• Previous Article
    The dual step size of the alternating direction method can be larger than 1.618 when one function is strongly convex
  • JIMO Home
  • This Issue
  • Next Article
    Tabu search guided by reinforcement learning for the max-mean dispersion problem
doi: 10.3934/jimo.2020108

Hadamard directional differentiability of the optimal value of a linear second-order conic programming problem

1. 

China Bohai Bank and, School of Economics and Management, University of Chinese Academy of Sciences, Tianjin, MO 300012, China

2. 

Department of Applied Mathematics, Hebei University of Technology, Tianjin, MO 300401, China

3. 

School of Mathematical Sciences, Dalian University of Technology, Dalian, MO 116024, China

4. 

School of Mathematics, Dongbei University of Finance and Economics, Dalian, MO 116025, China

* Corresponding author: Mengwei Xu

Received  September 2019 Revised  March 2020 Published  June 2020

Fund Project: The first author is supported by NSFC grant 11901556. The second author is supported by NSFC grant 11601376. The third author is supported by NSFC grant 11971089 and 11731013

In this paper, we consider perturbation properties of a linear second-order conic optimization problem and its Lagrange dual in which all parameters in the problem are perturbed. We prove the upper semi-continuity of solution mappings for the pertured problem and its Lagrange dual problem. We demonstrate that the optimal value function can be expressed as a min-max optimization problem over two compact convex sets, and it is proven as a Lipschitz continuous function and Hadamard directionally differentiable.

Citation: Qingsong Duan, Mengwei Xu, Liwei Zhang, Sainan Zhang. Hadamard directional differentiability of the optimal value of a linear second-order conic programming problem. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020108
References:
[1]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[2]

B. Bereanu, The continuity of the optimum in parametric programming and applications to stochastic programming, Journal of Optimization Theory and Applications, 18 (1976), 319-333.  doi: 10.1007/BF00933815.  Google Scholar

[3]

D. Bertsimas, Theory and applications of robust optimization, SIAM Review, 53 (2011), 464-501.   Google Scholar

[4]

A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer, New York, 2009. doi: 10.1007/978-0-387-87821-8.  Google Scholar

[5]

M. S. Gowda and J. S. Pang, On solution stability of the linear complementarity problem, Mathematics of Operation Reseach, 17 (1992), 77-83.  doi: 10.1287/moor.17.1.77.  Google Scholar

[6]

M. S. Gowda and J.-S. Pang, On the boundedness and stability of solutions to the affine variational inequality problem, SIAM J. Control Optim., 32 (1994), 421-441.  doi: 10.1137/S036301299222888X.  Google Scholar

[7]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Mathematics of Operation Reseach, 28 (2003), 1-38.  doi: 10.1287/moor.28.1.1.14260.  Google Scholar

[8]

Y. Han and Z. Chen, Quantitative stability of full random two-stage stochastic programs with recourse, Optim. Lett., 9 (2015), 1075-1090.  doi: 10.1007/s11590-014-0827-6.  Google Scholar

[9]

G. M. Lee, N. N. Tam and N. D. Yen, Quadratic Programming and Affine Variational Inequalities, A Qualitative Study, Springer, New York, 2005.  Google Scholar

[10]

M. S. LoboL. VandenbergheS. Boyd and H. Lebret, Applications of second-ordr cone programming, Linear Algebra and its Applications, 284 (1998), 193-228.  doi: 10.1016/S0024-3795(98)10032-0.  Google Scholar

[11]

R. T. Rockafellar and R. J. B. Wets, Variational Analysis, in Sobolev and BV Spaces, MPS-SIAM Series on Optimization, 30 (1998), 324-326.   Google Scholar

[12]

W. Römisch and R. J.-B. Wets, Stability of $\varepsilon$-approximate solutions to convex stochastic programs, SIAM J. Optim., 18 (2007), 961-979.  doi: 10.1137/060657716.  Google Scholar

[13]

A. Shapiro, D. Dentcheva and A. Ruszcy$\acute{n}$ski, Lectures on Stochastic Programming Modeling and Theory, SIAM, Philadelphia, 2009. Google Scholar

show all references

References:
[1]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000. doi: 10.1007/978-1-4612-1394-9.  Google Scholar

[2]

