September  2021, 17(5): 2971-2987. doi: 10.3934/jimo.2020103

Optimal reinsurance with default risk: A reinsurer's perspective

1. 

School of Mathematics and System Sciences, Xinjiang University, Urumqi Xinjiang, 830046, China

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan Hubei, 430072, China

* Corresponding author: Lijun Wu

Received  May 2019 Revised  January 2020 Published  September 2021 Early access  June 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (Nos: 11601463, 11861064, 11771343)

In this paper, we study the optimal reinsurance design with default risk by minimizing the VaR (value at risk) of the reinsurer's total risk exposure. The optimal reinsurance treaty is provided. When the reinsurance premium principle is specified to the expected value and exponential premium principles, the explicit expressions for the optimal reinsurance treaties are given, respectively.

Citation: Tao Chen, Wei Liu, Tao Tan, Lijun Wu, Yijun Hu. Optimal reinsurance with default risk: A reinsurer's perspective. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2971-2987. doi: 10.3934/jimo.2020103
References:
[1]

A. V. AsimitA. M. Badescu and T. Verdonck, Optimal risk transfer under quantile-based risk measures, Insurance: Mathematics and Economics, 53 (2013), 252-265.  doi: 10.1016/j.insmatheco.2013.05.005.

[2]

A. V. AsimitA. M. Badescu and K. C. Cheung, Optimal reinsurance in the presence of counterparty default risk, Insurance: Mathematics and Economics, 53 (2013), 690-697.  doi: 10.1016/j.insmatheco.2013.09.012.

[3]

H. Assa, On optimal reinsurance policy with distortion risk measures and premiums, Insurance Mathematics and Economics, 61 (2015), 70-75.  doi: 10.1016/j.insmatheco.2014.11.007.

[4]

K. J. Arrow, Uncertainty and the welfare economic of medical care, Uncertainty in Economics, (1978), 347–375. doi: 10.1016/B978-0-12-214850-7.50028-0.

[5]

C. Bernard and M. Ludkovski, Impact of counterparty risk on the reinsurance market, North American Actuarial Journal, 16 (2012), 87-111.  doi: 10.1080/10920277.2012.10590634.

[6]

K. Borch, An attempt to determine the optimal amount of stop loss reinsurance, Transactions of the 16th International Congress of Actuaries, 1 (1960), 597-610. 

[7]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance with regulatory initial capital and default risk, Insurance: Mathematics and Economics, 57 (2014), 13-24.  doi: 10.1016/j.insmatheco.2014.04.006.

[8]

J. Cai and K. S. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures, Astin Bulletin, 37 (2007), 93-112.  doi: 10.1017/S0515036100014756.

[9]

J. CaiK. S. TanC. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures, Insurance: Mathematics and Economics, 43 (2008), 185-196.  doi: 10.1016/j.insmatheco.2008.05.011.

[10]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance from the perspectives of both an insurer and a reinsurer, Astin Bulletin, 46 (2016), 815-849.  doi: 10.1017/asb.2015.23.

[11]

J. Cai and C. Weng, Optimal reinsurance with expectile,, Scandinavian Actuarial Journal, (2016), 624–645. doi: 10.1080/03461238.2014.994025.

[12]

K. C. Cheung, Optimal reinsurance revisited - a geometric approach, Astin Bulletin, 40 (2010), 221-239.  doi: 10.2143/AST.40.1.2049226.

[13]

K. C. Cheung and A. Lo, Characterizations of optiaml reinsurance treaties: A cost-benefit approach, Scandinavian Actuarial Journal, 2017 (2017), 1-28.  doi: 10.1080/03461238.2015.1054303.

[14]

K. C. Cheung and W. Wang, Optimal Reinsurance from the perspectives of both insurers and reinsurers under general distortion risk measures,, SSRN Electronic Journa, (2017), 31pp. doi: 10.2139/ssrn.3048626.

[15]

Y. Chi and K. S. Tan, Optimal reinsurance with general premium principles, Insurance: Mathematics and Economics, 52 (2013), 180-189.  doi: 10.1016/j.insmatheco.2012.12.001.

