• Previous Article
    Alliance strategy of construction and demolition waste recycling based on the modified shapley value under government regulation
  • JIMO Home
  • This Issue
  • Next Article
    Two-period pricing and ordering decisions of perishable products with a learning period for demand disruption
November  2021, 17(6): 3165-3181. doi: 10.3934/jimo.2020112

Air-Conditioner Group Power Control Optimization for PV integrated Micro-grid Peak-shaving

a. 

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha 5825, Qatar

b. 

ICube Laboratory, Université de Strasbourg–CNRS, Strasbourg 67000, France

* Corresponding author: Zhaohui Cen

Received  December 2019 Revised  March 2020 Published  November 2021 Early access  June 2020

Heating, Ventilation, and Air-Condition (HVAC) systems are considered to be one of the essential applications for modern human life comfort. Due to global warming and population growth, the demand for such HVAC applications will continue to increase, especially in arid areas countries like the Arabian Gulf region. HVAC systems' energy consumption is very high and accounts for up to 70% of the total load consumption in some rapidly growing GCC countries such as Qatar. Additionally, the local extremely hot weather conditions usually lead to typical power demand peak issues that require adequate mitigation measures to ensure grid stability. In this paper, a novel control scheme for a combined group of Air-Conditioners is proposed as a peak-shaving strategy to address high power demand issues for Photo-Voltaic(PV)-integrated micro-grid applications. Using the local daily ambient temperature as input, the AC group control optimization is formulated as a Mixed-Integer Quadratic Programming (MIQP) problem. Under an acceptable range of indoor temperatures, the units in the same AC group are coordinately controlled to generate desired power consumption performance that is capable of shaving load peaks for both power consumption and PV generation. Finally, various simulations are performed that demonstrate the effectiveness of the proposed control strategy.

Citation: Mohammed Al-Azba, Zhaohui Cen, Yves Remond, Said Ahzi. Air-Conditioner Group Power Control Optimization for PV integrated Micro-grid Peak-shaving. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3165-3181. doi: 10.3934/jimo.2020112
References:
[1]

M. Al-Azba, Z. Cen, Y. Remond and S. Ahzi, An optimal air-conditioner on-off control scheme under extremely hot weather conditions, Energies, 13 (2020), 1021. doi: 10.3390/en13051021.

[2]

G. ChaudharyP. ShrivastavaM. Alam and Y. Rafat, Performance optimization and development of an efficient solar photovoltaic based inverter air conditioning system, Smart Science, 6 (2018), 188-196.  doi: 10.1080/23080477.2018.1437322.

[3]

M. Di Felice, L. Piroddi, A. Leva and A. Boer, Adaptive temperature control of a household refrigerator, in 2009 American Control Conference, IEEE, 2009,889–894. doi: 10.1109/ACC.2009.5159862.

[4]

J. Dong, Stochastic and optimal distributed control for energy optimization and spatially invariant systems.

[5]

J. Dong, S. M. Djouadi, T. Kuruganti and M. M. Olama, Augmented optimal control for buildings under high penetration of solar photovoltaic generation, in 2017 IEEE Conference on Control Technology and Applications (CCTA), IEEE, 2017, 2158–2163. doi: 10.1109/CCTA.2017.8062772.

[6]

J. Dong, M. M. Olama, T. Kuruganti, J. Nutaro, Y. Xue, I. Sharma and S. M. Djouadi, Adaptive building load control to enable high penetration of solar photovoltaic generation, in 2017 IEEE Power & Energy Society General Meeting, IEEE, 2017, 1–5. doi: 10.1109/PESGM.2017.8274533.

[7]

M. S. Elliott, Decentralized Model Predictive Control of a Multiple Evaporator HVAC System, PhD thesis, Texas A & M University, 2010.

[8]

R. Godina, E. M. Rodrigues, E. Pouresmaeil and J. P. Catalão, Home hvac energy management and optimization with model predictive control, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), IEEE, 2017, 1–5. doi: 10.1109/EEEIC.2017.7977766.

[9]

R. GodinaE. M. RodriguesE. Pouresmaeil and J. P. Catalão, Optimal residential model predictive control energy management performance with pv microgeneration, Computers & Operations Research, 96 (2018), 143-156.  doi: 10.1016/j.cor.2017.12.003.

[10]

R. Godina, E. M. Rodrigues, M. Shafie-khah, E. Pouresmaeil and J. P. Catalão, Energy optimization strategy with model predictive control and demand response, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), IEEE, 2017, 1–5. doi: 10.1109/EEEIC.2017.7977767.

[11]

G. Huang, Model predictive control of vav zone thermal systems concerning bi-linearity and gain nonlinearity, Control Engineering Practice, 19 (2011), 700-710.  doi: 10.1016/j.conengprac.2011.03.005.

