• Previous Article
    Supplier's investment in manufacturer's quality improvement with equity holding
  • JIMO Home
  • This Issue
  • Next Article
    Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items
doi: 10.3934/jimo.2020103

Optimal reinsurance with default risk: A reinsurer's perspective

1. 

School of Mathematics and System Sciences, Xinjiang University, Urumqi Xinjiang, 830046, China

2. 

School of Mathematics and Statistics, Wuhan University, Wuhan Hubei, 430072, China

* Corresponding author: Lijun Wu

Received  May 2019 Revised  January 2020 Published  June 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (Nos: 11601463, 11861064, 11771343)

In this paper, we study the optimal reinsurance design with default risk by minimizing the VaR (value at risk) of the reinsurer's total risk exposure. The optimal reinsurance treaty is provided. When the reinsurance premium principle is specified to the expected value and exponential premium principles, the explicit expressions for the optimal reinsurance treaties are given, respectively.

Citation: Tao Chen, Wei Liu, Tao Tan, Lijun Wu, Yijun Hu. Optimal reinsurance with default risk: A reinsurer's perspective. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020103
References:
[1]

A. V. AsimitA. M. Badescu and T. Verdonck, Optimal risk transfer under quantile-based risk measures, Insurance: Mathematics and Economics, 53 (2013), 252-265.  doi: 10.1016/j.insmatheco.2013.05.005.  Google Scholar

[2]

A. V. AsimitA. M. Badescu and K. C. Cheung, Optimal reinsurance in the presence of counterparty default risk, Insurance: Mathematics and Economics, 53 (2013), 690-697.  doi: 10.1016/j.insmatheco.2013.09.012.  Google Scholar

[3]

H. Assa, On optimal reinsurance policy with distortion risk measures and premiums, Insurance Mathematics and Economics, 61 (2015), 70-75.  doi: 10.1016/j.insmatheco.2014.11.007.  Google Scholar

[4]

K. J. Arrow, Uncertainty and the welfare economic of medical care, Uncertainty in Economics, (1978), 347–375. doi: 10.1016/B978-0-12-214850-7.50028-0.  Google Scholar

[5]

C. Bernard and M. Ludkovski, Impact of counterparty risk on the reinsurance market, North American Actuarial Journal, 16 (2012), 87-111.  doi: 10.1080/10920277.2012.10590634.  Google Scholar

[6]

K. Borch, An attempt to determine the optimal amount of stop loss reinsurance, Transactions of the 16th International Congress of Actuaries, 1 (1960), 597-610.   Google Scholar

[7]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance with regulatory initial capital and default risk, Insurance: Mathematics and Economics, 57 (2014), 13-24.  doi: 10.1016/j.insmatheco.2014.04.006.  Google Scholar

[8]

J. Cai and K. S. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures, Astin Bulletin, 37 (2007), 93-112.  doi: 10.1017/S0515036100014756.  Google Scholar

[9]

J. CaiK. S. TanC. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures, Insurance: Mathematics and Economics, 43 (2008), 185-196.  doi: 10.1016/j.insmatheco.2008.05.011.  Google Scholar

[10]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance from the perspectives of both an insurer and a reinsurer, Astin Bulletin, 46 (2016), 815-849.  doi: 10.1017/asb.2015.23.  Google Scholar

[11]

J. Cai and C. Weng, Optimal reinsurance with expectile,, Scandinavian Actuarial Journal, (2016), 624–645. doi: 10.1080/03461238.2014.994025.  Google Scholar

[12]

K. C. Cheung, Optimal reinsurance revisited - a geometric approach, Astin Bulletin, 40 (2010), 221-239.  doi: 10.2143/AST.40.1.2049226.  Google Scholar

[13]

K. C. Cheung and A. Lo, Characterizations of optiaml reinsurance treaties: A cost-benefit approach, Scandinavian Actuarial Journal, 2017 (2017), 1-28.  doi: 10.1080/03461238.2015.1054303.  Google Scholar

[14]

K. C. Cheung and W. Wang, Optimal Reinsurance from the perspectives of both insurers and reinsurers under general distortion risk measures,, SSRN Electronic Journa, (2017), 31pp. doi: 10.2139/ssrn.3048626.  Google Scholar

[15]

Y. Chi and K. S. Tan, Optimal reinsurance with general premium principles, Insurance: Mathematics and Economics, 52 (2013), 180-189.  doi: 10.1016/j.insmatheco.2012.12.001.  Google Scholar

[16]

