• Previous Article
    Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case
  • JIMO Home
  • This Issue
  • Next Article
    The $ F $-objective function method for differentiable interval-valued vector optimization problems
doi: 10.3934/jimo.2020109

Optimal ordering and pricing models of a two-echelon supply chain under multipletimes ordering

1. 

School of Management and Economics, Beijing Institute of Technology, Beijing, 100081, China, Springfield, MO 65801-2604, USA

2. 

School of Economics and Management, Xi'an University of Posts and Telecommunications, Xi'an Shaanxi, 710121, China, Springfield, MO 65810, USA

* Corresponding author: Fujun Hou

Received  October 2019 Revised  February 2020 Published  June 2020

Fund Project: This work is supported by the Natural Science Foundation of China (71571019)

This paper studies ordering and pricing issues under multiple times ordering. A manufacturer and a retailer are involved in our discussion. The definition of a reasonable price is given based on the practical requirement. First, we construct a Stackelberg model in which the manufacturer and the retailer make their decisions respectively. During the process of derivation, both ordering time-points and optimal prices are expressed as functions of number of times of ordering. By solving a quadratic programming model with an undetermined parameter, we demonstrate that the optimal ordering time-points of the retailer are equidistant time points on the given selling period. Second, a cooperative model is developed in which the manufacturer and the retailer jointly make decisions. It is shown that the optimal retail price is lower and the number of times of ordering is more in the cooperative situation than the noncooperative one. Further, an allocation method based on revenue proportions is proposed.

Citation: Zhenkai Lou, Fujun Hou, Xuming Lou. Optimal ordering and pricing models of a two-echelon supply chain under multipletimes ordering. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020109
References:
[1]

S. A. H. S. AmiriA. HerbonA. ZahediM. KazemiJ. Soroor and M. Hajiaghaei-Keshteli, Determination of the optimal sales level of perishable goods in a two-echelon supply chain network, Computers & Industrial Engineering, 139 (2020), 147-156.   Google Scholar

[2]

T. AvinadavA. Herbon and U. Spiegel, Optimal ordering and pricing policy for demand functions that are separable into price and inventory age, International Journal of Production Economics, 155 (2014), 406-417.   Google Scholar

[3]

H. J. ChangJ. T. TengL. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging, European Journal of Operational Research, 168 (2005), 51-64.  doi: 10.1016/j.ejor.2004.05.003.  Google Scholar

[4]

B. X. ChenX. L. Chao and H. S. Ahn, Coordinating pricing and inventory replenishment with nonparametric demand learning, Operations Research, 67 (2019), 1035-1052.  doi: 10.1287/opre.2018.1808.  Google Scholar

[5]

X. Chen and P. Hu, Joint pricing and inventory management with deterministic demand and costly price adjust, Operations Research Letters, 40 (2012), 385-389.  doi: 10.1016/j.orl.2012.05.011.  Google Scholar

[6]

Y. H. ChenS. B. Ray and Y. Y. Song, Optimal pricing and inventory control policy in periodic-review systems with fixed ordering cost and lost sales, Naval Research Logistics, 53 (2006), 117-136.  doi: 10.1002/nav.20127.  Google Scholar

[7]

W. M. ChungS. Talluri and R. Narasimhan, Optimal pricing and inventory strategies with multiple price markdowns over time, European Journal of Operational Research, 243 (2015), 130-141.  doi: 10.1016/j.ejor.2014.11.020.  Google Scholar

[8]

O. C. DemiragY. H. Chen and Y. Yang, Ordering policies for periodic-review inventory systems with quantity-dependent fixed costs, Operations Research, 60 (2012), 785-796.  doi: 10.1287/opre.1110.1033.  Google Scholar

[9]

C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging, Omega, 35 (2007), 184-189.   Google Scholar

[10]

O. Kaya and A. L. Polat, Coordinated pricing and inventory decisions for perishable products, OR Spectrum, 39 (2017), 589-606.  doi: 10.1007/s00291-016-0467-6.  Google Scholar

[11]

J. LiS. Y. Wang and T. C. E. Cheng, Competition and cooperation in a single-retailer two-supplier supply chain with supply disruption, International Journal of Production Economics, 124 (2010), 137-150.   Google Scholar

[12]

R. H. LiY. L. Chan and C. T. Chang, Pricing and lot-sizing policies for perishable products with advance-cash-credit payments by a discounted cash-flow analysis, International Journal of Production Economics, 193 (2017), 578-589.   Google Scholar

[13]

B. MondalA. K. Bhunia and M. Maiti, An inventory system of ameliorating items for price dependent demand rate, Computers & Industrial Engineering, 45 (2003), 443-456.   Google Scholar

[14]

M. S. Sajadieh and M. R. A. Jokar, Optimizing shipment, ordering and pricing policies in a two-stage supply chain with price-sensitive demand, Transportation Research Part E, 45 (2009), 564-571.   Google Scholar

[15]

D. A. Serel, Optimal ordering and pricing in a quick response system, International Journal of Production Economics, 121 (2009), 700-714.   Google Scholar

[16]