[12]

N. JinD. L. DanilovP. M. Van den Hof and M. Donkers, Parameter estimation of an electrochemistry-based lithium-ion battery model using a two-step procedure and a parameter sensitivity analysis, International Journal of Energy Research, 42 (2018), 2417-2430.  doi: 10.1002/er.4022.

[13]

H. LüL. JiaS. Kong and Z. Zhang, Predictive functional control based on fuzzy ts model for hvac systems temperature control, Journal of Control Theory and Applications, 5 (2007), 94-98. 

[14]

X. MaE. D. McCormack and Y. Wang, Processing commercial global positioning system data to develop a web-based truck performance measures program, Transportation Research Record, 2246 (2011), 92-100.  doi: 10.3141/2246-12.

[15]

J. Rehrl and M. Horn, Temperature control for hvac systems based on exact linearization and model predictive control, in 2011 IEEE International Conference on Control Applications (CCA), IEEE, 2011, 1119–1124. doi: 10.1109/CCA.2011.6044437.

[16]

E. RodriguesR. GodinaE. PouresmaeilJ. Ferreira and J. Catalão, Domestic appliances energy optimization with model predictive control, Energy Conversion and Management, 142 (2017), 402-413. 

[17]

M. SongC. Gao and W. Su, Modeling and controlling of air-conditioning load for demand response applications, Autom Electr Power Syst, 40 (2016), 158-167. 

[18]

M. SongC. GaoH. Yan and J. Yang, Thermal battery modeling of inverter air conditioning for demand response, IEEE Transactions on Smart Grid, 9 (2017), 5522-5534.  doi: 10.1109/TSG.2017.2689820.

[19]

X.-C. XiA.-N. Poo and S.-K. Chou, Support vector regression model predictive control on a hvac plant, Control Engineering Practice, 15 (2007), 897-908.  doi: 10.1016/j.conengprac.2006.10.010.

[20]

G. XiaD. Zhuang and G. Ding, Thermal management solution for enclosed controller used in inverter air conditioner based on heat pipe heat sink, International Journal of Refrigeration, 99 (2019), 69-79.  doi: 10.1016/j.ijrefrig.2018.12.020.

[21]

Q. Zhang, Q. Guo and Y. Yu, Research on the load characteristics of inverter and constant speed air conditioner and the influence on distribution network, in 2016 China International Conference on Electricity Distribution (CICED), IEEE, 2016, 1–4. doi: 10.1109/CICED.2016.7575908.

show all references

References:
[1]

M. Al-Azba, Z. Cen, Y. Remond and S. Ahzi, An optimal air-conditioner on-off control scheme under extremely hot weather conditions, Energies, 13 (2020), 1021. doi: 10.3390/en13051021.

[2]

G. ChaudharyP. ShrivastavaM. Alam and Y. Rafat, Performance optimization and development of an efficient solar photovoltaic based inverter air conditioning system, Smart Science, 6 (2018), 188-196.  doi: 10.1080/23080477.2018.1437322.

[3]

M. Di Felice, L. Piroddi, A. Leva and A. Boer, Adaptive temperature control of a household refrigerator, in 2009 American Control Conference, IEEE, 2009,889–894. doi: 10.1109/ACC.2009.5159862.

[4]

J. Dong, Stochastic and optimal distributed control for energy optimization and spatially invariant systems.

[5]

J. Dong, S. M. Djouadi, T. Kuruganti and M. M. Olama, Augmented optimal control for buildings under high penetration of solar photovoltaic generation, in 2017 IEEE Conference on Control Technology and Applications (CCTA), IEEE, 2017, 2158–2163. doi: 10.1109/CCTA.2017.8062772.

[6]

J. Dong, M. M. Olama, T. Kuruganti, J. Nutaro, Y. Xue, I. Sharma and S. M. Djouadi, Adaptive building load control to enable high penetration of solar photovoltaic generation, in 2017 IEEE Power & Energy Society General Meeting, IEEE, 2017, 1–5. doi: 10.1109/PESGM.2017.8274533.

[7]

M. S. Elliott, Decentralized Model Predictive Control of a Multiple Evaporator HVAC System, PhD thesis, Texas A & M University, 2010.

[8]

R. Godina, E. M. Rodrigues, E. Pouresmaeil and J. P. Catalão, Home hvac energy management and optimization with model predictive control, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), IEEE, 2017, 1–5. doi: 10.1109/EEEIC.2017.7977766.

