {0.0351} $ $ {0.0530} $ $ {0.2016} $ $ {0.5964} $ $ {0.3021} $ $ {1.2421} $
NCS(2a) ZCA $ {0.5333} $ $ {1.3600} $ $ {2.2280} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {1.9276} $ $ {2.5820} $ $ {2.8420} $ $ {1.9727} $ $ {2.6957} $ $ {3.0442} $ $ {1.4113} $ $ {3.6018} $ $ {5.8677} $
NCS(2a) PCA(3b) $ {0.9878} $ $ {2.5447} $ $ {4.1548} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0100} $ $ {0.0336} $ $ {0.0707} $
Table 6.  Expected idle time in $ (0, 0, 1, 0(1), 1, 3), (0, 0, 1, 0(2), 1, 3), (0, 0, 1, 0(3), 1, 3) $ respectively and arrival phase changes to 1, 2, 3 respectively at the end of idle time under various arrival and service processes
L(3, 1) M(3, 1) N(3, 1) L(3, 2) M(3, 2) N(3, 2) L(3, 3) M(3, 3) N(3, 3)
ZCS NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
ZCS NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
ZCS ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
ZCS PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
PCS NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
PCS NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
PCS ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
PCS PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
NCS(2a) NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
NCS(2a) NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
NCS(2a) ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
NCS(2a) PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
L(3, 1) M(3, 1) N(3, 1) L(3, 2) M(3, 2) N(3, 2) L(3, 3) M(3, 3) N(3, 3)
ZCS NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
ZCS NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
ZCS ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
ZCS PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
ZCS PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
PCS NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
PCS NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
PCS ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
PCS PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
PCS PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
NCS(2a) NCA(2a) $ {0.0044} $ $ {0.0168} $ $ {1.2523} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {1.5682} $ $ {0.7559} $
NCS(2a) NCA(2b) $ {0.0483} $ $ {0.1888} $ $ {1.0304} $ $ {0.0032} $ $ {0.1781} $ $ {0.1684} $ $ {0.0088} $ $ {1.1688} $ $ {0.9376} $
NCS(2a) ZCA $ {0.2000} $ $ {1.0267} $ $ {1.8947} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $ $ {0} $
NCS(2a) PCA(3a) $ {0.0176} $ $ {0.1166} $ $ {0.2426} $ $ {0.0214} $ $ {0.1252} $ $ {0.2598} $ $ {0.0891} $ $ {0.2358} $ $ {0.4843} $
NCS(2a) PCA(3b) $ {0} $ $ {0.0159} $ $ {0.0449} $ $ {0} $ $ {0} $ $ {0} $ $ {0.0044} $ $ {0.0080} $ $ {0.0120} $
Table 7.  $ A_1(j, j') $ and $ B_1(j, j') $
$ A (1, 1) $ $ A (1, 2) $ $ A(2, 1) $ $ A(2, 2) $ $ B(1, 1) $ B(1, 2) $ B(2, 1) $ $ B(2, 2) $
ZCS NCA(2a) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS NCA(2b) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS ZCA $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS PCA(3a) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS PCA(3b) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