Y. Chi and K. S. Tan, Optimal reinsurance under VaR and CVaR risk measures: A simplified approach, Astin Bulletin, 41 (2011), 487-509.   Google Scholar

[17]

Y. Chi, Reinsurance arrangements minimizing the risk-adjusted value of an insurer's liability, Astin Bulletin, 42 (2012), 529-557.   Google Scholar

[18]

Y. Chi, Optimal reinsurance under variance related premium principles, Insurance: Mathematics and Economics, 51 (2012), 310-321.  doi: 10.1016/j.insmatheco.2012.05.005.  Google Scholar

[19]

Y. Chi and C. Weng, Optimal reinsurance subject to Vajda condition, Insurance: Mathematics and Economics, 53 (2013), 179-189.  doi: 10.1016/j.insmatheco.2013.05.002.  Google Scholar

[20]

J. DhaeneM. DenuitM. J. GoovaertsR. Kaas and D. Vyncke, The concept of comonotonicity in actuarial science and finance: Theory, Insurance: Mathematics and Economics, 31 (2002), 3-33.  doi: 10.1016/S0167-6687(02)00134-8.  Google Scholar

[21]

G. HubermanD. Mayers and C. W. Smith, Optimal insurance policy indemnity schedules, Bell Journal of Economics, 14 (1983), 415-426.  doi: 10.2307/3003643.  Google Scholar

[22]

W. JiangH. Hong and J. Ren, On Pareto-optimal reinsurance with constraints under distortion risk measures, European Actuarial Journal, 8 (2018), 215-243.  doi: 10.1007/s13385-017-0163-1.  Google Scholar

[23]

Z. Y. LuL. P. LiuQ. J. Shen and L. L. Meng, Optimal reinsurance under VaR and CTE risk measures when ceded loss function is concave, Communications in Statistics Theory and Methods, 43 (2014), 3223-3247.  doi: 10.1080/03610926.2012.716136.  Google Scholar

[24]

Z. Y. LuL. L. MengY. Wang and Q. Shen, Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer's risk limit, Insurance: Mathematics and Economics, 68 (2016), 92-100.  doi: 10.1016/j.insmatheco.2016.03.001.  Google Scholar

[25]

A. Lo and Z. Tang, Pareto-optimal reinsurance policies in the presence of individual risk constraints, Annals of Operations Research, 274 (2019), 395-423.  doi: 10.1007/s10479-018-2820-4.  Google Scholar

[26] E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Space, Princeton University Press, Princeton, 2005.   Google Scholar
[27]

K. S. TanC. Weng and Y. Zhang, VaR and CTE criteria for optimal quota-share and stop-loss reinsurance, North American Actuarial Journal, 13 (2009), 459-482.  doi: 10.1080/10920277.2009.10597569.  Google Scholar

[28]

S. Vajda, Minimum variance reinsurance, Astin Bulletin, 2 (1962), 257-260.  doi: 10.1017/S0515036100009995.  Google Scholar

[29]

W. Wang and X. Peng, Reinsurer's optimal reinsurance strategy with upper and lower premium constraint under distortion risk measures, Journal of Computational and Applied Mathematics, 315 (2017), 142-160.  doi: 10.1016/j.cam.2016.10.017.  Google Scholar

[30]

V. R. Young, Optimal insurance under Wang's premium principle, Insurance: Mathematics and Economics, 25 (1999), 109-122.  doi: 10.1016/S0167-6687(99)00012-8.  Google Scholar

[31]

Y. Zheng and W. Cui, Optimal reinsurance with premium constraint under distortion risk measures, Insurance: Mathematics and Economics, 59 (2014), 109-120.  doi: 10.1016/j.insmatheco.2014.08.010.  Google Scholar

[32]

Y. ZhengW. Cui and J. Yang, Optimal reinsurance under distortion risk measures and expected value premium principle for reinsurer, Journal of Systems Science and Complexity, 28 (2015), 122-143.  doi: 10.1007/s11424-014-2095-z.  Google Scholar

show all references

References:
[1]

A. V. AsimitA. M. Badescu and T. Verdonck, Optimal risk transfer under quantile-based risk measures, Insurance: Mathematics and Economics, 53 (2013), 252-265.  doi: 10.1016/j.insmatheco.2013.05.005.  Google Scholar

[2]

A. V. AsimitA. M. Badescu and K. C. Cheung, Optimal reinsurance in the presence of counterparty default risk, Insurance: Mathematics and Economics, 53 (2013), 690-697.  doi: 10.1016/j.insmatheco.2013.09.012.  Google Scholar

