• Previous Article
    Quality competition and coordination in a VMI supply chain with two risk-averse manufacturers
  • JIMO Home
  • This Issue
  • Next Article
    A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet
doi: 10.3934/jimo.2020112

Air-Conditioner Group Power Control Optimization for PV integrated Micro-grid Peak-shaving

a. 

Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Doha 5825, Qatar

b. 

ICube Laboratory, Université de Strasbourg–CNRS, Strasbourg 67000, France

* Corresponding author: Zhaohui Cen

Received  December 2019 Revised  March 2020 Published  June 2020

Heating, Ventilation, and Air-Condition (HVAC) systems are considered to be one of the essential applications for modern human life comfort. Due to global warming and population growth, the demand for such HVAC applications will continue to increase, especially in arid areas countries like the Arabian Gulf region. HVAC systems' energy consumption is very high and accounts for up to 70% of the total load consumption in some rapidly growing GCC countries such as Qatar. Additionally, the local extremely hot weather conditions usually lead to typical power demand peak issues that require adequate mitigation measures to ensure grid stability. In this paper, a novel control scheme for a combined group of Air-Conditioners is proposed as a peak-shaving strategy to address high power demand issues for Photo-Voltaic(PV)-integrated micro-grid applications. Using the local daily ambient temperature as input, the AC group control optimization is formulated as a Mixed-Integer Quadratic Programming (MIQP) problem. Under an acceptable range of indoor temperatures, the units in the same AC group are coordinately controlled to generate desired power consumption performance that is capable of shaving load peaks for both power consumption and PV generation. Finally, various simulations are performed that demonstrate the effectiveness of the proposed control strategy.

Citation: Mohammed Al-Azba, Zhaohui Cen, Yves Remond, Said Ahzi. Air-Conditioner Group Power Control Optimization for PV integrated Micro-grid Peak-shaving. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020112
References:
[1]

M. Al-Azba, Z. Cen, Y. Remond and S. Ahzi, An optimal air-conditioner on-off control scheme under extremely hot weather conditions, Energies, 13 (2020), 1021. doi: 10.3390/en13051021.  Google Scholar

[2]

G. ChaudharyP. ShrivastavaM. Alam and Y. Rafat, Performance optimization and development of an efficient solar photovoltaic based inverter air conditioning system, Smart Science, 6 (2018), 188-196.  doi: 10.1080/23080477.2018.1437322.  Google Scholar

[3]

M. Di Felice, L. Piroddi, A. Leva and A. Boer, Adaptive temperature control of a household refrigerator, in 2009 American Control Conference, IEEE, 2009,889–894. doi: 10.1109/ACC.2009.5159862.  Google Scholar

[4]

J. Dong, Stochastic and optimal distributed control for energy optimization and spatially invariant systems. Google Scholar

[5]

J. Dong, S. M. Djouadi, T. Kuruganti and M. M. Olama, Augmented optimal control for buildings under high penetration of solar photovoltaic generation, in 2017 IEEE Conference on Control Technology and Applications (CCTA), IEEE, 2017, 2158–2163. doi: 10.1109/CCTA.2017.8062772.  Google Scholar

[6]

J. Dong, M. M. Olama, T. Kuruganti, J. Nutaro, Y. Xue, I. Sharma and S. M. Djouadi, Adaptive building load control to enable high penetration of solar photovoltaic generation, in 2017 IEEE Power & Energy Society General Meeting, IEEE, 2017, 1–5. doi: 10.1109/PESGM.2017.8274533.  Google Scholar

[7]

M. S. Elliott, Decentralized Model Predictive Control of a Multiple Evaporator HVAC System, PhD thesis, Texas A & M University, 2010. Google Scholar

[8]

R. Godina, E. M. Rodrigues, E. Pouresmaeil and J. P. Catalão, Home hvac energy management and optimization with model predictive control, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), IEEE, 2017, 1–5. doi: 10.1109/EEEIC.2017.7977766.  Google Scholar

[9]