PCS NCA(2a) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS NCA(2b) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS ZCA $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS PCA(3a) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS PCA(3b) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
NCS(2a) NCA(2a) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) NCA(2b) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) ZCA $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) PCA(3a) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) PCA(3b) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
$ A (1, 1) $ $ A (1, 2) $ $ A(2, 1) $ $ A(2, 2) $ $ B(1, 1) $ B(1, 2) $ B(2, 1) $ $ B(2, 2) $
ZCS NCA(2a) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS NCA(2b) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS ZCA $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS PCA(3a) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
ZCS PCA(3b) $ {0} $ $ {0.3000} $ $ {0} $ $ {0.1000} $ $ {0} $ $ {0.3400} $ $ {0} $ $ {0.1150} $
PCS NCA(2a) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS NCA(2b) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS ZCA $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS PCA(3a) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
PCS PCA(3b) $ {0.0838} $ $ {0.0093} $ $ {0.0784} $ $ {2.0463} $ $ {0.0963} $ $ {0.0110} $ $ {0.0974} $ $ {2.3432} $
NCS(2a) NCA(2a) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) NCA(2b) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) ZCA $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) PCA(3a) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
NCS(2a) PCA(3b) $ {0.3631} $ $ {0.1072} $ $ {0.1397} $ $ {0.0389} $ $ {0.4172} $ $ {0.1227} $ $ {0.1618} $ $ {0.0453} $
Table 8.  $ A_2(j, j') $ and $ B_2(j, j') $
$ A 2(1, 1) $ $ A2 (1, 2) $ $ A2(2, 1) $ $ A2(2, 2) $ $ B2(1, 1) $ B2(1, 2) $ B2(2, 1) $ $ B2(2, 2) $
ZCS NCA(2a) $ {0} $ $ {1.4212} $ $ {0} $ $ {0.4737} $ $ {0} $ $ {0.4599} $ $ {0} $ $ {0.1717} $
ZCS NCA(2b) $ {0} $ $ {1.1870} $ $ {0} $ $ {0.3957} $ $ {0} $ $ {0.5642} $ $ {0} $ $ {0.2033} $
ZCS ZCA $ {0} $ $ {1.9840} $ $ {0} $ $ {0.6613} $ $ {0} $ $ {1.5335} $ $ {0} $ $ {0.5363} $
ZCS PCA(3a) $ {0} $ $ {2.5277} $ $ {0} $ $ {0.8426} $ $ {0} $ $ {2.3911} $ $ {0} $ $ {0.8288} $
ZCS PCA(3b) $ {0} $ $ {3.7649} $ $ {0} $ $ {1.2550} $ $ {0} $ $ {2.9230} $ $ {0} $ $ {1.0221} $
PCS NCA(2a) $ {0.3972} $ $ {0.0441} $ $ {0.3716} $ $ {9.6942} $ $ {0.1426} $ $ {0.0197} $ $ {0.2146} $ $ {3.4026} $
PCS NCA(2b) $ {0.3317} $ $ {0.0368} $ $ {0.3103} $ $ {8.0964} $ $ {0.1693} $ $ {0.0220} $ $ {0.2257} $ $ {4.0690} $
PCS ZCA $ {0.5544} $ $ {0.0615} $ $ {0.5187} $ $ {13.5328} $ $ {0.4477} $ $ {0.0550} $ $ {0.5298} $ $ {10.8229} $
PCS PCA(3a) $ {0.7063} $ $ {0.0784} $ $ {0.6608} $ $ {17.2411} $ $ {0.6924} $ $ {0.0835} $ $ {0.7879} $ $ {16.7681} $
PCS PCA(3b) $ {1.0521} $ $ {0.1168} $ $ {0.9843} $ $ {25.6805} $ $ {0.8533} $ $ {0.1048} $ $ {1.0087} $ $ {20.6271} $
NCS(2a) NCA(2a) $ {1.7200} $ $ {0.5080} $ $ {0.6618} $ $ {0.1843} $ $ {0.6196} $ $ {0.1777} $ $ {0.2529} $ $ {0.0732} $
NCS(2a) NCA(2b) $ {1.4365} $ $ {0.4243} $ $ {0.5528} $ $ {0.1539} $ $ {0.7351} $ $ {0.2128} $ $ {0.2949} $ $ {0.0844} $
NCS(2a) ZCA $ {2.4011} $ $ {0.7091} $ $ {0.9239} $ $ {0.2573} $ $ {1.9419} $ $ {0.5664} $ $ {0.7671} $ $ {0.2174} $