[3]

H. Assa, On optimal reinsurance policy with distortion risk measures and premiums, Insurance Mathematics and Economics, 61 (2015), 70-75.  doi: 10.1016/j.insmatheco.2014.11.007.  Google Scholar

[4]

K. J. Arrow, Uncertainty and the welfare economic of medical care, Uncertainty in Economics, (1978), 347–375. doi: 10.1016/B978-0-12-214850-7.50028-0.  Google Scholar

[5]

C. Bernard and M. Ludkovski, Impact of counterparty risk on the reinsurance market, North American Actuarial Journal, 16 (2012), 87-111.  doi: 10.1080/10920277.2012.10590634.  Google Scholar

[6]

K. Borch, An attempt to determine the optimal amount of stop loss reinsurance, Transactions of the 16th International Congress of Actuaries, 1 (1960), 597-610.   Google Scholar

[7]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance with regulatory initial capital and default risk, Insurance: Mathematics and Economics, 57 (2014), 13-24.  doi: 10.1016/j.insmatheco.2014.04.006.  Google Scholar

[8]

J. Cai and K. S. Tan, Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measures, Astin Bulletin, 37 (2007), 93-112.  doi: 10.1017/S0515036100014756.  Google Scholar

[9]

J. CaiK. S. TanC. Weng and Y. Zhang, Optimal reinsurance under VaR and CTE risk measures, Insurance: Mathematics and Economics, 43 (2008), 185-196.  doi: 10.1016/j.insmatheco.2008.05.011.  Google Scholar

[10]

J. CaiC. Lemieux and F. Liu, Optimal reinsurance from the perspectives of both an insurer and a reinsurer, Astin Bulletin, 46 (2016), 815-849.  doi: 10.1017/asb.2015.23.  Google Scholar

[11]

J. Cai and C. Weng, Optimal reinsurance with expectile,, Scandinavian Actuarial Journal, (2016), 624–645. doi: 10.1080/03461238.2014.994025.  Google Scholar

[12]

K. C. Cheung, Optimal reinsurance revisited - a geometric approach, Astin Bulletin, 40 (2010), 221-239.  doi: 10.2143/AST.40.1.2049226.  Google Scholar

[13]

K. C. Cheung and A. Lo, Characterizations of optiaml reinsurance treaties: A cost-benefit approach, Scandinavian Actuarial Journal, 2017 (2017), 1-28.  doi: 10.1080/03461238.2015.1054303.  Google Scholar

[14]

K. C. Cheung and W. Wang, Optimal Reinsurance from the perspectives of both insurers and reinsurers under general distortion risk measures,, SSRN Electronic Journa, (2017), 31pp. doi: 10.2139/ssrn.3048626.  Google Scholar

[15]

Y. Chi and K. S. Tan, Optimal reinsurance with general premium principles, Insurance: Mathematics and Economics, 52 (2013), 180-189.  doi: 10.1016/j.insmatheco.2012.12.001.  Google Scholar

[16]

Y. Chi and K. S. Tan, Optimal reinsurance under VaR and CVaR risk measures: A simplified approach, Astin Bulletin, 41 (2011), 487-509.   Google Scholar

[17]

Y. Chi, Reinsurance arrangements minimizing the risk-adjusted value of an insurer's liability, Astin Bulletin, 42 (2012), 529-557.   Google Scholar

[18]

Y. Chi, Optimal reinsurance under variance related premium principles, Insurance: Mathematics and Economics, 51 (2012), 310-321.  doi: 10.1016/j.insmatheco.2012.05.005.  Google Scholar

[19]

Y. Chi and C. Weng, Optimal reinsurance subject to Vajda condition, Insurance: Mathematics and Economics, 53 (2013), 179-189.  doi: 10.1016/j.insmatheco.2013.05.002.  Google Scholar

[20]

J. DhaeneM. DenuitM. J. GoovaertsR. Kaas and D. Vyncke, The concept of comonotonicity in actuarial science and finance: Theory, Insurance: Mathematics and Economics, 31 (2002), 3-33.  doi: 10.1016/S0167-6687(02)00134-8.  Google Scholar

[21]

G. HubermanD. Mayers and C. W. Smith, Optimal insurance policy indemnity schedules, Bell Journal of Economics, 14 (1983), 415-426.  doi: 10.2307/3003643.  Google Scholar

[22]