R. GodinaE. M. RodriguesE. Pouresmaeil and J. P. Catalão, Optimal residential model predictive control energy management performance with pv microgeneration, Computers & Operations Research, 96 (2018), 143-156.  doi: 10.1016/j.cor.2017.12.003.  Google Scholar

[10]

R. Godina, E. M. Rodrigues, M. Shafie-khah, E. Pouresmaeil and J. P. Catalão, Energy optimization strategy with model predictive control and demand response, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), IEEE, 2017, 1–5. doi: 10.1109/EEEIC.2017.7977767.  Google Scholar

[11]

G. Huang, Model predictive control of vav zone thermal systems concerning bi-linearity and gain nonlinearity, Control Engineering Practice, 19 (2011), 700-710.  doi: 10.1016/j.conengprac.2011.03.005.  Google Scholar

[12]

N. JinD. L. DanilovP. M. Van den Hof and M. Donkers, Parameter estimation of an electrochemistry-based lithium-ion battery model using a two-step procedure and a parameter sensitivity analysis, International Journal of Energy Research, 42 (2018), 2417-2430.  doi: 10.1002/er.4022.  Google Scholar

[13]

H. LüL. JiaS. Kong and Z. Zhang, Predictive functional control based on fuzzy ts model for hvac systems temperature control, Journal of Control Theory and Applications, 5 (2007), 94-98.   Google Scholar

[14]

X. MaE. D. McCormack and Y. Wang, Processing commercial global positioning system data to develop a web-based truck performance measures program, Transportation Research Record, 2246 (2011), 92-100.  doi: 10.3141/2246-12.  Google Scholar

[15]

J. Rehrl and M. Horn, Temperature control for hvac systems based on exact linearization and model predictive control, in 2011 IEEE International Conference on Control Applications (CCA), IEEE, 2011, 1119–1124. doi: 10.1109/CCA.2011.6044437.  Google Scholar

[16]

E. RodriguesR. GodinaE. PouresmaeilJ. Ferreira and J. Catalão, Domestic appliances energy optimization with model predictive control, Energy Conversion and Management, 142 (2017), 402-413.   Google Scholar

[17]

M. SongC. Gao and W. Su, Modeling and controlling of air-conditioning load for demand response applications, Autom Electr Power Syst, 40 (2016), 158-167.   Google Scholar

[18]

M. SongC. GaoH. Yan and J. Yang, Thermal battery modeling of inverter air conditioning for demand response, IEEE Transactions on Smart Grid, 9 (2017), 5522-5534.  doi: 10.1109/TSG.2017.2689820.  Google Scholar

[19]

X.-C. XiA.-N. Poo and S.-K. Chou, Support vector regression model predictive control on a hvac plant, Control Engineering Practice, 15 (2007), 897-908.  doi: 10.1016/j.conengprac.2006.10.010.  Google Scholar

[20]

G. XiaD. Zhuang and G. Ding, Thermal management solution for enclosed controller used in inverter air conditioner based on heat pipe heat sink, International Journal of Refrigeration, 99 (2019), 69-79.  doi: 10.1016/j.ijrefrig.2018.12.020.  Google Scholar

[21]

Q. Zhang, Q. Guo and Y. Yu, Research on the load characteristics of inverter and constant speed air conditioner and the influence on distribution network, in 2016 China International Conference on Electricity Distribution (CICED), IEEE, 2016, 1–4. doi: 10.1109/CICED.2016.7575908.  Google Scholar

show all references

References:
[1]

M. Al-Azba, Z. Cen, Y. Remond and S. Ahzi, An optimal air-conditioner on-off control scheme under extremely hot weather conditions, Energies, 13 (2020), 1021. doi: 10.3390/en13051021.  Google Scholar

[2]

G. ChaudharyP. ShrivastavaM. Alam and Y. Rafat, Performance optimization and development of an efficient solar photovoltaic based inverter air conditioning system, Smart Science, 6 (2018), 188-196.  doi: 10.1080/23080477.2018.1437322.  Google Scholar