[9]

R. GodinaE. M. RodriguesE. Pouresmaeil and J. P. Catalão, Optimal residential model predictive control energy management performance with pv microgeneration, Computers & Operations Research, 96 (2018), 143-156.  doi: 10.1016/j.cor.2017.12.003.

[10]

R. Godina, E. M. Rodrigues, M. Shafie-khah, E. Pouresmaeil and J. P. Catalão, Energy optimization strategy with model predictive control and demand response, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), IEEE, 2017, 1–5. doi: 10.1109/EEEIC.2017.7977767.

[11]

G. Huang, Model predictive control of vav zone thermal systems concerning bi-linearity and gain nonlinearity, Control Engineering Practice, 19 (2011), 700-710.  doi: 10.1016/j.conengprac.2011.03.005.

[12]

N. JinD. L. DanilovP. M. Van den Hof and M. Donkers, Parameter estimation of an electrochemistry-based lithium-ion battery model using a two-step procedure and a parameter sensitivity analysis, International Journal of Energy Research, 42 (2018), 2417-2430.  doi: 10.1002/er.4022.

[13]

H. LüL. JiaS. Kong and Z. Zhang, Predictive functional control based on fuzzy ts model for hvac systems temperature control, Journal of Control Theory and Applications, 5 (2007), 94-98. 

[14]

X. MaE. D. McCormack and Y. Wang, Processing commercial global positioning system data to develop a web-based truck performance measures program, Transportation Research Record, 2246 (2011), 92-100.  doi: 10.3141/2246-12.

[15]

J. Rehrl and M. Horn, Temperature control for hvac systems based on exact linearization and model predictive control, in 2011 IEEE International Conference on Control Applications (CCA), IEEE, 2011, 1119–1124. doi: 10.1109/CCA.2011.6044437.

[16]

E. RodriguesR. GodinaE. PouresmaeilJ. Ferreira and J. Catalão, Domestic appliances energy optimization with model predictive control, Energy Conversion and Management, 142 (2017), 402-413. 

[17]

M. SongC. Gao and W. Su, Modeling and controlling of air-conditioning load for demand response applications, Autom Electr Power Syst, 40 (2016), 158-167. 

[18]

M. SongC. GaoH. Yan and J. Yang, Thermal battery modeling of inverter air conditioning for demand response, IEEE Transactions on Smart Grid, 9 (2017), 5522-5534.  doi: 10.1109/TSG.2017.2689820.

[19]

X.-C. XiA.-N. Poo and S.-K. Chou, Support vector regression model predictive control on a hvac plant, Control Engineering Practice, 15 (2007), 897-908.  doi: 10.1016/j.conengprac.2006.10.010.

[20]

G. XiaD. Zhuang and G. Ding, Thermal management solution for enclosed controller used in inverter air conditioner based on heat pipe heat sink, International Journal of Refrigeration, 99 (2019), 69-79.  doi: 10.1016/j.ijrefrig.2018.12.020.

[21]

Q. Zhang, Q. Guo and Y. Yu, Research on the load characteristics of inverter and constant speed air conditioner and the influence on distribution network, in 2016 China International Conference on Electricity Distribution (CICED), IEEE, 2016, 1–4. doi: 10.1109/CICED.2016.7575908.

Figure 1.  Baseline on-off AC control temperature profile
Figure 2.  AC Group Control ICT hardware infrastructure diagram
Figure 3.  Flowchart for AC group control program
Figure 4.  Outdoor Temperature in One day measured in Qatar
Figure 5.  On-Off Control Power profile subjected to different time delay
Figure 6.  Indoor Temperature Control profile Comparison
Figure 7.  Indoor temperature profiles of load-side peak shaving (The different curves are for the considered 40 AC units)
Figure 8.  Individual AC power control logic of load-side peak shaving
Figure 9.  Load-side shaving by AC group control
Figure 10.  Indoor temperature profiles under binary Mode
Figure 11.  Individual AC power control logic for PV peak shaving scenario under binary mode
Figure 12.  PV side Peak-shaving by AC group control under binary Mode
Figure 13.  Indoor temperature profiles under Ternary Mode (0-1-2)
Figure 14.  Individual AC power control logic under Ternary Mode (0-1-2)
Figure 15.  PV side Peak-shaving by AC group control with Ternary Mode (0-1-2)
Table 1.  House thermal model parameters definition
Parameter Definition
$ {T}_{indoor} $ Indoor temperature of the house
$ {T}_{outdoor} $ Outdoor temperature of the house
$ {{\dot{Q}}_{d}} $ Heat flow from outdoor to the house
$ {{\dot{Q}}_{e}} $ Cooling Energy by AC system
$ R $ Thermal resistance from outdoor to the house
$ m $ Mass of the indoor air
$ {{C}_{p}} $ Heat capacities of the room air
Parameter Definition
$ {T}_{indoor} $ Indoor temperature of the house
$ {T}_{outdoor} $ Outdoor temperature of the house
$ {{\dot{Q}}_{d}} $ Heat flow from outdoor to the house
$ {{\dot{Q}}_{e}} $ Cooling Energy by AC system
$ R $ Thermal resistance from outdoor to the house
$ m $ Mass of the indoor air
$ {{C}_{p}} $ Heat capacities of the room air
Table 2.  Parameters values of the thermal model and optimization
Parameter Value Parameter Value
A -2.00123e-4 $ J_{SW} $ 2
B 4.4028e-6 Cp($ J/Kg^oC $) 1005
E 0.002*$ T_{ref} $ $ m(kg) $ 222
R($ ^oC/W $) 0.022 $ Q $ 300
Parameter Value Parameter Value
A -2.00123e-4 $ J_{SW} $ 2
B 4.4028e-6 Cp($ J/Kg^oC $) 1005
E 0.002*$ T_{ref} $ $ m(kg) $ 222
R($ ^oC/W $) 0.022 $ Q $ 300
[1]