[16]

Y. Chi and K. S. Tan, Optimal reinsurance under VaR and CVaR risk measures: A simplified approach, Astin Bulletin, 41 (2011), 487-509. 

[17]

Y. Chi, Reinsurance arrangements minimizing the risk-adjusted value of an insurer's liability, Astin Bulletin, 42 (2012), 529-557. 

[18]

Y. Chi, Optimal reinsurance under variance related premium principles, Insurance: Mathematics and Economics, 51 (2012), 310-321.  doi: 10.1016/j.insmatheco.2012.05.005.

[19]

Y. Chi and C. Weng, Optimal reinsurance subject to Vajda condition, Insurance: Mathematics and Economics, 53 (2013), 179-189.  doi: 10.1016/j.insmatheco.2013.05.002.

[20]

J. DhaeneM. DenuitM. J. GoovaertsR. Kaas and D. Vyncke, The concept of comonotonicity in actuarial science and finance: Theory, Insurance: Mathematics and Economics, 31 (2002), 3-33.  doi: 10.1016/S0167-6687(02)00134-8.

[21]

G. HubermanD. Mayers and C. W. Smith, Optimal insurance policy indemnity schedules, Bell Journal of Economics, 14 (1983), 415-426.  doi: 10.2307/3003643.

[22]

W. JiangH. Hong and J. Ren, On Pareto-optimal reinsurance with constraints under distortion risk measures, European Actuarial Journal, 8 (2018), 215-243.  doi: 10.1007/s13385-017-0163-1.

[23]

Z. Y. LuL. P. LiuQ. J. Shen and L. L. Meng, Optimal reinsurance under VaR and CTE risk measures when ceded loss function is concave, Communications in Statistics Theory and Methods, 43 (2014), 3223-3247.  doi: 10.1080/03610926.2012.716136.

[24]

Z. Y. LuL. L. MengY. Wang and Q. Shen, Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer's risk limit, Insurance: Mathematics and Economics, 68 (2016), 92-100.  doi: 10.1016/j.insmatheco.2016.03.001.

[25]

A. Lo and Z. Tang, Pareto-optimal reinsurance policies in the presence of individual risk constraints, Annals of Operations Research, 274 (2019), 395-423.  doi: 10.1007/s10479-018-2820-4.

[26] E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Space, Princeton University Press, Princeton, 2005. 
[27]

K. S. TanC. Weng and Y. Zhang, VaR and CTE criteria for optimal quota-share and stop-loss reinsurance, North American Actuarial Journal, 13 (2009), 459-482.  doi: 10.1080/10920277.2009.10597569.

[28]

S. Vajda, Minimum variance reinsurance, Astin Bulletin, 2 (1962), 257-260.  doi: 10.1017/S0515036100009995.

[29]

W. Wang and X. Peng, Reinsurer's optimal reinsurance strategy with upper and lower premium constraint under distortion risk measures, Journal of Computational and Applied Mathematics, 315 (2017), 142-160.  doi: 10.1016/j.cam.2016.10.017.

[30]

V. R. Young, Optimal insurance under Wang's premium principle, Insurance: Mathematics and Economics, 25 (1999), 109-122.  doi: 10.1016/S0167-6687(99)00012-8.

[31]

Y. Zheng and W. Cui, Optimal reinsurance with premium constraint under distortion risk measures, Insurance: Mathematics and Economics, 59 (2014), 109-120.  doi: 10.1016/j.insmatheco.2014.08.010.

[32]

Y. ZhengW. Cui and J. Yang, Optimal reinsurance under distortion risk measures and expected value premium principle for reinsurer, Journal of Systems Science and Complexity, 28 (2015), 122-143.  doi: 10.1007/s11424-014-2095-z.

show all references

References:
[1]

A. V. AsimitA. M. Badescu and T. Verdonck, Optimal risk transfer under quantile-based risk measures, Insurance: Mathematics and Economics, 53 (2013), 252-265.  doi: 10.1016/j.insmatheco.2013.05.005.

[2]

A. V. AsimitA. M. Badescu and K. C. Cheung, Optimal reinsurance in the presence of counterparty default risk, Insurance: Mathematics and Economics, 53 (2013), 690-697.  doi: 10.1016/j.insmatheco.2013.09.012.