[3]

M. Di Felice, L. Piroddi, A. Leva and A. Boer, Adaptive temperature control of a household refrigerator, in 2009 American Control Conference, IEEE, 2009,889–894. doi: 10.1109/ACC.2009.5159862.  Google Scholar

[4]

J. Dong, Stochastic and optimal distributed control for energy optimization and spatially invariant systems. Google Scholar

[5]

J. Dong, S. M. Djouadi, T. Kuruganti and M. M. Olama, Augmented optimal control for buildings under high penetration of solar photovoltaic generation, in 2017 IEEE Conference on Control Technology and Applications (CCTA), IEEE, 2017, 2158–2163. doi: 10.1109/CCTA.2017.8062772.  Google Scholar

[6]

J. Dong, M. M. Olama, T. Kuruganti, J. Nutaro, Y. Xue, I. Sharma and S. M. Djouadi, Adaptive building load control to enable high penetration of solar photovoltaic generation, in 2017 IEEE Power & Energy Society General Meeting, IEEE, 2017, 1–5. doi: 10.1109/PESGM.2017.8274533.  Google Scholar

[7]

M. S. Elliott, Decentralized Model Predictive Control of a Multiple Evaporator HVAC System, PhD thesis, Texas A & M University, 2010. Google Scholar

[8]

R. Godina, E. M. Rodrigues, E. Pouresmaeil and J. P. Catalão, Home hvac energy management and optimization with model predictive control, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), IEEE, 2017, 1–5. doi: 10.1109/EEEIC.2017.7977766.  Google Scholar

[9]

R. GodinaE. M. RodriguesE. Pouresmaeil and J. P. Catalão, Optimal residential model predictive control energy management performance with pv microgeneration, Computers & Operations Research, 96 (2018), 143-156.  doi: 10.1016/j.cor.2017.12.003.  Google Scholar

[10]

R. Godina, E. M. Rodrigues, M. Shafie-khah, E. Pouresmaeil and J. P. Catalão, Energy optimization strategy with model predictive control and demand response, in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe), IEEE, 2017, 1–5. doi: 10.1109/EEEIC.2017.7977767.  Google Scholar

[11]

G. Huang, Model predictive control of vav zone thermal systems concerning bi-linearity and gain nonlinearity, Control Engineering Practice, 19 (2011), 700-710.  doi: 10.1016/j.conengprac.2011.03.005.  Google Scholar

[12]

N. JinD. L. DanilovP. M. Van den Hof and M. Donkers, Parameter estimation of an electrochemistry-based lithium-ion battery model using a two-step procedure and a parameter sensitivity analysis, International Journal of Energy Research, 42 (2018), 2417-2430.  doi: 10.1002/er.4022.  Google Scholar

[13]

H. LüL. JiaS. Kong and Z. Zhang, Predictive functional control based on fuzzy ts model for hvac systems temperature control, Journal of Control Theory and Applications, 5 (2007), 94-98.   Google Scholar

[14]

X. MaE. D. McCormack and Y. Wang, Processing commercial global positioning system data to develop a web-based truck performance measures program, Transportation Research Record, 2246 (2011), 92-100.  doi: 10.3141/2246-12.  Google Scholar

[15]

J. Rehrl and M. Horn, Temperature control for hvac systems based on exact linearization and model predictive control, in 2011 IEEE International Conference on Control Applications (CCA), IEEE, 2011, 1119–1124. doi: 10.1109/CCA.2011.6044437.  Google Scholar

[16]

E. RodriguesR. GodinaE. PouresmaeilJ. Ferreira and J. Catalão, Domestic appliances energy optimization with model predictive control, Energy Conversion and Management, 142 (2017), 402-413.   Google Scholar

[17]

M. SongC. Gao and W. Su, Modeling and controlling of air-conditioning load for demand response applications, Autom Electr Power Syst, 40 (2016), 158-167.   Google Scholar

[18]