J. M. ShiG. Q. Zhang and K. K. Lai, Optimal ordering and pricing policy with supplier quantity discounts and price-dependent stochastic demand, Optimization, 61 (2012), 151-162.  doi: 10.1080/02331934.2011.590485.  Google Scholar

[17]

A. A. TaleizadehH. R. Zarei and B. R. Sarker, An optimal control of inventory under probablistic replenishment intervals and known price increase, European Journal of Operational Research, 257 (2017), 777-791.  doi: 10.1016/j.ejor.2016.07.041.  Google Scholar

[18]

S. TiwariL. E. Cardenas-Barron and M. Goh, Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain, International Journal of Production Economics, 200 (2018), 16-36.   Google Scholar

[19]

W. Xing and S. Y. Wang, Optimal ordering and pricing strategies in the presence of a B2B spot market, European Journal of Operational Research, 221 (2012), 87-98.  doi: 10.1016/j.ejor.2012.03.017.  Google Scholar

[20]

S. L. YangC. M. Shi and X. Zhao, Optimal ordering and pricing decisions for a target oriented newsvendor, Omega, 39 (2011), 110-115.   Google Scholar

[21]

P. S. You and M. T. Wu, Optimal ordering and pricing policy for an inventory system with order cancellations, OR Spectrum, 29 (2007), 661-679.  doi: 10.1007/s00291-006-0067-y.  Google Scholar

[22]

P. S. YouS. Ikuta and Y. C. Hsieh, Optimal ordering and pricing policy for an inventory system with trial period, Applied Mathematical Modelling, 34 (2010), 3179-3188.  doi: 10.1016/j.apm.2010.02.008.  Google Scholar

[23]

X. B. ZhangS. Huang and Z. Wan, Optimal pricing and ordering in global supply chain management with constraints under random demand, Applied Mathematical Modelling, 40 (2016), 10105-10130.  doi: 10.1016/j.apm.2016.06.054.  Google Scholar

show all references

References:
[1]

S. A. H. S. AmiriA. HerbonA. ZahediM. KazemiJ. Soroor and M. Hajiaghaei-Keshteli, Determination of the optimal sales level of perishable goods in a two-echelon supply chain network, Computers & Industrial Engineering, 139 (2020), 147-156.   Google Scholar

[2]

T. AvinadavA. Herbon and U. Spiegel, Optimal ordering and pricing policy for demand functions that are separable into price and inventory age, International Journal of Production Economics, 155 (2014), 406-417.   Google Scholar

[3]

H. J. ChangJ. T. TengL. Y. Ouyang and C. Y. Dye, Retailer's optimal pricing and lot-sizing policies for deteriorating items with partial backlogging, European Journal of Operational Research, 168 (2005), 51-64.  doi: 10.1016/j.ejor.2004.05.003.  Google Scholar

[4]

B. X. ChenX. L. Chao and H. S. Ahn, Coordinating pricing and inventory replenishment with nonparametric demand learning, Operations Research, 67 (2019), 1035-1052.  doi: 10.1287/opre.2018.1808.  Google Scholar

[5]

X. Chen and P. Hu, Joint pricing and inventory management with deterministic demand and costly price adjust, Operations Research Letters, 40 (2012), 385-389.  doi: 10.1016/j.orl.2012.05.011.  Google Scholar

[6]

Y. H. ChenS. B. Ray and Y. Y. Song, Optimal pricing and inventory control policy in periodic-review systems with fixed ordering cost and lost sales, Naval Research Logistics, 53 (2006), 117-136.  doi: 10.1002/nav.20127.  Google Scholar

[7]

W. M. ChungS. Talluri and R. Narasimhan, Optimal pricing and inventory strategies with multiple price markdowns over time, European Journal of Operational Research, 243 (2015), 130-141.  doi: 10.1016/j.ejor.2014.11.020.  Google Scholar

[8]

O. C. DemiragY. H. Chen and Y. Yang, Ordering policies for periodic-review inventory systems with quantity-dependent fixed costs, Operations Research, 60 (2012), 785-796.  doi: 10.1287/opre.1110.1033.  Google Scholar

[9]

C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging, Omega, 35 (2007), 184-189.   Google Scholar

[10]

O. Kaya and A. L. Polat, Coordinated pricing and inventory decisions for perishable products, OR Spectrum, 39 (2017), 589-606.  doi: 10.1007/s00291-016-0467-6.  Google Scholar

[11]

J. LiS. Y. Wang and T. C. E. Cheng, Competition and cooperation in a single-retailer two-supplier supply chain with supply disruption, International Journal of Production Economics, 124 (2010), 137-150.   Google Scholar

[12]

R. H. LiY. L. Chan and C. T. Chang, Pricing and lot-sizing policies for perishable products with advance-cash-credit payments by a discounted cash-flow analysis, International Journal of Production Economics, 193 (2017), 578-589.   Google Scholar

[13]

B. MondalA. K. Bhunia and M. Maiti, An inventory system of ameliorating items for price dependent demand rate, Computers & Industrial Engineering, 45 (2003), 443-456.   Google Scholar

[14]