B. Bereanu, The continuity of the optimum in parametric programming and applications to stochastic programming, Journal of Optimization Theory and Applications, 18 (1976), 319-333.  doi: 10.1007/BF00933815.  Google Scholar

[3]

D. Bertsimas, Theory and applications of robust optimization, SIAM Review, 53 (2011), 464-501.   Google Scholar

[4]

A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer, New York, 2009. doi: 10.1007/978-0-387-87821-8.  Google Scholar

[5]

M. S. Gowda and J. S. Pang, On solution stability of the linear complementarity problem, Mathematics of Operation Reseach, 17 (1992), 77-83.  doi: 10.1287/moor.17.1.77.  Google Scholar

[6]

M. S. Gowda and J.-S. Pang, On the boundedness and stability of solutions to the affine variational inequality problem, SIAM J. Control Optim., 32 (1994), 421-441.  doi: 10.1137/S036301299222888X.  Google Scholar

[7]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Mathematics of Operation Reseach, 28 (2003), 1-38.  doi: 10.1287/moor.28.1.1.14260.  Google Scholar

[8]

Y. Han and Z. Chen, Quantitative stability of full random two-stage stochastic programs with recourse, Optim. Lett., 9 (2015), 1075-1090.  doi: 10.1007/s11590-014-0827-6.  Google Scholar

[9]

G. M. Lee, N. N. Tam and N. D. Yen, Quadratic Programming and Affine Variational Inequalities, A Qualitative Study, Springer, New York, 2005.  Google Scholar

[10]

M. S. LoboL. VandenbergheS. Boyd and H. Lebret, Applications of second-ordr cone programming, Linear Algebra and its Applications, 284 (1998), 193-228.  doi: 10.1016/S0024-3795(98)10032-0.  Google Scholar

[11]

R. T. Rockafellar and R. J. B. Wets, Variational Analysis, in Sobolev and BV Spaces, MPS-SIAM Series on Optimization, 30 (1998), 324-326.   Google Scholar

[12]

W. Römisch and R. J.-B. Wets, Stability of $\varepsilon$-approximate solutions to convex stochastic programs, SIAM J. Optim., 18 (2007), 961-979.  doi: 10.1137/060657716.  Google Scholar

[13]

A. Shapiro, D. Dentcheva and A. Ruszcy$\acute{n}$ski, Lectures on Stochastic Programming Modeling and Theory, SIAM, Philadelphia, 2009. Google Scholar

[1]

Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010

[2]

Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019071

[3]

Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661

[4]

Fausto Ferrari. Mean value properties of fractional second order operators. Communications on Pure & Applied Analysis, 2015, 14 (1) : 83-106. doi: 10.3934/cpaa.2015.14.83

[5]

Farah Abdallah, Mouhammad Ghader, Ali Wehbe, Yacine Chitour. Optimal indirect stability of a weakly damped elastic abstract system of second order equations coupled by velocities. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2789-2818. doi: 10.3934/cpaa.2019125

[6]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020040

[7]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[8]

Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061

[9]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[10]

Joško Mandić, Tanja Vučičić. On the existence of Hadamard difference sets in groups of order 400. Advances in Mathematics of Communications, 2016, 10 (3) : 547-554. doi: 10.3934/amc.2016025

[11]

Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817

[12]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[13]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[14]

Pierre-Étienne Druet. Some mathematical problems related to the second order optimal shape of a crystallisation interface. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2443-2463. doi: 10.3934/dcds.2015.35.2443

[15]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[16]

Changbing Hu. Stability of under-compressive waves with second and fourth order diffusions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 629-662. doi: 10.3934/dcds.2008.22.629

[17]

Florian Schneider. Second-order mixed-moment model with differentiable ansatz function in slab geometry. Kinetic & Related Models, 2018, 11 (5) : 1255-1276. doi: 10.3934/krm.2018049

[18]

Olga A. Brezhneva, Alexey A. Tret’yakov, Jerrold E. Marsden. Higher--order implicit function theorems and degenerate nonlinear boundary-value problems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 293-315. doi: 10.3934/cpaa.2008.7.293

[19]

Johnny Henderson, Rodica Luca. Existence of positive solutions for a system of nonlinear second-order integral boundary value problems. Conference Publications, 2015, 2015 (special) : 596-604. doi: 10.3934/proc.2015.0596

[20]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (31)
  • HTML views (138)
  • Cited by (0)

[Back to Top]