[3]

H. Assa, On optimal reinsurance policy with distortion risk measures and premiums, Insurance Mathematics and Economics, 61 (2015), 70-75.  doi: 10.1016/j.insmatheco.2014.11.007.

[4]

K. J. Arrow, Uncertainty and the welfare economic of medical care, Uncertainty in Economics, (1978), 347–375. doi: 10.1016/B978-0-12-214850-7.50028-0.

[5]

C. Bernard and M. Ludkovski, Impact of counterparty risk on the reinsurance market, North American Actuarial Journal, 16 (2012), 87-111.  doi: 10.1080/10920277.2012.10590634.

[6]

K. Borch, An attempt to determine the optimal amount of stop loss reinsurance, Transactions of the 16th International Congress of Actuaries, 1 (1960), 597-610. 

[7]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance with regulatory initial capital and default risk, Insurance: Mathematics and Economics, 57 (2014), 13-24.  doi: 10.1016/j.insmatheco.2014.04.006.

[8]

J. Cai and K. S. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures, Astin Bulletin, 37 (2007), 93-112.  doi: 10.1017/S0515036100014756.

[9]

J. CaiK. S. TanC. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures, Insurance: Mathematics and Economics, 43 (2008), 185-196.  doi: 10.1016/j.insmatheco.2008.05.011.

[10]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance from the perspectives of both an insurer and a reinsurer, Astin Bulletin, 46 (2016), 815-849.  doi: 10.1017/asb.2015.23.

[11]

J. Cai and C. Weng, Optimal reinsurance with expectile,, Scandinavian Actuarial Journal, (2016), 624–645. doi: 10.1080/03461238.2014.994025.

[12]

K. C. Cheung, Optimal reinsurance revisited - a geometric approach, Astin Bulletin, 40 (2010), 221-239.  doi: 10.2143/AST.40.1.2049226.

[13]

K. C. Cheung and A. Lo, Characterizations of optiaml reinsurance treaties: A cost-benefit approach, Scandinavian Actuarial Journal, 2017 (2017), 1-28.  doi: 10.1080/03461238.2015.1054303.

[14]

K. C. Cheung and W. Wang, Optimal Reinsurance from the perspectives of both insurers and reinsurers under general distortion risk measures,, SSRN Electronic Journa, (2017), 31pp. doi: 10.2139/ssrn.3048626.

[15]

Y. Chi and K. S. Tan, Optimal reinsurance with general premium principles, Insurance: Mathematics and Economics, 52 (2013), 180-189.  doi: 10.1016/j.insmatheco.2012.12.001.

[16]

Y. Chi and K. S. Tan, Optimal reinsurance under VaR and CVaR risk measures: A simplified approach, Astin Bulletin, 41 (2011), 487-509. 

[17]

Y. Chi, Reinsurance arrangements minimizing the risk-adjusted value of an insurer's liability, Astin Bulletin, 42 (2012), 529-557. 

[18]

Y. Chi, Optimal reinsurance under variance related premium principles, Insurance: Mathematics and Economics, 51 (2012), 310-321.  doi: 10.1016/j.insmatheco.2012.05.005.

[19]

Y. Chi and C. Weng, Optimal reinsurance subject to Vajda condition, Insurance: Mathematics and Economics, 53 (2013), 179-189.  doi: 10.1016/j.insmatheco.2013.05.002.

[20]

J. DhaeneM. DenuitM. J. GoovaertsR. Kaas and D. Vyncke, The concept of comonotonicity in actuarial science and finance: Theory, Insurance: Mathematics and Economics, 31 (2002), 3-33.  doi: 10.1016/S0167-6687(02)00134-8.

[21]

G. HubermanD. Mayers and C. W. Smith, Optimal insurance policy indemnity schedules, Bell Journal of Economics, 14 (1983), 415-426.  doi: 10.2307/3003643.

[22]

W. JiangH. Hong and J. Ren, On Pareto-optimal reinsurance with constraints under distortion risk measures, European Actuarial Journal, 8 (2018), 215-243.  doi: 10.1007/s13385-017-0163-1.