M. SongC. GaoH. Yan and J. Yang, Thermal battery modeling of inverter air conditioning for demand response, IEEE Transactions on Smart Grid, 9 (2017), 5522-5534.  doi: 10.1109/TSG.2017.2689820.  Google Scholar

[19]

X.-C. XiA.-N. Poo and S.-K. Chou, Support vector regression model predictive control on a hvac plant, Control Engineering Practice, 15 (2007), 897-908.  doi: 10.1016/j.conengprac.2006.10.010.  Google Scholar

[20]

G. XiaD. Zhuang and G. Ding, Thermal management solution for enclosed controller used in inverter air conditioner based on heat pipe heat sink, International Journal of Refrigeration, 99 (2019), 69-79.  doi: 10.1016/j.ijrefrig.2018.12.020.  Google Scholar

[21]

Q. Zhang, Q. Guo and Y. Yu, Research on the load characteristics of inverter and constant speed air conditioner and the influence on distribution network, in 2016 China International Conference on Electricity Distribution (CICED), IEEE, 2016, 1–4. doi: 10.1109/CICED.2016.7575908.  Google Scholar

Figure 1.  Baseline on-off AC control temperature profile
Figure 2.  AC Group Control ICT hardware infrastructure diagram
Figure 3.  Flowchart for AC group control program
Figure 4.  Outdoor Temperature in One day measured in Qatar
Figure 5.  On-Off Control Power profile subjected to different time delay
Figure 6.  Indoor Temperature Control profile Comparison
Figure 7.  Indoor temperature profiles of load-side peak shaving (The different curves are for the considered 40 AC units)
Figure 8.  Individual AC power control logic of load-side peak shaving
Figure 9.  Load-side shaving by AC group control
Figure 10.  Indoor temperature profiles under binary Mode
Figure 11.  Individual AC power control logic for PV peak shaving scenario under binary mode
Figure 12.  PV side Peak-shaving by AC group control under binary Mode
Figure 13.  Indoor temperature profiles under Ternary Mode (0-1-2)
Figure 14.  Individual AC power control logic under Ternary Mode (0-1-2)
Figure 15.  PV side Peak-shaving by AC group control with Ternary Mode (0-1-2)
Table 1.  House thermal model parameters definition
Parameter Definition
$ {T}_{indoor} $ Indoor temperature of the house
$ {T}_{outdoor} $ Outdoor temperature of the house
$ {{\dot{Q}}_{d}} $ Heat flow from outdoor to the house
$ {{\dot{Q}}_{e}} $ Cooling Energy by AC system
$ R $ Thermal resistance from outdoor to the house
$ m $ Mass of the indoor air
$ {{C}_{p}} $ Heat capacities of the room air
Parameter Definition
$ {T}_{indoor} $ Indoor temperature of the house
$ {T}_{outdoor} $ Outdoor temperature of the house
$ {{\dot{Q}}_{d}} $ Heat flow from outdoor to the house
$ {{\dot{Q}}_{e}} $ Cooling Energy by AC system
$ R $ Thermal resistance from outdoor to the house
$ m $ Mass of the indoor air
$ {{C}_{p}} $ Heat capacities of the room air
Table 2.  Parameters values of the thermal model and optimization
Parameter Value Parameter Value
A -2.00123e-4 $ J_{SW} $ 2
B 4.4028e-6 Cp($ J/Kg^oC $) 1005
E 0.002*$ T_{ref} $ $ m(kg) $ 222
R($ ^oC/W $) 0.022 $ Q $ 300
Parameter Value Parameter Value
A -2.00123e-4 $ J_{SW} $ 2
B 4.4028e-6 Cp($ J/Kg^oC $) 1005
E 0.002*$ T_{ref} $ $ m(kg) $ 222
R($ ^oC/W $) 0.022 $ Q $ 300
[1]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008

[2]

Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021027

[3]

Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035

[4]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[5]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[6]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[7]

Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077

[8]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[9]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[10]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[11]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[12]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[13]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[14]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[15]

Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021063

[16]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[17]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[18]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[19]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[20]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]