W. JiangH. Hong and J. Ren, On Pareto-optimal reinsurance with constraints under distortion risk measures, European Actuarial Journal, 8 (2018), 215-243.  doi: 10.1007/s13385-017-0163-1.  Google Scholar

[23]

Z. Y. LuL. P. LiuQ. J. Shen and L. L. Meng, Optimal reinsurance under VaR and CTE risk measures when ceded loss function is concave, Communications in Statistics Theory and Methods, 43 (2014), 3223-3247.  doi: 10.1080/03610926.2012.716136.  Google Scholar

[24]

Z. Y. LuL. L. MengY. Wang and Q. Shen, Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer's risk limit, Insurance: Mathematics and Economics, 68 (2016), 92-100.  doi: 10.1016/j.insmatheco.2016.03.001.  Google Scholar

[25]

A. Lo and Z. Tang, Pareto-optimal reinsurance policies in the presence of individual risk constraints, Annals of Operations Research, 274 (2019), 395-423.  doi: 10.1007/s10479-018-2820-4.  Google Scholar

[26] E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration, and Hilbert Space, Princeton University Press, Princeton, 2005.   Google Scholar
[27]

K. S. TanC. Weng and Y. Zhang, VaR and CTE criteria for optimal quota-share and stop-loss reinsurance, North American Actuarial Journal, 13 (2009), 459-482.  doi: 10.1080/10920277.2009.10597569.  Google Scholar

[28]

S. Vajda, Minimum variance reinsurance, Astin Bulletin, 2 (1962), 257-260.  doi: 10.1017/S0515036100009995.  Google Scholar

[29]

W. Wang and X. Peng, Reinsurer's optimal reinsurance strategy with upper and lower premium constraint under distortion risk measures, Journal of Computational and Applied Mathematics, 315 (2017), 142-160.  doi: 10.1016/j.cam.2016.10.017.  Google Scholar

[30]

V. R. Young, Optimal insurance under Wang's premium principle, Insurance: Mathematics and Economics, 25 (1999), 109-122.  doi: 10.1016/S0167-6687(99)00012-8.  Google Scholar

[31]

Y. Zheng and W. Cui, Optimal reinsurance with premium constraint under distortion risk measures, Insurance: Mathematics and Economics, 59 (2014), 109-120.  doi: 10.1016/j.insmatheco.2014.08.010.  Google Scholar

[32]

Y. ZhengW. Cui and J. Yang, Optimal reinsurance under distortion risk measures and expected value premium principle for reinsurer, Journal of Systems Science and Complexity, 28 (2015), 122-143.  doi: 10.1007/s11424-014-2095-z.  Google Scholar

[1]

Dingjun Yao, Kun Fan. Optimal risk control and dividend strategies in the presence of two reinsurers: Variance premium principle. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1055-1083. doi: 10.3934/jimo.2017090

[2]

Xin Jiang, Kam Chuen Yuen, Mi Chen. Optimal investment and reinsurance with premium control. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019080

[3]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019050

[4]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[5]

Srdjan Stojanovic. Interest rates risk-premium and shape of the yield curve. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1603-1615. doi: 10.3934/dcdsb.2016013

[6]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[7]

Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109

[8]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[9]

Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations & Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035

[10]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[11]

W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial & Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145

[12]

Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013

[13]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019071

[14]

Hao-Zhe Tay, Kok-Haur Ng, You-Beng Koh, Kooi-Huat Ng. Model selection based on value-at-risk backtesting approach for GARCH-Type models. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1635-1654. doi: 10.3934/jimo.2019021

[15]

Yu Tian, John R. Graef, Lingju Kong, Min Wang. Existence of solutions to a multi-point boundary value problem for a second order differential system via the dual least action principle. Conference Publications, 2013, 2013 (special) : 759-769. doi: 10.3934/proc.2013.2013.759

[16]

Zhimin Zhang, Yang Yang, Chaolin Liu. On a perturbed compound Poisson model with varying premium rates. Journal of Industrial & Management Optimization, 2017, 13 (2) : 721-736. doi: 10.3934/jimo.2016043

[17]

Lin Xu, Rongming Wang, Dingjun Yao. On maximizing the expected terminal utility by investment and reinsurance. Journal of Industrial & Management Optimization, 2008, 4 (4) : 801-815. doi: 10.3934/jimo.2008.4.801

[18]

Wing Yan Lee, Fangda Liu. Analysis of a dynamic premium strategy: From theoretical and marketing perspectives. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1545-1564. doi: 10.3934/jimo.2018020

[19]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[20]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

2019 Impact Factor: 1.366

Article outline

[Back to Top]