[23]

Z. Y. LuL. P. LiuQ. J. Shen and L. L. Meng, Optimal reinsurance under VaR and CTE risk measures when ceded loss function is concave, Communications in Statistics Theory and Methods, 43 (2014), 3223-3247.  doi: 10.1080/03610926.2012.716136.

[24]

Z. Y. LuL. L. MengY. Wang and Q. Shen, Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer's risk limit, Insurance: Mathematics and Economics, 68 (2016), 92-100.  doi: 10.1016/j.insmatheco.2016.03.001.

[25]

A. Lo and Z. Tang, Pareto-optimal reinsurance policies in the presence of individual risk constraints, Annals of Operations Research, 274 (2019), 395-423.  doi: 10.1007/s10479-018-2820-4.

[26] E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Space, Princeton University Press, Princeton, 2005. 
[27]

K. S. TanC. Weng and Y. Zhang, VaR and CTE criteria for optimal quota-share and stop-loss reinsurance, North American Actuarial Journal, 13 (2009), 459-482.  doi: 10.1080/10920277.2009.10597569.

[28]

S. Vajda, Minimum variance reinsurance, Astin Bulletin, 2 (1962), 257-260.  doi: 10.1017/S0515036100009995.

[29]

W. Wang and X. Peng, Reinsurer's optimal reinsurance strategy with upper and lower premium constraint under distortion risk measures, Journal of Computational and Applied Mathematics, 315 (2017), 142-160.  doi: 10.1016/j.cam.2016.10.017.

[30]

V. R. Young, Optimal insurance under Wang's premium principle, Insurance: Mathematics and Economics, 25 (1999), 109-122.  doi: 10.1016/S0167-6687(99)00012-8.

[31]

Y. Zheng and W. Cui, Optimal reinsurance with premium constraint under distortion risk measures, Insurance: Mathematics and Economics, 59 (2014), 109-120.  doi: 10.1016/j.insmatheco.2014.08.010.

[32]

Y. ZhengW. Cui and J. Yang, Optimal reinsurance under distortion risk measures and expected value premium principle for reinsurer, Journal of Systems Science and Complexity, 28 (2015), 122-143.  doi: 10.1007/s11424-014-2095-z.

[1]

Dingjun Yao, Kun Fan. Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1055-1083. doi: 10.3934/jimo.2017090

[2]

Xin Jiang, Kam Chuen Yuen, Mi Chen. Optimal investment and reinsurance with premium control. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2781-2797. doi: 10.3934/jimo.2019080

[3]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2195-2211. doi: 10.3934/jimo.2019050

[4]

Srdjan Stojanovic. Interest rates risk-premium and shape of the yield curve. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1603-1615. doi: 10.3934/dcdsb.2016013

[5]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial and Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[6]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial and Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[7]

Charles S. Tapiero, Pierre Vallois. Implied fractional hazard rates and default risk distributions. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 2-. doi: 10.1186/s41546-017-0015-6

[8]

Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109

[9]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial and Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[10]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[11]

Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations and Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035

[12]

Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013

[13]

Hao-Zhe Tay, Kok-Haur Ng, You-Beng Koh, Kooi-Huat Ng. Model selection based on value-at-risk backtesting approach for GARCH-Type models. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1635-1654. doi: 10.3934/jimo.2019021

[14]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[15]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071

[16]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial and Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

[17]

Han Zhao, Bangdong Sun, Hui Wang, Shiji Song, Yuli Zhang, Liejun Wang. Optimization and coordination in a service-constrained supply chain with the bidirectional option contract under conditional value-at-risk. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022021

[18]

Zhimin Zhang, Yang Yang, Chaolin Liu. On a perturbed compound Poisson model with varying premium rates. Journal of Industrial and Management Optimization, 2017, 13 (2) : 721-736. doi: 10.3934/jimo.2016043

[19]

Yu Tian, John R. Graef, Lingju Kong, Min Wang. Existence of solutions to a multi-point boundary value problem for a second order differential system via the dual least action principle. Conference Publications, 2013, 2013 (special) : 759-769. doi: 10.3934/proc.2013.2013.759

[20]

Shou Chen, Chen Xiao. Financial risk contagion and optimal control. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022070

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (306)
  • HTML views (579)
  • Cited by (0)

Other articles
by authors

[Back to Top]