M. S. Sajadieh and M. R. A. Jokar, Optimizing shipment, ordering and pricing policies in a two-stage supply chain with price-sensitive demand, Transportation Research Part E, 45 (2009), 564-571.   Google Scholar

[15]

D. A. Serel, Optimal ordering and pricing in a quick response system, International Journal of Production Economics, 121 (2009), 700-714.   Google Scholar

[16]

J. M. ShiG. Q. Zhang and K. K. Lai, Optimal ordering and pricing policy with supplier quantity discounts and price-dependent stochastic demand, Optimization, 61 (2012), 151-162.  doi: 10.1080/02331934.2011.590485.  Google Scholar

[17]

A. A. TaleizadehH. R. Zarei and B. R. Sarker, An optimal control of inventory under probablistic replenishment intervals and known price increase, European Journal of Operational Research, 257 (2017), 777-791.  doi: 10.1016/j.ejor.2016.07.041.  Google Scholar

[18]

S. TiwariL. E. Cardenas-Barron and M. Goh, Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain, International Journal of Production Economics, 200 (2018), 16-36.   Google Scholar

[19]

W. Xing and S. Y. Wang, Optimal ordering and pricing strategies in the presence of a B2B spot market, European Journal of Operational Research, 221 (2012), 87-98.  doi: 10.1016/j.ejor.2012.03.017.  Google Scholar

[20]

S. L. YangC. M. Shi and X. Zhao, Optimal ordering and pricing decisions for a target oriented newsvendor, Omega, 39 (2011), 110-115.   Google Scholar

[21]

P. S. You and M. T. Wu, Optimal ordering and pricing policy for an inventory system with order cancellations, OR Spectrum, 29 (2007), 661-679.  doi: 10.1007/s00291-006-0067-y.  Google Scholar

[22]

P. S. YouS. Ikuta and Y. C. Hsieh, Optimal ordering and pricing policy for an inventory system with trial period, Applied Mathematical Modelling, 34 (2010), 3179-3188.  doi: 10.1016/j.apm.2010.02.008.  Google Scholar

[23]

X. B. ZhangS. Huang and Z. Wan, Optimal pricing and ordering in global supply chain management with constraints under random demand, Applied Mathematical Modelling, 40 (2016), 10105-10130.  doi: 10.1016/j.apm.2016.06.054.  Google Scholar

Table 1.  Model parameters
Parameters Definition
[0, $T$] The given selling period
$t_{i }$ The ordering time-point, where $t_{i} \in $[0, $T$] and $i \in M$, $M$ = {$1, \ldots, m$}
$p_{b}$ The wholesale price determined by the manufacturer
$p_{c}$ The retail price determined by the retailer
$q$ The total procurement volume of the retailer
$e$ The production cost per item of the manufacturer
$m$ The number of times of ordering of the retailer
$k$ The fixed ordering cost of each order
$\lambda $ The linear price-sensitive coefficient of the demand rate
$r(p_{c})$ The demand rate under price $p_{c}$: $r(p_{c}) = a$$\lambda p_{c}$, $a$ ¿ 0
$h$ The stock-holding cost per item per unit time
$W$ The revenue of the manufacturer
$Z$ The revenue of the retailer
$S$ The total revenue incurred by centralized decision-making
Parameters Definition
[0, $T$] The given selling period
$t_{i }$ The ordering time-point, where $t_{i} \in $[0, $T$] and $i \in M$, $M$ = {$1, \ldots, m$}
$p_{b}$ The wholesale price determined by the manufacturer
$p_{c}$ The retail price determined by the retailer
$q$ The total procurement volume of the retailer
$e$ The production cost per item of the manufacturer
$m$ The number of times of ordering of the retailer
$k$ The fixed ordering cost of each order
$\lambda $ The linear price-sensitive coefficient of the demand rate
$r(p_{c})$ The demand rate under price $p_{c}$: $r(p_{c}) = a$$\lambda p_{c}$, $a$ ¿ 0
$h$ The stock-holding cost per item per unit time
$W$ The revenue of the manufacturer
$Z$ The revenue of the retailer
$S$ The total revenue incurred by centralized decision-making
[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Haripriya Barman, Magfura Pervin, Sankar Kumar Roy, Gerhard-Wilhelm Weber. Back-ordered inventory model with inflation in a cloudy-fuzzy environment. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1913-1941. doi: 10.3934/jimo.2020052

[3]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[4]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021057

[5]

Guiyang Zhu. Optimal pricing and ordering policy for defective items under temporary price reduction with inspection errors and price sensitive demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021060

[6]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[7]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[8]

Jaouad Danane. Optimal control of viral infection model with saturated infection rate. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 363-375. doi: 10.3934/naco.2020031

[9]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[10]

Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256

[11]

Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021079

[12]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[13]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[14]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032

[16]

Patrick Beißner, Emanuela Rosazza Gianin. The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 23-52. doi: 10.3934/puqr.2021002

[17]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[18]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[19]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021078

[20]

Sel Ly, Nicolas Privault. Stochastic ordering by g-expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 61-98. doi: 10.3934/puqr.2021004

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]