NCS(2a) PCA(3a) $ {3.0590} $ $ {0.9035} $ $ {1.1771} $ $ {0.3278} $ $ {3.0025} $ $ {0.8777} $ $ {1.1804} $ $ {0.3335} $
NCS(2a) PCA(3b) $ {4.5564} $ $ {1.3457} $ $ {1.7533} $ $ {0.4882} $ $ {3.7009} $ $ {1.0794} $ $ {1.4617} $ $ {0.4143} $
$ A 2(1, 1) $ $ A2 (1, 2) $ $ A2(2, 1) $ $ A2(2, 2) $ $ B2(1, 1) $ B2(1, 2) $ B2(2, 1) $ $ B2(2, 2) $
ZCS NCA(2a) $ {0} $ $ {1.4212} $ $ {0} $ $ {0.4737} $ $ {0} $ $ {0.4599} $ $ {0} $ $ {0.1717} $
ZCS NCA(2b) $ {0} $ $ {1.1870} $ $ {0} $ $ {0.3957} $ $ {0} $ $ {0.5642} $ $ {0} $ $ {0.2033} $
ZCS ZCA $ {0} $ $ {1.9840} $ $ {0} $ $ {0.6613} $ $ {0} $ $ {1.5335} $ $ {0} $ $ {0.5363} $
ZCS PCA(3a) $ {0} $ $ {2.5277} $ $ {0} $ $ {0.8426} $ $ {0} $ $ {2.3911} $ $ {0} $ $ {0.8288} $
ZCS PCA(3b) $ {0} $ $ {3.7649} $ $ {0} $ $ {1.2550} $ $ {0} $ $ {2.9230} $ $ {0} $ $ {1.0221} $
PCS NCA(2a) $ {0.3972} $ $ {0.0441} $ $ {0.3716} $ $ {9.6942} $ $ {0.1426} $ $ {0.0197} $ $ {0.2146} $ $ {3.4026} $
PCS NCA(2b) $ {0.3317} $ $ {0.0368} $ $ {0.3103} $ $ {8.0964} $ $ {0.1693} $ $ {0.0220} $ $ {0.2257} $ $ {4.0690} $
PCS ZCA $ {0.5544} $ $ {0.0615} $ $ {0.5187} $ $ {13.5328} $ $ {0.4477} $ $ {0.0550} $ $ {0.5298} $ $ {10.8229} $
PCS PCA(3a) $ {0.7063} $ $ {0.0784} $ $ {0.6608} $ $ {17.2411} $ $ {0.6924} $ $ {0.0835} $ $ {0.7879} $ $ {16.7681} $
PCS PCA(3b) $ {1.0521} $ $ {0.1168} $ $ {0.9843} $ $ {25.6805} $ $ {0.8533} $ $ {0.1048} $ $ {1.0087} $ $ {20.6271} $
NCS(2a) NCA(2a) $ {1.7200} $ $ {0.5080} $ $ {0.6618} $ $ {0.1843} $ $ {0.6196} $ $ {0.1777} $ $ {0.2529} $ $ {0.0732} $
NCS(2a) NCA(2b) $ {1.4365} $ $ {0.4243} $ $ {0.5528} $ $ {0.1539} $ $ {0.7351} $ $ {0.2128} $ $ {0.2949} $ $ {0.0844} $
NCS(2a) ZCA $ {2.4011} $ $ {0.7091} $ $ {0.9239} $ $ {0.2573} $ $ {1.9419} $ $ {0.5664} $ $ {0.7671} $ $ {0.2174} $
NCS(2a) PCA(3a) $ {3.0590} $ $ {0.9035} $ $ {1.1771} $ $ {0.3278} $ $ {3.0025} $ $ {0.8777} $ $ {1.1804} $ $ {0.3335} $
NCS(2a) PCA(3b) $ {4.5564} $ $ {1.3457} $ $ {1.7533} $ $ {0.4882} $ $ {3.7009} $ $ {1.0794} $ $ {1.4617} $ $ {0.4143} $
[1]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[2]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[3]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[4]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[5]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[6]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[7]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[8]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[9]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[10]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[11]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[12]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[13]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[14]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[15]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[16]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[17]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[18]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[19]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[20]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (110)
  • HTML views (275)
  • Cited by (1)

Other articles
by authors

[Back to Top]