Tehuan Chen, Chao Xu, Zhigang Ren. Computational optimal control of 1D colloid transport by solute gradients in dead-end micro-channels. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1251-1269. doi: 10.3934/jimo.2018052

[2]

Li Chen, Yongyan Sun, Xiaowei Shao, Junli Chen, Dexin Zhang. Prescribed-time time-varying sliding mode based integrated translation and rotation control for spacecraft formation flying. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022131

[3]

Gülden Gün Polat, Teoman Özer. On group analysis of optimal control problems in economic growth models. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2853-2876. doi: 10.3934/dcdss.2020215

[4]

Zhenhuan Yang, Yiming Ying, Qilong Min. Online optimization for residential PV-ESS energy system scheduling. Mathematical Foundations of Computing, 2019, 2 (1) : 55-71. doi: 10.3934/mfc.2019005

[5]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

[6]

Jing Li, Panos Stinis. Model reduction for a power grid model. Journal of Computational Dynamics, 2022, 9 (1) : 1-26. doi: 10.3934/jcd.2021019

[7]

Min He. On continuity in parameters of integrated semigroups. Conference Publications, 2003, 2003 (Special) : 403-412. doi: 10.3934/proc.2003.2003.403

[8]

E. N. Dancer, Danielle Hilhorst, Shusen Yan. Peak solutions for the Dirichlet problem of an elliptic system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 731-761. doi: 10.3934/dcds.2009.24.731

[9]

Rebecca Vandiver. Effect of residual stress on peak cap stress in arteries. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1199-1214. doi: 10.3934/mbe.2014.11.1199

[10]

Michael Fischer, Gaspard Jankowiak, Marie-Therese Wolfram. Micro- and macroscopic modeling of crowding and pushing in corridors. Networks and Heterogeneous Media, 2020, 15 (3) : 405-426. doi: 10.3934/nhm.2020025

[11]

Miriam Kiessling, Sascha Kurz, Jörg Rambau. The integrated size and price optimization problem. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 669-693. doi: 10.3934/naco.2012.2.669

[12]

Jinchao Xu. The single-grid multilevel method and its applications. Inverse Problems and Imaging, 2013, 7 (3) : 987-1005. doi: 10.3934/ipi.2013.7.987

[13]

Z. Feng. Final and peak epidemic sizes for SEIR models with quarantine and isolation. Mathematical Biosciences & Engineering, 2007, 4 (4) : 675-686. doi: 10.3934/mbe.2007.4.675

[14]

Xudong Shang, Jihui Zhang. Multi-peak positive solutions for a fractional nonlinear elliptic equation. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3183-3201. doi: 10.3934/dcds.2015.35.3183

[15]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[16]

Denis Dmitriev, Jonathan Jedwab. Bounds on the growth rate of the peak sidelobe level of binary sequences. Advances in Mathematics of Communications, 2007, 1 (4) : 461-475. doi: 10.3934/amc.2007.1.461

[17]

Zhongwei Tang. Segregated peak solutions of coupled Schrödinger systems with Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5299-5323. doi: 10.3934/dcds.2014.34.5299

[18]

Minbo Yang, Jianjun Zhang, Yimin Zhang. Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (2) : 493-512. doi: 10.3934/cpaa.2017025

[19]

Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1633-1679. doi: 10.3934/cpaa.2021035

[20]

Francesca Marcellini. Free-congested and micro-macro descriptions of traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 543-556. doi: 10.3934/dcdss.2014.7.543

2021 Impact Factor: 1.411

Article outline

Figures and Tables

[Back to Top]